Skip to main content

Microautophagy in the Yeast Saccharomyces cerevisiae

  • Protocol
Autophagosome and Phagosome

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 445))

Summary

Microautophagy involves direct invagination and fission of the vacuolar/lysosomal membrane under nutrient limitation. In Saccharomyces cerevisiae microautophagic uptake of soluble cytosolic proteins occurs via an autophagic tube, a highly specialized vacuolar membrane invagination. At the tip of an autophagic tube vesicles (autophagic bodies) pinch off into thevacuolar lumen for degradation. Formation of autophagic tubes is topologically equivalent to other budding processes directed away from the cytosolic environment, e.g., the invagination of multivesicular endosomes, retroviral budding, piecemeal microautophagy of the nucleus and micropexophagy. This clearly distinguishes microautophagy from other membrane fission events following budding toward the cytosol. Such processes are implicated in transport between organelles like the plasma membrane, the endoplasmic reticulum (ER), and the Golgi. Over many years microautophagy only could be characterized microscopically. Recent studies provided the possibility to study the process in vitro and have identified the first molecules that are involved in microautophagy

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reggiori, F., and Klionsky, D. J. (2002) Eukaryot. Cell 1, 11–21.

    Article  CAS  PubMed  Google Scholar 

  2. Baba, M., Takeshige, K., Baba, N., and Ohsumi, Y. (1994) J. Cell Biol. 124, 903–913.

    Article  CAS  PubMed  Google Scholar 

  3. Muller, O., Sattler, T., Flotenmeyer, M., Schwarz, H., Plattner, H., and Mayer, A. (2000) J. Cell Biol. 151, 519–528.

    Article  CAS  PubMed  Google Scholar 

  4. Sattler, T., and Mayer, A. (2000) J. Cell Biol. 151, 529–538.

    Article  CAS  PubMed  Google Scholar 

  5. Kunz, J. B., Schwarz, H., and Mayer, A. (2004) J. Biol. Chem. 279, 9987–9996.

    Article  CAS  PubMed  Google Scholar 

  6. Uttenweiler, A., Schwarz, H., and Mayer, A. (2005) J. Biol. Chem. 280, 33289–33297.

    Article  CAS  PubMed  Google Scholar 

  7. Uttenweiler, A., Schwarz, H., Neumann, H., and Mayer, A. (2007) Mol. Biol. Cell 18, 166–175.

    Article  CAS  PubMed  Google Scholar 

  8. Gruenberg, J., and Stenmark, H. (2004) Nat. Rev. Mol. Cell Biol. 5, 317–323.

    Article  CAS  PubMed  Google Scholar 

  9. Babst, M. (2005) Traffic 6, 2–9.

    Article  CAS  PubMed  Google Scholar 

  10. Demirov, D. G., and Freed, E. O. (2004) Virus Res. 106, 87–102.

    Article  CAS  PubMed  Google Scholar 

  11. Roberts, P., Moshitch-Moshkovitz, S., Kvam, E., O’Toole, E., Winey, M., and Goldfarb, D. S. (2003) Mol. Biol. Cell 14, 129–141.

    Article  CAS  PubMed  Google Scholar 

  12. Veenhuis, M., Douma, A., Harder, W., and Osumi, M. (1983) Arch. Microbiol. 134, 193–203.

    Article  CAS  PubMed  Google Scholar 

  13. Tuttle, D. L., Lewin, A. S., and Dunn, W. A., Jr. (1993) Eur. J. Cell Biol. 60, 283–290.

    CAS  PubMed  Google Scholar 

  14. Tuttle, D. L., and Dunn, W. A., Jr. (1995) J, Cell Sci, 108 (Pt 1), 25–35.

    CAS  Google Scholar 

  15. Sakai, Y., Koller, A., Rangell, L. K., Keller, G. A., and Subramani, S. (1998) J, Cell Biol, 141, 625–636.

    Article  CAS  Google Scholar 

  16. Mukaiyama, H., Baba, M., Osumi, M., et al. (2004) Mol. Biol. Cell 15, 58–70.

    Article  CAS  PubMed  Google Scholar 

  17. Mukaiyama, H., Oku, M., Baba, M., et al. (2002) Genes Cells 7, 75–90.

    Article  CAS  PubMed  Google Scholar 

  18. Hutchins, M. U., Veenhuis, M., and Klionsky, D. J. (1999) J. Cell Sci. 112 (Pt 22), 4079–4087.

    Google Scholar 

  19. Kim, J., Dalton, V. M., Eggerton, K. P., Scott, S. V., and Klionsky, D. J. (1999) Mol. Biol. Cell 10, 1337–1351.

    CAS  PubMed  Google Scholar 

  20. Yuan, W., Stromhaug, P. E., and Dunn, W. A., Jr. (1999) Mol. Biol. Cell 10, 1353–1366.

    CAS  PubMed  Google Scholar 

  21. Stromhaug, P. E., Bevan, A., and Dunn, W. A., Jr. (2001) J. Biol. Chem 276, 42422–42435.

    Article  CAS  PubMed  Google Scholar 

  22. Dubouloz, F., Deloche, O., Wanke, V., Cameroni, E., and De Virgilio, C. (2005) Mol. Cell 19, 15–26.

    Article  CAS  PubMed  Google Scholar 

  23. Scott, J. H., and Schekman, R. (1980) J. Bacteriol. 142, 414–423.

    CAS  PubMed  Google Scholar 

  24. Shen, S. H., Chretien, P., Bastien, L., and Slilaty, S. N. (1991) J. Biol. Chem. 266, 1058–1063.

    CAS  PubMed  Google Scholar 

  25. Reese, C., Heise, F., and Mayer, A. (2005) Nature 436, 410–414.

    CAS  PubMed  Google Scholar 

  26. Hohenberg, H., Mannweiler, K., and Muller, M. (1994) J. Microsc. 175 (Pt 1), 34–43.

    CAS  PubMed  Google Scholar 

  27. Gulik-Krzywicki, T., and Costello, M. J. (1978) J. Microsc.112, 103–113.

    CAS  PubMed  Google Scholar 

  28. Tommassen, J., Leunissen, J., van Damme-Jongsten, M., and Overduin, P. (1985) EMBO J. 4, 1041–1047.

    CAS  PubMed  Google Scholar 

  29. van Bergen en Henegouwen, P. M., and Leunissen, J. L. (1986) Histochemistry 85, 81–87.

    Article  PubMed  Google Scholar 

  30. Gaunitz, F., and Papke, M. (1998) Methods Mol. Biol. 107, 361–370.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by grants from the DFG (SFB466-A10), BMBF, SNF, and Boehringer Ingelheim Foundation to A.M. and from the Boehringer Ingelheim Fonds to A.U.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Uttenweiler, A., Mayer, A. (2008). Microautophagy in the Yeast Saccharomyces cerevisiae. In: Deretic, V. (eds) Autophagosome and Phagosome. Methods in Molecular Biology™, vol 445. Humana Press. https://doi.org/10.1007/978-1-59745-157-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-157-4_16

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-853-9

  • Online ISBN: 978-1-59745-157-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics