Skip to main content

09-23-2017 | Mobile technology | Review | Article

Technology Interventions to Manage Food Intake: Where Are We Now?

Journal: Current Diabetes Reports

Authors: Margaret Allman-Farinelli, Luke Gemming

Publisher: Springer US


Purpose of Review

This review describes the state-of-the-art for dietary assessment using smartphone apps and digital technology and provides an update on the efficacy of technology-mediated interventions for dietary change.

Recent Findings

Technology has progressed from apps requiring entry of foods consumed, to digital imaging to provide food intake data. However, these methods rely on patients being active in data collection. The automated estimation of the volume and composition of every meal consumed globally is years away. The use of text messaging, apps, social media, and combinations of these for interventions is growing and proving effective for type 2 diabetes mellitus (T2DM). Effectiveness of text messaging for obesity management is improving and multicomponent interventions show promise. A stand-alone app is less likely to produce positive outcomes and social media is relatively unexplored.


A concentrated effort will be needed to progress digital dietary assessment. Researcher-designed technology programs are producing positive outcomes for T2DM but further research is needed in the area of weight management.
Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.CrossRefPubMed
Evert AB, Boucher JL, Cypress M, Dunbar SA, Franz MJ, Mayer-Davis EJ, et al. Nutrition therapy recommendations for the management of adults with diabetes. Diabetes Care. 2014;37(Suppl 1):S120–43.CrossRefPubMed
Illner AK, Freisling H, Boeing H, Huybrechts I, Crispim SP, Slimani N. Review and evaluation of innovative technologies for measuring diet in nutritional epidemiology. Int J Epidemiol. 2012;41(4):1187–203.CrossRefPubMed
Hutchesson MJ, Rollo ME, Krukowski R, Ells L, Harvey J, Morgan PJ, et al. eHealth interventions for the prevention and treatment of overweight and obesity in adults: a systematic review with meta-analysis. Obes Rev. 2015;16(5):376–92.CrossRefPubMed
Sharp DB, Allman-Farinelli M. Feasibility and validity of mobile phones to assess dietary intake. Nutrition. 2014;30(11–12):1257–66.CrossRefPubMed
• Gemming L, Utter J, Ni MC. Image-assisted dietary assessment: a systematic review of the evidence. J Acad Nutr Diet. 2015;115(1):64–77. State-of-the-art review. CrossRefPubMed
• Boushey CJ, Spoden M, Zhu FM, Delp EJ, Kerr DA. New mobile methods for dietary assessment: review of image-assisted and image-based dietary assessment methods. Proc Nutr Soc. 2017;76(3):283–94. State-of-the-art review.
Steele R. An overview of the state of the art of automated capture of dietary intake information. Crit Rev Food Sci Nutr. 2015;55(13):1929–38.CrossRefPubMed
Rollo ME, WIlliams RL, Burrows T, Kirkpatrick SI, Bucher T, Collins CE. What are they really eating? A review on new approaches to dietary intake assessment and validation. Curr Nutr Rep. 2016;5(4):307–14.CrossRef
Rusin M, Arsand E, Hartvigsen G. Functionalities and input methods for recording food intake: a systematic review. Int J Med Inform. 2013;82(8):653–64.CrossRefPubMed
Rangan AM, O'Connor S, Giannelli V, Yap ML, Tang LM, Roy R, et al. Electronic dietary intake assessment (e-DIA): comparison of a mobile phone digital entry app for dietary data collection with 24-hour dietary recalls. JMIR Mhealth Uhealth. 2015;3(4):e98.CrossRefPubMedPubMedCentral
Rangan AM, Tieleman L, Louie JC, Tang LM, Hebden L, Roy R, et al. Electronic dietary intake assessment (e-DIA): relative validity of a mobile phone application to measure intake of food groups. Br J Nutr. 2016;115(12):2219–26.CrossRefPubMed
Bucher Della Torre S, Carrard I, Farina E, Danuser B, Kruseman M. Development and evaluation of e-CA, an electronic mobile-based food record. Nutrients. 2017;9(1):E76.
Mescoloto SB, Caivano S, Domene SMÁ. Evaluation of a mobile application for estimation of food intake. Rev Nutr. 2017;30:91–8.CrossRef
Martin CK, Correa JB, Han H, Allen HR, Rood JC, Champagne CM, et al. Validity of the Remote Food Photography Method (RFPM) for estimating energy and nutrient intake in near real-time. Obesity. 2012;20(4):891–9.CrossRefPubMed
Lieffers JR, Haresign H, Mehling C, Hanning RM. A retrospective analysis of real-world use of the eaTracker(R) My Goals website by adults from Ontario and Alberta, Canada. BMC Public Health. 2016;16:978.CrossRefPubMedPubMedCentral
Carter MC, Burley VJ, Nykjaer C, Cade JE. 'My Meal Mate' (MMM): validation of the diet measures captured on a smartphone application to facilitate weight loss. Br J Nutr. 2013;109(3):539–46.CrossRefPubMed
McClung HL, Sigrist LD, Smith TJ, Karl JP, Rood JC, Young AJ, et al. Monitoring energy intake: a hand-held personal digital assistant provides accuracy comparable to written records. J Am Diet Assoc. 2009;109(7):1241–5.CrossRefPubMed
Yon BA, Johnson RK, Harvey-Berino J, Gold BC. The use of a personal digital assistant for dietary self-monitoring does not improve the validity of self-reports of energy intake. J Am Diet Assoc. 2006;106(8):1256–9.CrossRefPubMed
Beasley J, Riley WT, Jean-Mary J. Accuracy of a PDA-based dietary assessment program. Nutrition. 2005;21(6):672–7.CrossRefPubMed
Beasley JM, Riley WT, Davis A, Singh J. Evaluation of a PDA-based dietary assessment and intervention program: a randomized controlled trial. J Am Coll Nutr. 2008;27(2):280–6.CrossRefPubMed
Livingstone MB, Black AE. Markers of the validity of reported energy intake. J Nutr. 2003;133(Suppl 3):895s–920s.PubMed
Chen J, Cade JE, Allman-Farinelli M. The most popular smartphone apps for weight loss: a quality assessment. JMIR Mhealth Uhealth. 2015;3(4):e104.CrossRefPubMedPubMedCentral
Hales S, Dunn C, Wilcox S, Turner-McGrievy GM. Is a picture worth a thousand words? Few evidence-based features of dietary interventions included in photo diet tracking mobile apps for weight loss. J Diabetes Sci Technol. 2016;10(6):1399–405.CrossRefPubMedPubMedCentral
Patrick K, Raab F, Adams MA, Dillon L, Zabinski M, Rock CL, et al. A text message-based intervention for weight loss: randomized controlled trial. J Med Internet Res. 2009;11(1):e1.CrossRefPubMedPubMedCentral
Farmer AJ, McSharry J, Rowbotham S, McGowan L, Ricci-Cabello I, French DP. Effects of interventions promoting monitoring of medication use and brief messaging on medication adherence for people with type 2 diabetes: a systematic review of randomized trials. Diabet Med. 2016;33(5):565–79.CrossRefPubMed
Siopis G, Chey T, Allman-Farinelli M. A systematic review and meta-analysis of interventions for weight management using text messaging. J Hum Nutr Diet. 2015;28(Suppl 2):1–15.CrossRefPubMed
Ahn A, Choi J. A one-way text messaging intervention for obesity. J Telemed Telecare. 2016;22(3):148–52.CrossRefPubMed
Stephens JD, Yager AM, Allen J. Smartphone technology and text messaging for weight loss in young adults: a randomized controlled trial. J Cardiovasc Nurs. 2017;32(1):39–46.CrossRefPubMed
Lee S, Schorr E, Chi CL, Treat-Jacobson D, Mathiason MA, Lindquist R. Peer group and text message-based weight-loss and management intervention for African American women. West J Nurs Res. 2017. https://​doi.​org/​10.​1177/​0193945917697225​.
Kulendran M, King D, Schmidtke KA, Curtis C, Gately P, Darzi A, et al. The use of commitment techniques to support weight loss maintenance in obese adolescents. Psychol Health. 2016;31(11):1332–41.CrossRefPubMed
Lombard C, Harrison C, Kozica S, Zoungas S, Ranasinha S, Teede H. Preventing weight gain in women in rural communities: a cluster randomised controlled trial. PLoS Med. 2016;13(1):e1001941.CrossRefPubMedPubMedCentral
Zwickert K, Rieger E, Swinbourne J, Manns C, McAulay C, Gibson AA, et al. High or low intensity text-messaging combined with group treatment equally promote weight loss maintenance in obese adults. Obes Res Clin Pract. 2016;10(6):680–91.CrossRefPubMed
Muller AM, Alley S, Schoeppe S, Vandelanotte C. The effectiveness of e-& mHealth interventions to promote physical activity and healthy diets in developing countries: a systematic review. Int J Behav Nutr Phys Act. 2016;13(1):109.CrossRefPubMedPubMedCentral
Wickham CA, Carbone ET. Who’s calling for weight loss? A systematic review of mobile phone weight loss programs for adolescents. Nutr Rev. 2015;73(6):386–98.CrossRefPubMed
Lee J, Piao M, Byun A, Kim J. A systematic review and meta-analysis of intervention for pediatric obesity using mobile technology. Stud Health Technol Inform. 2016;225:491–4.PubMed
Smith AJ, Skow A, Bodurtha J, Kinra S. Health information technology in screening and treatment of child obesity: a systematic review. Pediatrics. 2013;131(3):e894–902.CrossRefPubMed
Carfora V, Caso D, Conner M. Randomized controlled trial of a text messaging intervention for reducing processed meat consumption: the mediating roles of anticipated regret and intention. Appetite. 2017;117:152–60.
Carfora V, Caso D, Conner M. Randomized controlled trial of a messaging intervention to increase fruit and vegetable intake in adolescents: affective versus instrumental messages. Br J Health Psychol. 2016;21(4):937–55.CrossRefPubMed
• Arambepola C, Ricci-Cabello I, Manikavasagam P, Roberts N, French DP, Farmer A. The impact of automated brief messages promoting lifestyle changes delivered via mobile devices to people with type 2 diabetes: a systematic literature review and meta-analysis of controlled trials. J Med Internet Res. 2016;18(4):e86. Comprehensive review with meta-analysis. CrossRefPubMedPubMedCentral
Sahu M, Grover A, Joshi A. Role of mobile phone technology in health education in Asian and African countries: a systematic review. Int J Electron Healthc. 2014;7(4):269–86.CrossRefPubMed
Saffari M, Ghanizadeh G, Koenig HG. Health education via mobile text messaging for glycemic control in adults with type 2 diabetes: a systematic review and meta-analysis. Prim Care Diabetes. 2014;8(4):275–85.CrossRefPubMed
Buhi ER, Trudnak TE, Martinasek MP, Oberne AB, Fuhrmann HJ, McDermott RJ. Mobile phone-based behavioural interventions for health: a systematic review. Health Educ J. 2013;72(5):564–83.CrossRef
Faruque LI, Wiebe N, Ehteshami-Afshar A, Liu Y, Dianati-Maleki N, Hemmelgarn BR, et al. Effect of telemedicine on glycated hemoglobin in diabetes: a systematic review and meta-analysis of randomized trials. CMAJ. 2017;189(9):E341–64.
Su D, McBride C, Zhou J, Kelley MS. Does nutritional counseling in telemedicine improve treatment outcomes for diabetes? A systematic review and meta-analysis of results from 92 studies. J Telemed Telecare. 2016;22(6):333–47.CrossRefPubMed
Van Olmen J, Kegels G, Korachais C, de Man J, Van Acker K, Kalobu JC, et al. The effect of text message support on diabetes self-management in developing countries—a randomised trial. J Clin Transl Endocrinol. 2017;7:33–41.CrossRefPubMedCentral
Holcomb LS. A taxonomic integrative review of short message service (SMS) methodology: a framework for improved diabetic outcomes. J Diabetes Sci Technol. 2015;9(6):1321–6.CrossRefPubMedPubMedCentral
Fortmann AL, Gallo LC, Garcia MI, Taleb M, Euyoque JA, Clark T, et al. Dulce Digital: an mHealth SMS-based intervention improves glycemic control in Hispanics with type 2 diabetes. Diabetes Care. 2017. https://​doi.​org/​10.​2337/​dc17-0230
Pfammatter A, Spring B, Saligram N, Dave R, Gowda A, Blais L, et al. mHealth intervention to improve diabetes risk behaviors in India: a prospective, parallel group cohort study. J Med Internet Res. 2016;18(8):e207.CrossRefPubMedPubMedCentral
Peimani M, Rambod C, Omidvar M, Larijani B, Ghodssi-Ghassemabadi R, Tootee A, et al. Effectiveness of short message service-based intervention (SMS) on self-care in type 2 diabetes: a feasibility study. Prim Care Diabetes. 2016;10(4):251–8.CrossRefPubMed
Fischer HH, Fischer IP, Pereira RI, Furniss AL, Rozwadowski JM, Moore SL, et al. Text message support for weight loss in patients with prediabetes: a randomized clinical trial. Diabetes Care. 2016;39(8):1364–70.CrossRefPubMed
Nikolaou CK, Lean ME. Mobile applications for obesity and weight management: current market characteristics. Int J Obes. 2017;41(1):200–2.CrossRef
Gan KO, Allman-Farinelli M. A scientific audit of smartphone applications for the management of obesity. Aust N Z J Public Health. 2011;35(3):293–4.CrossRefPubMed
Bardus M, van Beurden SB, Smith JR, Abraham C. A review and content analysis of engagement, functionality, aesthetics, information quality, and change techniques in the most popular commercial apps for weight management. Int J Behav Nutr Phys Act. 2016;13:35.CrossRefPubMedPubMedCentral
Pagoto S, Schneider K, Jojic M, DeBiasse M, Mann D. Evidence-based strategies in weight-loss mobile apps. Am J Prev Med. 2013;45(5):576–82.CrossRefPubMed
DiFilippo KN, Huang WH, Andrade JE, Chapman-Novakofski KM. The use of mobile apps to improve nutrition outcomes: a systematic literature review. J Telemed Telecare. 2015;21(5):243–53.CrossRefPubMed
Turner-McGrievy GM, Campbell MK, Tate DF, Truesdale KP, Bowling JM, Crosby L. Pounds off digitally study: a randomized podcasting weight-loss intervention. Am J Prev Med. 2009;37(4):263–9.CrossRefPubMedPubMedCentral
Aguilar-Martinez A, Sole-Sedeno JM, Mancebo-Moreno G, Medina FX, Carreras-Collado R, Saigi-Rubio F. Use of mobile phones as a tool for weight loss: a systematic review. J Telemed Telecare. 2014;20(6):339–49.CrossRefPubMed
Ross KM, Wing RR. Impact of newer self-monitoring technology and brief phone-based intervention on weight loss: a randomized pilot study. Obes. 2016;24(8):1653–9.CrossRef
• Chin SO, Keum C, Woo J, Park J, Choi HJ, Woo JT, et al. Successful weight reduction and maintenance by using a smartphone application in those with overweight and obesity. Sci Rep. 2016;6:34563. One of the first analyses of commercial data. CrossRefPubMedPubMedCentral
Serrano KJ, Coa KI, Yu M, Wolff-Hughes DL, Atienza AA. Characterizing user engagement with health app data: a data mining approach. Transl Behav Med. 2017;7(2):277–85.
Cui M, Wu X, Mao J, Wang X, Nie M. T2DM self-management via smartphone applications: a systematic review and meta-analysis. PLoS One. 2016;11(11):e0166718.CrossRefPubMedPubMedCentral
Hou C, Carter B, Hewitt J, Francisa T, Mayor S. Do mobile phone applications improve glycemic control (HbA1c) in the self-management of diabetes? A systematic review, meta-analysis, and GRADE of 14 randomized trials. Diabetes Care. 2016;39(11):2089–95.CrossRefPubMed
David SK, Rafiullah MR. Innovative health informatics as an effective modern strategy in diabetes management: a critical review. Int J Clin Pract. 2016;70(6):434–49.CrossRefPubMed
Wang Y, Xue H, Huang Y, Huang L, Zhang D. A systematic review of application and effectiveness of mHealth interventions for obesity and diabetes treatment and self-management. Adv Nutr. 2017;8(3):449–62.CrossRefPubMed
Bonoto BC, de Araujo VE, Godoi IP, de Lemos LL, Godman B, Bennie M, et al. Efficacy of mobile apps to support the care of patients with diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. JMIR Mhealth Uhealth. 2017;5(3):e4.CrossRefPubMedPubMedCentral
Whitehead L, Seaton P. The effectiveness of self-management mobile phone and tablet apps in long-term condition management: a systematic review. J Med Internet Res. 2016;18(5):e97.CrossRefPubMedPubMedCentral
Wu Y, Yao X, Vespasiani G, Nicolucci A, Dong Y, Kwong J, et al. Mobile app-based interventions to support diabetes self-management: a systematic review of randomized controlled trials to identify functions associated with glycemic efficacy. JMIR Mhealth Uhealth. 2017;5(3):e35.CrossRefPubMedPubMedCentral
Maher CA, Lewis LK, Ferrar K, Marshall S, De Bourdeaudhuij I, Vandelanotte C. Are health behavior change interventions that use online social networks effective? A systematic review. J Med Internet Res. 2014;16(2):e40.CrossRefPubMedPubMedCentral
Wang Y, Willis E. Supporting self-efficacy through interactive discussion in online communities of weight loss. J Health Psychol. 2016. https://​doi.​org/​10.​1177/​1359105316653264​
Ashrafian H, Toma T, Harling L, Kerr K, Athanasiou T, Darzi A. Social networking strategies that aim to reduce obesity have achieved significant although modest results. Health Aff. 2014;33(9):1641–7.CrossRef
Willis EA, Szabo-Reed AN, Ptomey LT, Steger FL, Honas JJ, Washburn RA, et al. Do weight management interventions delivered by online social networks effectively improve body weight, body composition, and chronic disease risk factors? A systematic review. J Telemed Telecare. 2017;23(2):263–72.CrossRefPubMed
Yang Q. Are social networking sites making health behavior change interventions more effective? A meta-analytic review. J Health Commun. 2017;22(3):223–33.CrossRefPubMed
Mita G, Ni Mhurchu C, Jull A. Effectiveness of social media in reducing risk factors for noncommunicable diseases: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev. 2016;74(4):237–47.CrossRefPubMedPubMedCentral
Laranjo L, Arguel A, Neves AL, Gallagher AM, Kaplan R, Mortimer N, et al. The influence of social networking sites on health behavior change: a systematic review and meta-analysis. J Am Med Inf Assoc. 2015;22(1):243–56.CrossRef
Williams G, Hamm MP, Shulhan J, Vandermeer B, Hartling L. Social media interventions for diet and exercise behaviours: a systematic review and meta-analysis of randomised controlled trials. BMJ Open. 2014;4(2):e003926.CrossRefPubMedPubMedCentral
Chang T, Chopra V, Zhang C, Woolford SJ. The role of social media in online weight management: systematic review. J Med Internet Res. 2013;15(11):e262.CrossRefPubMedPubMedCentral
Pappa GL, Cunha TOL, Bicalho PV, Ribeiro A, Couto Silva AP, Meira W Jr, et al. Factors associated with weight change in online weight management communities: a case study in the LoseIt Reddit community. J Med Internet Res. 2017;19(1):e17.CrossRefPubMedPubMedCentral
Evans M, Faghri PD, Pagoto SL, Schneider KL, Waring ME, Whited MC, et al. The weight loss blogosphere: an online survey of weight loss bloggers. Transl Behav Med. 2016;6(3):403–9.CrossRefPubMed
Patel R, Chang T, Greysen SR, Chopra V. Social media use in chronic disease: a systematic review and novel taxonomy. Am J Med. 2015;128(12):1335–50.CrossRefPubMed
Schoeppe S, Alley S, Van Lippevelde W, Bray NA, Williams SL, Duncan MJ, et al. Efficacy of interventions that use apps to improve diet, physical activity and sedentary behaviour: a systematic review. Int J Behav Nutr Phys Act. 2016;13(1):127.CrossRefPubMedPubMedCentral
Hamine S, Gerth-Guyette E, Faulx D, Green BB, Ginsburg AS. Impact of mHealth chronic disease management on treatment adherence and patient outcomes: a systematic review. J Med Internet Res. 2015;17(2):e52.CrossRefPubMedPubMedCentral
Allman-Farinelli M, Partridge SR, McGeechan K, Balestracci K, Hebden L, Wong A, et al. A mobile health lifestyle program for prevention of weight gain in young adults (TXT2BFiT): nine-month outcomes of a randomized controlled trial. JMIR Mhealth Uhealth. 2016;4(2):e78.CrossRefPubMedPubMedCentral
• Godino JG, Merchant G, Norman GJ, Donohue MC, Marshall SJ, Fowler JH, et al. Using social and mobile tools for weight loss in overweight and obese young adults (project SMART): a 2 year, parallel-group, randomised, controlled trial. Lancet Diabetes Endocrinol. 2016;4(9):747–55. State-of-the-art RCT of mHealth. CrossRefPubMedPubMedCentral
• Nystrom CD, Sandin S, Henriksson P, Henriksson H, Trolle-Lagerros Y, Larsson C, et al. Mobile-based intervention intended to stop obesity in preschool-aged children: the MINISTOP randomized controlled trial. Am J Clin Nutr. 2017;105(6):1327–35. Excellent example of the comprehensive use of mHealth. PubMed
• Lim S, Kang SM, Kim KM, Moon JH, Choi SH, Hwang H, et al. Multifactorial intervention in diabetes care using real-time monitoring and tailored feedback in type 2 diabetes. Acta Diabetol. 2016;53(2):189–98. Excellent example of the comprehensive use of mHealth. CrossRefPubMed
• Riley WT, Serrano KJ, Nilsen W, Atienza AA. Mobile and wireless technologies in health behavior and the potential for intensively adaptive interventions. Curr Opin Psychol. 2015;5:67–71. The future of mHealth. CrossRefPubMedPubMedCentral
Brooke MJ, Thompson BM. Food and Drug Administration regulation of diabetes-related mHealth technologies. J Diabetes Sci Technol. 2013;7(2):296–301.CrossRefPubMedPubMedCentral
Grundy Q, Held FP, Bero LA. Tracing the potential flow of consumer data: a network analysis of prominent health and fitness apps. J Med Internet Res. 2017;19(6):e233.CrossRefPubMedPubMedCentral

Be confident that your patient care is up to date

Medicine Matters is being incorporated into Springer Medicine, our new medical education platform. 

Alongside the news coverage and expert commentary you have come to expect from Medicine Matters diabetes, Springer Medicine's complimentary membership also provides access to articles from renowned journals and a broad range of Continuing Medical Education programs. Create your free account »