Skip to main content

Molecular Links Between Autophagy and Apoptosis

  • Protocol
Autophagosome and Phagosome

summary

Macroautophagy (herein referred to as autophagy) contributes to the control of life and death throughout the animal and plant kingdoms. Bilateral links have been found between apoptosis and autophagy where inducers of apoptosis also induce autophagy and vice versa. In some cases, autophagy delays the onset of apoptosis and thus prolongs life although it may also promote apoptosis and other forms of cell death. It is thus of great biological and medical interest to understand the molecular connections between these two pathways, and try to utilize—or block—them selectively to aid induction of cell death (e.g., cancer cells) or inhibit death (e.g., in degenerative disorders). This chapter describes methods for studying apoptotic induction of autophagy and its effects on cell function. We also discuss potential pitfalls. Although cell lines are used as model systems, the substances and methods described here can be applied to primary cells and tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yorimitsu, T., and Klionsky, D. J. (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ. 12, 1542–1552.

    Article  CAS  PubMed  Google Scholar 

  2. Klionsky, D. J., and Emr, S. D. (2000) Autophagy as a regulated pathway of cellular degradation. Science 290, 1717–1721.

    Article  CAS  PubMed  Google Scholar 

  3. Crighton, D., Wilkinson, S., O’Prey, J., et al. (2006) DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126, 121–134.

    Article  CAS  PubMed  Google Scholar 

  4. Kessel, D., and Reiners, J. J., Jr. (2006) Initiation of apoptosis and autophagy by the Bcl-2 antagonist HA14–1. Cancer Lett. 18, 18.

    Google Scholar 

  5. Xue, L., Fletcher, G. C., and Tolkovsky, A. M. (1999) Autophagy is activated by apoptotic signalling in sympathetic neurons: an alternative mechanism of death execution. Mol. Cell Neurosci. 14, 180–198.

    Article  CAS  PubMed  Google Scholar 

  6. Bampton, E. T. W., Goemans, C. G., Niranjan, D., Mizushima, N., and Tolkovsky, A. M. (2005) The dynamics of autophagy visualised in live cells; from autophagosome formation to fusion with endo/lysosomes. Autophagy 1, 23–36.

    Article  CAS  PubMed  Google Scholar 

  7. Ashford, T. P., and Porter, K. R. (1962) Cytoplasmic components in hepatic cell lysosomes. J. Cell Biol. 12, 198–202.

    Article  CAS  PubMed  Google Scholar 

  8. Mizushima, N., Yamamoto, A., Matsui, M., Yoshimori, T., and Ohsumi, Y. (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell. 15,1101–1111. Epub 2003 December 29.

    Article  CAS  PubMed  Google Scholar 

  9. Momoi, T. (2006) Conformational diseases and ER stress-mediated cell death: apoptotic cell death and autophagic cell death. Curr. Mol. Med. 6, 111–118.

    Article  CAS  PubMed  Google Scholar 

  10. Thorburn, J., Moore, F., Rao, A., et al. (2005) Selective inactivation of a Fas-associated death domain protein (FADD)-dependent apoptosis and autophagy pathway in immortal epithelial cells. Mol. Biol. Cell. 16, 1189–1199.

    Article  CAS  PubMed  Google Scholar 

  11. Pattingre, S., Tassa, A., Qu, X., et al. (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122, 927–939.

    Article  CAS  PubMed  Google Scholar 

  12. Ogata, M., Hino, S., Saito, A., et al. (2006) Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol. Cell Biol. 26, 9220–9231.

    Article  CAS  PubMed  Google Scholar 

  13. Yorimitsu, T., and Klionsky, D. J. (2007) Endoplasmic reticulum stress: a new pathway to induce autophagy. Autophagy. 3, 160–162.

    CAS  PubMed  Google Scholar 

  14. Bernales, S., McDonald, K. L., and Walter, P. (2006) Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol. 4, e423.

    Article  PubMed  Google Scholar 

  15. Buytaert, E., Callewaert, G., Vandenheede, J. R., and Agostinis, P. (2006) Deficiency in apoptotic effectors Bax and Bak reveals an autophagic cell death pathway initiated by photodamage to the endoplasmic reticulum. Autophagy 2, 238–240.

    CAS  PubMed  Google Scholar 

  16. Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A., and Nagata, S. (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43–50.

    Article  CAS  PubMed  Google Scholar 

  17. Sahara, S., Aoto, M., Eguchi, Y., Imamoto, N., Yoneda, Y., and Tsujimoto, Y. (1999) Acinus is a caspase-3-activated protein required for apoptotic chromatin condensation. Nature 401, 168–173.

    Article  CAS  PubMed  Google Scholar 

  18. Satoh, M. S., and Lindahl, T. (1992) Role of poly(ADP-ribose) formation in DNA repair. Nature 356, 356–358.

    Article  CAS  PubMed  Google Scholar 

  19. Lazebnik, Y. A., Kaufmann, S. H., Desnoyers, S., Poirier, G. G., and Earnshaw, W. C. (1994) Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371, 346–347.

    Article  CAS  PubMed  Google Scholar 

  20. Nicholson, D. W., Ali, A., Thornberry, N. A., et al. (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376, 37–43.

    Article  CAS  PubMed  Google Scholar 

  21. Hsu, Y. T., Wolter, K. G., and Youle, R. J. (1997) Cytosol-to-membrane redistribution of Bax and Bcl-X(L) during apoptosis. Proc. Natl. Acad. Sci. USA 94, 3668–3672.

    Article  CAS  PubMed  Google Scholar 

  22. Narita, M., Shimizu, S., Ito, T., et al. (1998) Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc. Natl. Acad. Sci. USA 95, 14681–14686.

    Article  CAS  PubMed  Google Scholar 

  23. Garrido, C., Galluzzi, L., Brunet, M., Puig, P. E., Didelot, C., and Kroemer, G. (2006) Mechanisms of cytochrome c release from mitochondria. Cell Death Differ. 13, 1423–1433. Epub 2006 May 25.

    Article  CAS  PubMed  Google Scholar 

  24. Jurgensmeier, J. M., Xie, Z., Deveraux, Q., Ellerby, L., Bredesen, D., and Reed, J. C. (1998) Bax directly induces release of cytochrome c from isolated mitochondria. Proc. Natl. Acad. Sci. USA 95, 4997–5002.

    Article  CAS  PubMed  Google Scholar 

  25. Koopman, G., Reutelingsperger, C. P., Kuijten, G. A., Keehnen, R. M., Pals, S. T., and van Oers, M. H. (1994) Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84,1415–1420.

    CAS  PubMed  Google Scholar 

  26. Tanida, I., Ueno, T., and Kominami, E. (2004) LC3 conjugation system in mammalian autophagy. Int. J. Biochem. Cell Biol. 36, 2503–2518.

    Article  CAS  PubMed  Google Scholar 

  27. Tanida, I., Minematsu-Ikeguchi, N., Ueno, T., and Kominami, E. (2005) Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy 1, 84–91.

    Article  CAS  PubMed  Google Scholar 

  28. Hsu, Y. T., and Youle, R. J. (1998) Bax in murine thymus is a soluble monomeric protein that displays differential detergent-induced conformations. J. Biol. Chem. 273, 10777–10783.

    Article  CAS  PubMed  Google Scholar 

  29. Hsu, Y. T., and Youle, R. J. (1997) Nonionic detergents induce dimerization among members of the Bcl-2 family. J. Biol. Chem. 272, 13829–13834.

    Article  CAS  PubMed  Google Scholar 

  30. Darzynkiewicz, Z., and Bedner, E. (2000) Analysis of apoptotic cells by flow and laser scanning cytometry. Methods Enzymol. 322, 18–39.

    Article  CAS  PubMed  Google Scholar 

  31. Berg, T. O., Fengsrud, M., Stromhaug, P. E., Berg, T., and Seglen, P. O. (1998) Isolation and characterization of rat liver amphisomes. Evidence for fusion of autophagosomes with both early and late endosomes. J. Biol. Chem. 273,21883–21892.

    Article  CAS  PubMed  Google Scholar 

  32. Seglen, P. O., Gordon, P. B., Holen, I., and Hoyvik, H. (1991) Hepatocytic autophagy. Biomed. Biochim. Acta 50, 373–381.

    CAS  PubMed  Google Scholar 

  33. Tanida, I., Sou, Y. S., Ezaki, J., Minematsu-Ikeguchi, N., Ueno, T., and Kominami, E. (2004) HsAtg4B/HsApg4B/autophagin-1 cleaves the carboxyl termini of three human Atg8 homologues and delipidates microtubule-associated protein light chain 3- and GABAA receptor-associated protein–phospholipid conjugates. J. Biol. Chem. 279, 36268–36276.

    Article  CAS  PubMed  Google Scholar 

  34. Kabeya, Y., Mizushima, N., Ueno, T., et al. (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720–5728.

    Article  CAS  PubMed  Google Scholar 

  35. Kochl, R., Hu, X. W., Chan, E. Y., and Tooze, S. A. (2006) Microtubules facilitate autophagosome formation and fusion of autophagosomes with endosomes. Traffic 7, 129–145.

    Article  CAS  PubMed  Google Scholar 

  36. Eskelinen, E. L., Prescott, A. R., Cooper, J., et al. (2002) Inhibition of autophagy in mitotic animal cells. Traffic 3, 878–893.

    Article  CAS  PubMed  Google Scholar 

  37. Nixon, R. A. (2006) Autophagy in neurodegenerative disease: friend, foe or turncoat? Trends Neurosci. 29, 528–535.

    Article  CAS  PubMed  Google Scholar 

  38. Levine, B., and Yuan, J. (2005) Autophagy in cell death: an innocent convict? J. Clin. Invest. 115, 2679–2688.

    Article  CAS  PubMed  Google Scholar 

  39. Codogno, P., and Meijer, A. J. (2005) Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ. 12, 1509–1518.

    Article  CAS  PubMed  Google Scholar 

  40. Tsujimoto, Y., and Shimizu, S. (2005) Another way to die: autophagic programmed cell death. Cell Death Differ. 12, 1528–1534.

    Article  CAS  PubMed  Google Scholar 

  41. Kim, K. W., Mutter, R. W., Cao, C., et al. (2006) Autophagy for cancer therapy through inhibition of pro-apoptotic proteins and mammalian target of rapamycin signaling. J. Biol. Chem. 281, 36883–36890.

    Article  CAS  PubMed  Google Scholar 

  42. Scott, R. C., Juhasz, G., and Neufeld, T. P. (2007) Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death. Curr. Biol. 17, 1–11.

    Article  CAS  PubMed  Google Scholar 

  43. Seglen, P. O., and Gordon, P. B. (1982) 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc. Natl. Acad. Sci. USA 79, 1889–1892.

    Article  CAS  PubMed  Google Scholar 

  44. Wurmser, A. E., and Emr, S. D. (2002) Novel PtdIns(3)P-binding protein Etf1 functions as an effector of the Vps34 PtdIns 3-kinase in autophagy. J. Cell Biol. 158, 761–772. Epub 2002 Aug 19.

    Article  CAS  PubMed  Google Scholar 

  45. Kihara, A., Noda, T., Ishihara, N., and Ohsumi, Y. (2001) Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J. Cell Biol. 152, 519–530.

    Article  CAS  PubMed  Google Scholar 

  46. Caro, L. H., Plomp, P. J., Wolvetang, E. J., Kerkhof, C., and Meijer, A. J. (1988) 3-Methyladenine, an inhibitor of autophagy, has multiple effects on metabolism. Eur. J. Biochem. 175, 325–329.

    Article  CAS  PubMed  Google Scholar 

  47. Petiot, A., Ogier-Denis, E., Blommaart, E. F., Meijer, A. J., and Codogno, P. (2000) Distinct classes of phosphatidylinositol 3’-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J. Biol. Chem. 275,992–998.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work described here was supported by PG 064232 from the Wellcome Trust. We thank Nigel Miller, Department of Pathology, Cambridge University, for helping with the FACS protocol.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ciechomska, I.A., Goemans, C.G., Tolkovsky, A.M. (2008). Molecular Links Between Autophagy and Apoptosis. In: Deretic, V. (eds) Autophagosome and Phagosome. Methods in Molecular Biology™, vol 445. Humana Press. https://doi.org/10.1007/978-1-59745-157-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-157-4_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-853-9

  • Online ISBN: 978-1-59745-157-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics