Skip to main content
main-content
Top

05-13-2017 | Devices and technology | Review | Article

A Review of the Current Challenges Associated with the Development of an Artificial Pancreas by a Double Subcutaneous Approach

Journal: Diabetes Therapy

Authors: Sverre Christian Christiansen, Anders Lyngvi Fougner, Øyvind Stavdahl, Konstanze Kölle, Reinold Ellingsen, Sven Magnus Carlsen

Publisher: Springer Healthcare

share
SHARE

Abstract

Introduction

Patients with diabetes type 1 (DM1) struggle daily to achieve good glucose control. The last decade has seen a rush of research groups working towards an artificial pancreas (AP) through the application of a double subcutaneous approach, i.e., subcutaneous (SC) continuous glucose monitoring (CGM) and continuous subcutaneous insulin infusion. Few have focused on the fundamental limitations of this approach, especially regarding outcome measures beyond time in range.

Methods

Based on insulin physiology, the limitations of CGM, SC insulin absorption, meal challenge, and physical activity in DM1 patients, we discuss the limitations of the double SC approach. Finally, we discuss safety measures and the achievements reported in some recent AP studies that have utilized the double SC approach.

Results

Most studies show that a double SC AP increases the time in range compared to a sensor-augmented insulin pump and shortens the time in hypoglycemia. Despite these achievements, the proportion of time spent in hyperglycemia is still roughly 20–40%, and hypoglycemia is still present 1–4% of the time. The main factors limiting further progress are the latency of SC CGM (at least 5–10 min) and the slow pharmacokinetics of SC-delivered fast-acting insulin. The maximum blood insulin level is reached after 45 min and the maximum glucose-lowering effect is observed after 1.5–2 h, while the glucose-lowering effect lasts for at least 5 h.

Conclusions

Although using a double SC AP leads to significant improvements in glucose control, the SC approach has severe limitations that hamper further progress towards a robust AP.
Literature
1.
Sovik O, Thordarson H. Dead-in-bed syndrome in young diabetic patients. Diabetes Care. 1999;22(Suppl 2):B40–2. PubMed
2.
Basu A, Close CF, Jenkins D, et al. Persisting mortality in diabetic ketoacidosis. Diabet Med. 1993;10:282–4. CrossRefPubMed
3.
The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–86. CrossRef
4.
Skyler JS. Diabetic complications. The importance of glucose control. Endocrinol Metab Clin North Am. 1996;25:243–54. CrossRefPubMed
5.
The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Retinopathy and nephropathy in patients with type 1 diabetes 4 years after a trial of intensive therapy. N Engl J Med. 2000;342:381–9. CrossRefPubMedCentral
6.
Le Floch JP, Kessler L. Glucose variability: comparison of different indices during continuous glucose monitoring in diabetic patients. J Diabetes Sci Technol. 2016;10:885–91. CrossRefPubMedPubMedCentral
7.
Kohnert KD, Freyse EJ, Salzsieder E. Glycemic variability and pancreatic beta-cell dysfunction. Curr Diabetes Rev. 2012;8:345–54. CrossRefPubMed
8.
Wandell PE. Quality of life of patients with diabetes mellitus. An overview of research in primary health care in the Nordic countries. Scand J Prim Health Care. 2005;23:68–74. CrossRefPubMed
9.
Goldney RD, Phillips PJ, Fisher LJ, et al. Diabetes, depression, and quality of life: a population study. Diabetes Care. 2004;27:1066–70. CrossRefPubMed
10.
Davis RE, Morrissey M, Peters JR, et al. Impact of hypoglycemia on quality of life and productivity in type 1 and type 2 diabetes. Curr Med Res Opin. 2005;21:1477–83. CrossRefPubMed
11.
Barendse S, Singh H, Frier BM, et al. The impact of hypoglycemia on quality of life and related patient-reported outcomes in type 2 diabetes: a narrative review. Diabetes Med. 2012;29:293–302.
12.
Zoungas S, Patel A, Chalmers J, et al. Severe hypoglycemia and risks of vascular events and death. N Engl J Med. 2010;363:1410–8. CrossRefPubMed
13.
Battelino T, Phillip M, Bratina N, et al. Effect of continuous glucose monitoring on hypoglycemia in type 1 diabetes. Diabetes Care. 2011;34:795–800. CrossRefPubMedPubMedCentral
14.
Rodbard D. Continuous glucose monitoring: a review of successes, challenges, and opportunities. Diabetes Technol Ther. 2016;18(Suppl 2):S23–213. CrossRef
15.
Bergenstal RM, Klonoff DC, Garg SK, et al. Threshold-based insulin-pump interruption for reduction of hypoglycemia. N Engl J Med. 2013;369:224–32. CrossRefPubMed
16.
Ly TT, Nicholas JA, Retterath A, et al. Effect of sensor-augmented insulin pump therapy and automated insulin suspension vs standard insulin pump therapy on hypoglycemia in patients with type 1 diabetes: a randomized clinical trial. JAMA. 2013;310:1240–7. CrossRefPubMed
17.
Marliss EB, Murray FT, Stokes EF, et al. Normalization of glycemia in diabetics during meals with insulin and glucagon delivery by the artificial pancreas. Diabetes. 1977;26:663–72. CrossRefPubMed
18.
Mirouze J, Selam JL, Pham TC, et al. Evaluation of exogenous insulin homoeostasis by the artificial pancreas in insulin-dependent diabetes. Diabetologia. 1977;13:273–8. CrossRefPubMed
19.
Albisser AM, Leibel BS, Ewart TG, et al. Clinical control of diabetes by the artificial pancreas. Diabetes. 1974;23:397–404. CrossRefPubMed
20.
Gross TM, Bode BW, Einhorn D, et al. Performance evaluation of the MiniMed continuous glucose monitoring system during patient home use. Diabetes Technol Ther. 2000;2:49–56. CrossRefPubMed
21.
Nimri R, Muller I, Atlas E, et al. MD-Logic overnight control for 6 weeks of home use in patients with type 1 diabetes: randomized crossover trial. Diabetes Care. 2014;37:3025–32. CrossRefPubMed
22.
van Bon AC, Luijf YM, Koebrugge R, et al. Feasibility of a portable bihormonal closed-loop system to control glucose excursions at home under free-living conditions for 48 hours. Diabetes Technol Ther. 2014;16:131–6. CrossRefPubMedPubMedCentral
23.
Del Favero S, Place J, Kropff J, et al. Multicenter outpatient dinner/overnight reduction of hypoglycemia and increased time of glucose in target with a wearable artificial pancreas using modular model predictive control in adults with type 1 diabetes. Diabetes Obes Metab. 2015;17:468–76. CrossRefPubMed
24.
Phillip M, Battelino T, Atlas E, et al. Nocturnal glucose control with an artificial pancreas at a diabetes camp. N Engl J Med. 2013;368:824–33. CrossRefPubMed
25.
Reddy M, Herrero P, El Sharkawy M, et al. Feasibility study of a bio-inspired artificial pancreas in adults with type 1 diabetes. Diabetes Technol Ther. 2014;16:550–7. CrossRefPubMedPubMedCentral
26.
Capel I, Rigla M, Garcia-Saez G, et al. Artificial pancreas using a personalized rule-based controller achieves overnight normoglycemia in patients with type 1 diabetes. Diabetes Technol Ther. 2014;16:172–9. CrossRefPubMedPubMedCentral
27.
Schmidt S, Boiroux D, Duun-Henriksen AK, et al. Model-based closed-loop glucose control in type 1 diabetes: the DiaCon experience. J Diabetes Sci Technol. 2013;7:1255–64. CrossRefPubMedPubMedCentral
28.
Dassau E, Brown SA, Basu A, et al. Adjustment of open-loop settings to improve closed-loop results in type 1 diabetes: a multicenter randomized trial. J Clin Endocrinol Metab. 2015;100:3878–86. CrossRefPubMedPubMedCentral
29.
Russell SJ, El-Khatib FH, Sinha M, et al. Outpatient glycemic control with a bionic pancreas in type 1 diabetes. N Engl J Med. 2014;371:313–25. CrossRefPubMedPubMedCentral
30.
Thabit H, Tauschmann M, Allen JM, et al. Home use of an artificial beta cell in type 1 diabetes. N Engl J Med. 2015;373:2129–40. CrossRefPubMedPubMedCentral
31.
Renard E, Farret A, Kropff J, et al. Day-and-night closed-loop glucose control in patients with type 1 diabetes under free-living conditions: results of a single-arm 1-month experience compared with a previously reported feasibility study of evening and night at home. Diabetes Care. 2016;39:1151–60. CrossRefPubMed
32.
Hovorka R, Elleri D, Thabit H, et al. Overnight closed-loop insulin delivery in young people with type 1 diabetes: a free-living, randomized clinical trial. Diabetes Care. 2014;37:1204–11. CrossRefPubMedPubMedCentral
33.
Thabit H, Lubina-Solomon A, Stadler M, et al. Home use of closed-loop insulin delivery for overnight glucose control in adults with type 1 diabetes: a 4-week, multicentre, randomised crossover study. Lancet Diabetes Endocrinol. 2014;2:701–9. CrossRefPubMedPubMedCentral
34.
Kropff J, Del Favero S, Place J, et al. 2 month evening and night closed-loop glucose control in patients with type 1 diabetes under free-living conditions: a randomised crossover trial. Lancet Diabetes Endocrinol. 2015;3:939–47. CrossRefPubMed
35.
Leelarathna L, Dellweg S, Mader JK, et al. Day and night home closed-loop insulin delivery in adults with type 1 diabetes: three-center randomized crossover study. Diabetes Care. 2014;37:1931–7. CrossRefPubMed
36.
Ly TT, Roy A, Grosman B, et al. Day and night closed-loop control using the integrated Medtronic hybrid closed-loop system in type 1 diabetes at diabetes camp. Diabetes Care. 2015;38:1205–11. CrossRefPubMed
37.
de Bock MI, Roy A, Cooper MN, et al. Feasibility of outpatient 24-hour closed-loop insulin delivery. Diabetes Care. 2015;38:e186–7. CrossRefPubMedPubMedCentral
38.
Peyser T, Dassau E, Breton M, et al. The artificial pancreas: current status and future prospects in the management of diabetes. Ann N Y Acad Sci. 2014;1311:102–23. CrossRefPubMed
39.
Bergenstal RM, Garg S, Weinzimer SA, et al. Safety of a hybrid closed-loop insulin delivery system in patients with type 1 diabetes. JAMA. 2016;316:1407–8. CrossRefPubMed
40.
de Bock M, Dart J, Roy A et al. Exploration of the performance of a hybrid closed loop insulin delivery algorithm that includes insulin delivery limits designed to protect against hypoglycemia. J Diabetes Sci Technol. 2017;11:68–73.
41.
Grosman B, Ilany J, Roy A, et al. Hybrid closed-loop insulin delivery in type 1 diabetes during supervised outpatient conditions. J Diabetes Sci Technol. 2016;10:708–13. CrossRefPubMedPubMedCentral
42.
Åstrøm KJ, Murray RM. Feedback systems: an introduction for scientists and engineers. Princeton: Princeton University Press; 2014.
43.
Chee F, Fernando T. Closed-loop control of blood glucose. Berlin: Springer; 2007.
44.
Kruszynska YT, Home PD, Hanning I, et al. Basal and 24-h C-peptide and insulin secretion rate in normal man. Diabetologia. 1987;30:16–21. CrossRefPubMed
45.
Caumo A, Luzi L. First-phase insulin secretion: does it exist in real life? Considerations on shape and function. Am J Physiol Endocrinol Metab. 2004;287:E371–85. CrossRefPubMed
46.
Grodsky GM. A threshold distribution hypothesis for packet storage of insulin and its mathematical modeling. J Clin Invest. 1972;51:2047–59.
47.
Sorenson RL, Lindell DV, Elde RP. Glucose stimulation of somatostatin and insulin release from the isolated, perfused rat pancreas. Diabetes. 1980;29:747–51. CrossRefPubMed
48.
Porksen N, Munn S, Steers J, et al. Pulsatile insulin secretion accounts for 70% of total insulin secretion during fasting. Am J Physiol. 1995;269:E478–88. PubMed
49.
Porksen N, Nyholm B, Veldhuis JD, et al. In humans at least 75% of insulin secretion arises from punctuated insulin secretory bursts. Am J Physiol. 1997;273:E908–14. PubMed
50.
Paolisso G, Scheen AJ, Giugliano D, et al. Pulsatile insulin delivery has greater metabolic effects than continuous hormone administration in man: importance of pulse frequency. J Clin Endocrinol Metab. 1991;72:607–15. CrossRefPubMed
51.
Matthews DR, Naylor BA, Jones RG, et al. Pulsatile insulin has greater hypoglycemic effect than continuous delivery. Diabetes. 1983;32:617–21. CrossRefPubMed
52.
Polonsky KS, Given BD, Van CE. Twenty-four-hour profiles and pulsatile patterns of insulin secretion in normal and obese subjects. J Clin Invest. 1988;81:442–8. CrossRefPubMedPubMedCentral
53.
Navalesi R, Pilo A, Ferrannini E. Insulin kinetics after portal and peripheral injection of [125I] insulin: II. Experiments in the intact dog. Am J Physiol. 1976;230:1630–6. PubMed
54.
Meier JJ, Veldhuis JD, Butler PC. Pulsatile insulin secretion dictates systemic insulin delivery by regulating hepatic insulin extraction in humans. Diabetes. 2005;54:1649–56. CrossRefPubMed
55.
De Vos P, De Haan BJ, Vegter D, et al. Insulin levels after portal and systemic insulin infusion differ in a dose-dependent fashion. Horm Metab Res. 1998;30:721–5. CrossRefPubMed
56.
Eaton RP, Allen RC, Schade DS. Hepatic removal of insulin in normal man: dose response to endogenous insulin secretion. J Clin Endocrinol Metab. 1983;56:1294–300. CrossRefPubMed
57.
Porksen N, Munn SR, Steers JL, et al. Effects of somatostatin on pulsatile insulin secretion: elective inhibition of insulin burst mass. Am J Physiol. 1996;270:E1043–9. PubMed
58.
Geidenstam N, Spegel P, Mulder H, et al. Metabolite profile deviations in an oral glucose tolerance test—a comparison between lean and obese individuals. Obesity (Silver Spring). 2014;22:2388–95.
59.
Gerich JE, Langlois M, Noacco C, et al. Lack of glucagon response to hypoglycemia in diabetes: evidence for an intrinsic pancreatic alpha cell defect. Science. 1973;182:171–3. CrossRefPubMed
60.
Boden G, Reichard GA Jr, Hoeldtke RD, et al. Severe insulin-induced hypoglycemia associated with deficiencies in the release of counterregulatory hormones. N Engl J Med. 1981;305:1200–5. CrossRefPubMed
61.
Ferri S, Kojima K, Sode K. Review of glucose oxidases and glucose dehydrogenases: a bird’s eye view of glucose sensing enzymes. J Diabetes Sci Technol. 2011;5:1068–76. CrossRefPubMedPubMedCentral
62.
Vaddiraju S, Burgess DJ, Tomazos I, et al. Technologies for continuous glucose monitoring: current problems and future promises. J Diabetes Sci Technol. 2010;4:1540–62. CrossRefPubMedPubMedCentral
63.
Burnett DR, Huyett LM, Zisser HC, et al. Glucose sensing in the peritoneal space offers faster kinetics than sensing in the subcutaneous space. Diabetes. 2014;63:2498–505. CrossRefPubMedPubMedCentral
64.
Basu A, Dube S, Veettil S, et al. Time lag of glucose from intravascular to interstitial compartment in type 1 diabetes. J Diabetes Sci Technol. 2015;9:63–8. CrossRefPubMed
65.
Basu A, Dube S, Slama M, et al. Time lag of glucose from intravascular to interstitial compartment in humans. Diabetes. 2013;62:4083–7. CrossRefPubMedPubMedCentral
66.
Stavdahl Ø, Fougner AL, Kölle K, et al. The artificial pancreas: a dynamic challenge. IFAC-PapersOnLine. 2016;49:765–72. doi: 10.​1016/​j.​ifacol.​2016.​07.​280. CrossRef
67.
Blevins TC, Bode BW, Garg SK, et al. Statement by the American Association of Clinical Endocrinologists Consensus Panel on Continuous Glucose Monitoring. Endocr Pract. 2010;16:730–45.
68.
Facchinetti A, Sparacino G, Guerra S, et al. Real-time improvement of continuous glucose monitoring accuracy: the smart sensor concept. Diabetes Care. 2013;36:793–800. CrossRefPubMedPubMedCentral
69.
Cobelli C, Schiavon M, Dalla MC, et al. Interstitial fluid glucose is not just a shifted-in-time but a distorted mirror of blood glucose: insight from an in silico study. Diabetes Technol Ther. 2016;18:505–11. CrossRefPubMedPubMedCentral
70.
Schmelzeisen-Redeker G, Schoemaker M, Kirchsteiger H, et al. Time delay of CGM sensors: relevance, causes, and countermeasures. J Diabetes Sci Technol. 2015;9:1006–15. CrossRefPubMedPubMedCentral
71.
Bailey T, Bode BW, Christiansen MP, et al. The performance and usability of a factory-calibrated flash glucose monitoring system. Diabetes Technol Ther. 2015;17:787–94. CrossRefPubMedPubMedCentral
72.
Damiano ER, McKeon K, El-Khatib FH, et al. A comparative effectiveness analysis of three continuous glucose monitors: the Navigator, G4 Platinum, and Enlite. J Diabetes Sci Technol. 2014;8:699–708.
73.
Helton KL, Ratner BD, Wisniewski NA. Biomechanics of the sensor–tissue interface—effects of motion, pressure, and design on sensor performance and foreign body response—part II: examples and application. J Diabetes Sci Technol. 2011;5:647–56.
74.
Lodwig V, Kulzer B, Schnell O, et al. What are the next steps in continuous glucose monitoring? J Diabetes Sci Technol. 2014;8:397–402. CrossRefPubMedPubMedCentral
75.
Basu A, Veettil S, Dyer R, et al. Direct evidence of acetaminophen interference with subcutaneous glucose sensing in humans: a pilot study. Diabetes Technol Ther. 2016;18(Suppl 2):S243–7. CrossRefPubMed
76.
Maahs DM, DeSalvo D, Pyle L, et al. Effect of acetaminophen on CGM glucose in an outpatient setting. Diabetes Care. 2015;38:e158–9. CrossRefPubMedPubMedCentral
77.
Slama M, Veettil S, Norby B et al. Medication interference with continuous glucose monitoring devices: implications for the artificial endocrine pancreas (abstract for poster 907-P-2016). In: American Diabetes Association, editor. American Diabetes Association 76th Scientific Sessions; 2016 June 10–14; New Orleans, LA, USA. Rochester: ADA; 2016. p. 907. https://​ada.​scientificposter​s.​com/​epsAbstractADA.​cfm?​id=​1.
78.
Pleus S, Schoemaker M, Morgenstern K, et al. Rate-of-change dependence of the performance of two CGM systems during induced glucose swings. J Diabetes Sci Technol. 2015;9:801–7. CrossRefPubMedPubMedCentral
79.
Zijlstra E, Heise T, Nosek L, et al. Continuous glucose monitoring: quality of hypoglycaemia detection. Diabetes Obes Metab. 2013;15:130–5. CrossRefPubMed
80.
Zschornack E, Schmid C, Pleus S, et al. Evaluation of the performance of a novel system for continuous glucose monitoring. J Diabetes Sci Technol. 2013;7:815–23. CrossRefPubMedPubMedCentral
81.
Kropff J, Bruttomesso D, Doll W, et al. Accuracy of two continuous glucose monitoring systems: a head-to-head comparison under clinical research centre and daily life conditions. Diabetes Obes Metab. 2015;17:343–9. CrossRefPubMed
82.
Mader JK, Hajnsek M, Aberer F et al. Standardized evaluation of three continuous glucose monitoring systems under routine clinical conditions (abstract for poster 870-P-2016). In: American Diabetes Association, editor. American Diabetes Association 76th Scientific Sessions; 2016 June 10–14; New Orleans, LA, USA. Rochester: ADA; 2016. p. 870. https://​ada.​scientificposter​s.​com/​epsAbstractADA.​cfm?​id=​1.
83.
Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20:86–100. CrossRefPubMed
84.
Pickup JC. Insulin-pump therapy for type 1 diabetes mellitus. N Engl J Med. 2012;366:1616–24. CrossRefPubMed
85.
Heinemann L, Krinelke L. Insulin infusion set: the Achilles heel of continuous subcutaneous insulin infusion. J Diabetes Sci Technol. 2012;6:954–64. CrossRefPubMedPubMedCentral
86.
Guerci B, Sauvanet JP. Subcutaneous insulin: pharmacokinetic variability and glycemic variability. Diabetes Metab. 2005;31:4S7–24. CrossRefPubMed
87.
Heise T, Hovelmann U, Brondsted L, et al. Faster-acting insulin aspart: earlier onset of appearance and greater early pharmacokinetic and pharmacodynamic effects than insulin aspart. Diabetes Obes Metab. 2015;17:682–8. CrossRefPubMedPubMedCentral
88.
De Vries JH, Snoek FJ, Kostense PJ, et al. A randomized trial of continuous subcutaneous insulin infusion and intensive injection therapy in type 1 diabetes for patients with long-standing poor glycemic control. Diabetes Care. 2002;25:2074–80. CrossRef
89.
Hildebrandt P, Sejrsen P, Nielsen SL, et al. Diffusion and polymerization determines the insulin absorption from subcutaneous tissue in diabetic patients. Scand J Clin Lab Invest. 1985;45:685–90.
90.
Deiss D, Adolfsson P, Alkemade-van Zomeren M, et al. Insulin infusion set use: European perspectives and recommendations. Diabetes Technol Ther. 2016;18:517–24. CrossRefPubMedPubMedCentral
91.
Zinman B, Ruderman N, Campaigne BN, et al. Physical activity/exercise and diabetes mellitus. Diabetes Care. 2003;26(Suppl 1):S73–7. PubMed
92.
Shetty VB, Fournier PA, Davey RJ, et al. Effect of exercise intensity on glucose requirements to maintain euglycemia during exercise in type 1 diabetes. J Clin Endocrinol Metab. 2016;101:972–80. CrossRefPubMed
93.
Tonoli C, Heyman E, Roelands B, et al. Effects of different types of acute and chronic (training) exercise on glycaemic control in type 1 diabetes mellitus: a meta-analysis. Sports Med. 2012;42:1059–80. CrossRefPubMed
94.
Yardley JE, Kenny GP, Perkins BA, et al. Resistance versus aerobic exercise: acute effects on glycemia in type 1 diabetes. Diabetes Care. 2013;36:537–42. CrossRefPubMedPubMedCentral
95.
Stenerson M, Cameron F, Wilson DM, et al. The impact of accelerometer and heart rate data on hypoglycemia mitigation in type 1 diabetes. J Diabetes Sci Technol. 2014;8:64–9. CrossRefPubMedPubMedCentral
96.
Breton MD, Brown SA, Karvetski CH, et al. Adding heart rate signal to a control-to-range artificial pancreas system improves the protection against hypoglycemia during exercise in type 1 diabetes. Diabetes Technol Ther. 2014;16:506–11. CrossRefPubMedPubMedCentral
97.
Turksoy K, Quinn LT, Littlejohn E, et al. An integrated multivariable artificial pancreas control system. J Diabetes Sci Technol. 2014;8:498–507. CrossRefPubMedPubMedCentral
98.
Blauw H, van Bon AC, Koops R, et al. Performance and safety of an integrated bihormonal artificial pancreas for fully automated glucose control at home. Diabetes Obes Metab. 2016;18:671–7. CrossRefPubMedPubMedCentral
99.
Fullerton B, Jeitler K, Seitz M, et al. Intensive glucose control versus conventional glucose control for type 1 diabetes mellitus. Cochrane Database Syst Rev. 2014;2014:CD009122.
100.
Wong JC, Neinstein AB, Spindler M, et al. A minority of patients with type 1 diabetes routinely downloads and retrospectively reviews device data. Diabetes Technol Ther. 2015;17:555–62. CrossRefPubMedPubMedCentral
101.
Christiansen SC, Carlsen SM. Kunstig pankreas – drøm eller virkelighet? Indremedisineren. 2017;1:30–3.