Skip to main content
Log in

The Effects of Diabetes Mellitus on Pharmacokinetics and Pharmacodynamics in Humans

  • Review Article
  • Clinical Pharmacokinetics and Disease Processes
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

The article reviews the effect of diabetes on the pharmacokinetics and pharmacodynamics of drugs in humans.

For most drugs which cross the gastrointestinal wall by passive diffusion, oral absorption is unlikely to be affected by diabetes, although a delay in the absorption of tolazamide and a decrease in the extent of absorption of ampicillin have been reported. Subcutaneous absorption of insulin is more rapid in diabetic patients, whereas the intramuscular absorption of several drugs is slower.

The binding of a number of drugs in the blood is reduced in diabetes, which may be due to glycosylation of plasma proteins or displacement by plasma free fatty acids, the level of which is increased in diabetic patients. Plasma concentrations of albumin and α1-acid glycoprotein do not appear to be changed by the disease. The distribution of drugs with little or no binding in the blood is generally not altered, although the volume of distribution of phenazone (antipyrine) is reduced by 20% in insulin-dependent diabetes mellitus (IDDM).

In contrast to animal studies, the metabolic clearance of most drugs in humans appears to be unaffected or slightly reduced by the disease. The presence of fatty liver in non-insulin-dependent diabetes mellitus (NIDDM) may contribute to a reduced hepatic clearance, whereas decreased binding in the blood may cause an increase in clearance. The effect of diabetes on hepatic blood flow in humans appears to be unknown.

Diabetes affects kidney function in a significant number of diabetic patients. During the first 10 years after the onset of the disease, glomerular filtration is elevated in these patients. Thus, the renal clearance of a number of antibiotics has been shown to be increased in diabetic children. As the disease progresses, renal function is impaired and glomerular function declines from the initial elevated state. In diabetic adults the renal clearance of drugs either is comparable with that found in nondiabetic individuals or is reduced.

A limited number of studies have been conducted comparing the dose-response of cardiovascular drugs in diabetic patients with that in nondiabetic controls. Decreased, increased and unchanged responses have been reported. It is apparent that in some cases an altered response may be observed for a drug when administered to a diabetic patient compared with a similar nondiabetic individual. At the present time, it is not possible to ascertain whether these studies reflect true pharmacodynamic changes or merely alterations in pharmacokinetics.

It appears from the limited data available that significant, although perhaps not dramatic, changes in pharmacokinetics and pharmacodynamics do occur as a result of diabetes. Because of the prevalence of the disease and the associated serious complications, further study is warranted on the effects of diabetes on both pharmacokinetics and pharmacodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adithan C, Danda D, Swaminathan RP, Indhiresan J, Shashindran CH, et al. Effect of diabetes on salivary paracetamol elimination. Clinical and Experimental Pharmacology and Physiology 15: 465–471, 1988a

    Article  PubMed  CAS  Google Scholar 

  • Adithan C, Danda D, Swaminathan RP, Indhiresan J, Shashindran CH, et al. Effect of type I diabetes mellitus on theophylline elimination. Medical Science Research 16: 427–428, 1988b

    Google Scholar 

  • Adithan C, Sriram G, Swaminathan RP, Krishnan M, Bapna JS, et al. Effect of type II diabetes mellitus on theophylline elimination. International Journal of Clinical Pharmacology, Therapy and Toxicology 27: 258–260, 1989a

    CAS  Google Scholar 

  • Adithan C, Sriram G, Swaminathan RP, Shashindran CH, Bapna JS, et al. Differential effect of type I and type II diabetes mellitus on serum ampicillin levels. International Journal of Clinical Pharmacology, Therapy and Toxicology 27: 493–498, 1989b

    CAS  Google Scholar 

  • Andersen AR, Christiansen JS, Andersen JK, Kreiner S, Deckert T. Diabetic nephropathy in type I (insulin-dependent) diabetes: an epidemiological study. Diabetologia 25: 496–501, 1983

    Article  PubMed  CAS  Google Scholar 

  • Baba T, Tomiyama T, Murabayashi S, Tomiyama M, Takebe K. Enalapril pharmacokinetics in diabetic patients. Lancet 1: 226–227, 1989

    Article  PubMed  CAS  Google Scholar 

  • Barry MG, Collins WCJ, Feely J. Plasma protein binding of drugs in insulin-dependent diabetes. British Journal of Pharmacology 89: 719P, 1986

    Article  Google Scholar 

  • Bechtel YC, Joanne C, Grandmottet M, Bechtel PR. The influence of insulin-dependent diabetes on the metabolism of caffeine and the expression of the debrisoquin oxidation phenotype. Clinical Pharmacology and Therapeutics 44: 408–417, 1988

    Article  PubMed  CAS  Google Scholar 

  • Berlin I, Grimaldi A, Bosquet F, Puech AJ. Decreased beta-adrenergic sensitivity in insulin-dependent diabetic subjects. Journal of Clinical Endocrinology and Metabolism 63: 262–265, 1986

    Article  PubMed  CAS  Google Scholar 

  • Bodansky HJ, Drury PL, Cudworth AG, Evans DAP. Acetylator phenotypes and type I (insulin-dependent) diabetics with microvascular disease. Diabetes 30: 907–910, 1981

    Article  PubMed  CAS  Google Scholar 

  • Brownlee M, Cerami A, Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. New England Journal of Medicine 318: 1315–1321, 1988

    Article  PubMed  CAS  Google Scholar 

  • Burrows AW, Hockaday TDR, Mann JI, Taylor JG. Diabetic dimorphism according to acetylator status. British Medical Journal 1: 208–210, 1978

    Article  PubMed  CAS  Google Scholar 

  • Chase PH, Glasgow AM. Juvenile diabetes mellitus and serum lipids and lipoprotein levels. American Journal of Diseases of Children 130: 1113–1117, 1976

    PubMed  CAS  Google Scholar 

  • Daintith H, Stevenson IH, O’Malley K. Influence of diabetes mellitus on drug metabolism in man. International Journal of Clinical Pharmacology 13: 55–58, 1976

    CAS  Google Scholar 

  • Dajani RM, Kayyali S, Saheb SE, Birbari A. A study on the physiological disposition of acetophenetidin by the diabetic man. Comparative and General Pharmacology 5: 1–9, 1974

    Article  PubMed  CAS  Google Scholar 

  • Damsgaard EM. Why do elderly diabetics burden the health care system more than non-diabetics? Danish Medical Bulletin 36: 89–92, 1989

    PubMed  CAS  Google Scholar 

  • Della-Coletta AA, Eller MG. The bioavailability of tolazamide in diabetic patients and healthy subjects. Abstract no. PP 1301. Pharmaceutical Research 5: S–174, 1988

    Google Scholar 

  • Evans DAP. N-acetyltransferase. Pharmacology and Therapeutics 42: 157–234, 1989

    Article  PubMed  CAS  Google Scholar 

  • Evans DAP, Paterson S, Francisco P, Alvarez G. The acetylator phenotypes of Saudi Arabian diabetics. Journal of Medical Genetics 22: 479–483, 1985

    Article  PubMed  CAS  Google Scholar 

  • Fass RJ, Saslaw S. Clindamycin: clinical and laboratory evaluation of parenteral therapy. American Journal of the Medical Sciences 263: 369–382, 1972

    Article  Google Scholar 

  • Favreau LV, Schenkman JB. Composition changes in hepatic microsomal cytochrome P-450 during onset of streptozocin-induced diabetes and during insulin treament. Diabetes 37: 577–584, 1988

    Article  PubMed  CAS  Google Scholar 

  • Feldman M, Schiller LR. Disorders of gastrointestinal motility associated with diabetes mellitus. Annals of Internal Medicine 98: 378–384, 1983

    PubMed  CAS  Google Scholar 

  • Foster KJ, Griffith AH, Dewbury K, Price CP, Wright R. Liver disease in patients with diabetes mellitus. Postgraduate Medical Journal 56: 767–772, 1980

    Article  PubMed  CAS  Google Scholar 

  • Fraze E, Donner CC, Swislocki ALM, Chiou Y-AM, Chen Y-DI, et al. Ambient plasma free fatty acid concentrations in noninsulin-dependent diabetes mellitus: evidence for insulin resistance. Journal of Clinical Endocrinology and Metabolism 61: 807–811, 1985

    Article  PubMed  CAS  Google Scholar 

  • Fuccella LM, Tamassia V, Valzelli G. Metabolism and kinetics of the hypoglycemic agent glipizide in man — comparison with glibenclamide. Journal of Clinical Pharmacology 13: 68–75, 1973

    CAS  Google Scholar 

  • Garcia G, de Vidal EL, Trujillo H. Serum levels and urinary concentrations of kanamicin, bekanamicin and amikacin (BB-K8) in diabetic children and a control group. Journal of International Medical Research 5: 322–329, 1977

    PubMed  CAS  Google Scholar 

  • Gatti G, Crema F, Attardo-Parrinello G, Fratino P, Aguzzi F, et al. Serum protein binding of Phenytoin and valproic acid in insulin-dependent diabetes mellitus. Therapeutic Drug Monitoring 9: 389–391, 1987

    Article  PubMed  CAS  Google Scholar 

  • Gibaldi M. Biopharmaceutics and clinical pharmacokinetics, 3rd ed., pp. 206–227, Lea & Febiger, Philadelphia, 1984

    Google Scholar 

  • Gibaldi M, Perrier D. Pharmacokinetics, 2nd ed., p. 200, Marcel Dekker, New York, 1982

    Google Scholar 

  • Grainger-Rousseau T-J, McElnay JC, Collier PS. The influence of disease on plasma protein binding of drugs. International Journal of Pharmaceutics 54: 1–13, 1989

    Article  CAS  Google Scholar 

  • Grasela DM, Wender RC, Ballas SK, Rocci ML. The effect of diabetes and sickle cell anemia on the drug metabolizing activity of erythrocyte ketone reductases. Abstract no. IIIB-2. Clinical Pharmacology and Therapeutics 45: 180, 1989

    Google Scholar 

  • Gundersen HJG. Peripheral blood flow and metabolic control in juvenile diabetes. Diabetologia 10: 225–231, 1974

    Article  PubMed  CAS  Google Scholar 

  • Haggendal E, Steen B, Svanborg A. Blood flow in subcutaneous fat tissue in patients with diabetes mellitus. Acta Medica Scandinavica 187: 49–53, 1970

    Article  PubMed  CAS  Google Scholar 

  • Harris MI. Prevalence of noninsulin-dependent diabetes and impaired glucose tolerance. In Harris & Hamman (Eds) Diabetes in America, NIH Publication no. 85-1468, p. VI–1, 1985

    Google Scholar 

  • Hildebrandt P, Birch K, Nielsen SL, Sestoft L. Absorption of infused insulin: kinetics and relation to subcutaneous blood flow. Abstract no. 171. Diabetologia 25: 164, 1983

    Google Scholar 

  • Hildebrandt P, Birch K, Sestoft L, Nielsen SL. Non-linear relationship between subcutaneous blood flow and insulin absorption. Abstract no. 134. Diabetologia 23: 174, 1982

    Google Scholar 

  • Isacson D, Stalhammar J. Prescription drug use among diabetics — a population study. Journal of Chronic Diseases 40: 651–660, 1987

    Article  PubMed  CAS  Google Scholar 

  • Jungmann E, Seel K, Hofmann E, Scheuermann E-H, Schoffling K. Effects of nifedipine on renal responses to human atrial natriuretic peptide in healthy subjects and normoglycemic patients with type I diabetes mellitus. Klinische Wochenschrift 67: 1174–1181, 1989

    Article  PubMed  CAS  Google Scholar 

  • Jungmann E, Walter-Schrader M-C, Haak T, Fassbinder W, Wambach G, et al. Impaired renal responsiveness to human atrial natriuretic peptide (hANP) in normotensive patients with type I diabetes mellitus. Klinische Wochenschrift 66: 527–532, 1988

    Article  PubMed  CAS  Google Scholar 

  • Kannel WB, Hjortland M, Castelli WP. Role of diabetes in congestive heart failure: the Framingham study. American Journal of Cardiology 34: 29–34, 1974

    Article  PubMed  CAS  Google Scholar 

  • Kazumi T, Yoshino G, Okutani T, Kato J, Kasama T, et al. Plasma lipoprotein and apolipoprotein concentrations and glycemic control during short-term treatment with nifedipine in hypertensive patients with type II diabetes mellitus. Current Therapeutic Research 46: 951–958, 1989

    Google Scholar 

  • Kearns GL, Kemp SF, Turley CP, Nelson DL. Protein binding of Phenytoin and lidocaine in pediatric patients with type I diabetes mellitus. Developmental Pharmacology and Therapeutics 11: 14–23, 1988

    PubMed  CAS  Google Scholar 

  • Kemp SF, Kearns GL, Turley CP. Alteration of phenytoin binding by glycosylation of albumin in IDDM. Diabetes 36: 505–509, 1987

    Article  PubMed  CAS  Google Scholar 

  • Klein R, Klein BEK. Vision disorders in diabetes. In Harris & Hamman (Eds) Diabetes in America, NIH Publication no. 85-1468, p. XIII–1, 1985

    Google Scholar 

  • Koldendorf K, Bojsen J, Nielsen SL. Adipose tissue blood flow and insulin disappearance from subcutaneous tissue. Clinical Pharmacology and Therapeutics 25: 598–604, 1979

    Google Scholar 

  • Krolewski AS, Warram JH, Rand LI, Kahn CR. Epidemiologic approach to the etiology of type I diabetes mellitus and its complications. New England Journal of Medicine 317: 1390–1398, 1987

    Article  PubMed  CAS  Google Scholar 

  • Ladero JM, Arrojo A, de Salamanca RE, Gomez M, Cano F, et al. Hepatic acetylator phenotype in diabetes mellitus. Annals of Clinical Research 14: 187–189, 1982

    PubMed  CAS  Google Scholar 

  • Lauritzen T, Binder C, Faber OK. Importance of insulin absorption, subcutaneous blood flow and residual beta-cell function in insulin therapy. Acta Paediatrica Scandinavica 283 (Suppl.): 81–85, 1980

    Article  PubMed  CAS  Google Scholar 

  • Leinonen H, Matikainen E, Juntunen J. Permeability and morphology of skeletal muscle capillaries in type I (insulin-dependent) diabetes mellitus. Diabetologia 22: 158–162, 1982

    Article  PubMed  CAS  Google Scholar 

  • Lerner PI, Weinstein L. Abnormalities of absorption of benzyl-penicillin G and sulfisoxazole in patients with diabetes mellitus. American Journal of the Medical Sciences 248: 37–51, 1964

    Article  PubMed  CAS  Google Scholar 

  • Lloyd-Mostyn RH, Watkins PJ. Defective innervation of heart in diabetic autonomic neuropathy. British Medical Journal 3: 15–17, 1975

    Article  PubMed  CAS  Google Scholar 

  • Longhurst PA, LaCagnin LB, Staats DA, Colby HD. Changes in hepatic drug metabolism in alloxan-diabetic male rabbits. Biochemical Pharmacology 35: 1768–1771, 1986

    Article  PubMed  CAS  Google Scholar 

  • Lucas PD, Foy JM. Effects of experimental diabetes and genetic obesity on regional blood flow in the rat. Diabetes 26: 786–792, 1977

    Article  PubMed  CAS  Google Scholar 

  • Madacsy L, Bokor M, Kozocsa G. Carbenicillin half-life in children with early diabetes mellitus. International Journal of Clinical Pharmacology 14: 155–158, 1976

    CAS  Google Scholar 

  • Madacsy L, Bokor M, Matusovits L. Penicillin clearance in diabetic children. Acta Paediatrica Academiae Scientiarum Hungaricae 16: 139–142, 1975

    PubMed  CAS  Google Scholar 

  • Mattila MJ, Tiitnen H. The rate of isoniazid inactivation in Finnish diabetic and non-diabetic patients. Annales Academiae Scientiarum Fennicae 45: 423–427, 1967

    CAS  Google Scholar 

  • McLaren EH, Burden AC, Moorhead PJ. Acetylator phenotypes in diabetic neuropathy. British Medical Journal 2: 291–293, 1977

    Article  PubMed  CAS  Google Scholar 

  • McNamara PJ, Blouin RA, Brazzell RK. The protein binding of phenytoin, propranolol, diazepam and AL01576 (an aldose reductase inhibitor) in human and rat diabetic serum. Pharmaceutical Research 5: 261–265, 1988

    Article  PubMed  CAS  Google Scholar 

  • Mereish KA, Rosenberg H, Cobby J. Glucosylated albumin and its influence on salicylate binding. Journal of Pharmaceutical Sciences 71: 235–238, 1982

    Article  PubMed  CAS  Google Scholar 

  • Mogensen CE, Andersen MJF. Increased kidney size and glomerular filtration rate in early juvenile diabetes. Diabetes 22: 706–712, 1973

    PubMed  CAS  Google Scholar 

  • Mogensen CE, Christensen CK, Vittinghus E. The stages in diabetic renal disease with emphasis on the stage of incipient diabetic nephropathy. Diabetes 32 (Suppl. 2): 64–78, 1983

    PubMed  Google Scholar 

  • Moore EW, Mitchell ML, Chalmers TC. Variability in absorption of insulin-I(131) in normal and diabetic subjects after subcutaneous and intramuscular injection. Journal of Clinical Investigation 38: 1222–1227, 1959

    Article  PubMed  CAS  Google Scholar 

  • Murali KV, Adithan C, Shashindran CH, Gambhir SS, Chandrasekar S. Antipyrine metabolism in patients with diabetes mellitus. Clinical and Experimental Pharmacology and Physiology 10: 7–13, 1983

    Article  PubMed  CAS  Google Scholar 

  • Narang APS, Dutta DV, Khare AK. Impairment of drug clearance in patients with diabetes mellitus and liver cirrhosis. Indian Journal of Medical Research 85: 321–325, 1987

    PubMed  CAS  Google Scholar 

  • Nishio Y, Kashiwagi A, Terada M, Kida Y, Hatanaka I, et al. The effect of cardiac contractile response to epinephrine infusion in subjects with diabetes mellitus. In Shigeta et al. (Eds) Best approach to the ideal therapy of diabetes mellitus, pp. 459–462, Elsevier Science Publishers, Amsterdam, 1987

    Google Scholar 

  • Nosadini R, De Kreutzenberg S, Duner E, Iori E, Avogaro A, et al. Porcine and human insulin absorption from subcutaneous tissues in normal and insulin-dependent diabetic subjects: a deconvolution based approach. Journal of Clinical Endocrinology and Metabolism 67: 551–559, 1988

    Article  PubMed  CAS  Google Scholar 

  • O’Byrne S, O’Connor P, Feely J. Plasma protein binding of lignocaine and warfarin in non-insulin dependent diabetes mellitus. British Journal of Clinical Pharmacology 26: 648P, 1988

    Google Scholar 

  • O’Connell ME, Awni WM, Goodman M, Cass O, Melikian AP, et al. Bioavailability and disposition of metoclopramide after single- and multiple-dose administration in diabetic patients with gastroparesis. Journal of Clinical Pharmacology 27: 610–614, 1987

    PubMed  Google Scholar 

  • O’Connor P, Feely J. Clinical pharmacokinetics and endocrine disorders: therapeutic implications. Clinical Pharmacokinetics 13: 345–364, 1987

    Article  PubMed  Google Scholar 

  • Ordonez JD, Hiatt RA. Comparison of type II and type I diabetics treated for end-stage renal disease in a large prepaid health plan population. Nephron 51: 524–529, 1989

    Article  PubMed  CAS  Google Scholar 

  • Packer M, Lee WH, Medina N, Yushak M, Kessler PD, et al. Influence of diabetes mellitus on changes in left ventricular performance and renal function produced by converting enzyme inhibition in patients with severe chronic heart failure. American Journal of Medicine 82: 1119–1126, 1987

    Article  PubMed  CAS  Google Scholar 

  • Palumbo PJ, Melton LJ. Peripheral vascular disease and diabetes. In Harris & Hamman (Eds) Diabetes in America, NIH Publication no. 85-1468, p. XV–1, 1985

    Google Scholar 

  • Pirttiaho HI, Salmela PI, Sotaniemi EA, Pelkonen RO, Pitkanen U, et al. Drug metabolism in diabetic subjects with fatty livers. British Journal of Clinical Pharmacology 18: 895–899, 1984

    Article  PubMed  CAS  Google Scholar 

  • Rao GMM, Morghom LO, Abukhris AA. Serum beta-glycosidases in diabetes mellitus. Clinical Physiology and Biochemistry 7: 161–164, 1989

    PubMed  CAS  Google Scholar 

  • Reinke LA, Stohs SJ, Rosenberg H. Increased aryl hydrocarbon hydroxylase activity in hepatic microsomes from streptozotocin-diabetic female rats. Xenobiotica 8: 769–778, 1979

    Article  Google Scholar 

  • Rendell M, Lassek WD, Ross DA, Smith C, Kernek S, et al. A pharmaceutical profile of diabetic patients. Journal of Chronic Diseases 36: 193–202, 1983

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Cabello F, Erill S. Abnormal serum protein binding of acidic drugs in diabetes mellitus. Clinical Pharmacology and Therapeutics 36: 691–695, 1984

    Article  PubMed  CAS  Google Scholar 

  • Salmela PI, Sotaniemi EA, Pelkonen RO. The evaluation of the drug-metabolizing capacity in patients with diabetes mellitus. Diabetes 29: 788–794, 1980

    Article  PubMed  CAS  Google Scholar 

  • Scott AK, Cameron GA, Khir ASM, McHardy KC, Hawksworth GM. Oxazepam elimination in patients with diabetes mellitus. British Journal of Clinical Pharmacology 26: 224P, 1988

    Google Scholar 

  • Self TH, Hood J, Miller ST. Diabetes mellitus and the hypoprothrombinemic response to warfarin. Journal of the American Medical Association 239: 2239, 1978

    Article  PubMed  CAS  Google Scholar 

  • Shenfield GM, McCann VJ, Tjokresetio R. Acetylator status and diabetic neuropathy. Diabetologia 22: 441–444, 1982

    Article  PubMed  CAS  Google Scholar 

  • Stafford WL. Abnormality in the binding of an organic anion by diabetic serum. Lancet 1: 243–245, 1962

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto T, Rosansky SJ. The incidence of treated end stage renal disease in the eastern United States: 1973–1979. American Journal of Public Health 74: 14–17, 1984

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama H, Nakajo Y, Miyano T, Tanaka A, Uchimura I, et al. Cardiovascular reactivity and plasma renin responses to isoproterenol in diabetics with autonomic neuropathy. In Sakamoto et al. (Eds) Current topics in clinical and experimental aspects of diabetes mellitus, pp. 323–327, Elsevier Science Publishers, Amsterdam, 1985

    Google Scholar 

  • Terada M, Yasuda H, Kashawagi A, Nishio Y, Hatanaka I, et al. Sympathetic nerve dysfunction and increased heart rate response to epinephrine in diabetic patients. In Shigeta et al. (Eds) Best approach to the ideal therapy of diabetes mellitus, pp. 497–500, Elsevier Science Publishers, Amsterdam, 1987

    Google Scholar 

  • Ueda H, Sakurai T, Ota M, Nakajima A, Kamii K, et al. Disappearance rate of tolbutamide in normal subjects and in diabetes mellitus, liver cirrhosis, and renal disease. Diabetes 12: 414–419, 1963

    PubMed  CAS  Google Scholar 

  • Wahlin-Boll E, Aimer LO, Melander A. Bioavailability, pharmacokinetics and effects of glipizide in type II diabetics. Clinical Pharmacokinetics 7: 363–372, 1982

    Article  PubMed  CAS  Google Scholar 

  • Weinstein L, Meade RH. Absorption and excretion of penicillin injected into the muscles of patients with diabetes mellitus. Nature 192: 987–988, 1961

    Article  PubMed  CAS  Google Scholar 

  • Wiseman MJ, Saunders AJ, Keen H, Viberti G. Effect of blood glucose control on increased glomerular filtration rate and kidney size in insulin-dependent diabetes. New England Journal of Medicine 312: 617–621, 1985

    Article  PubMed  CAS  Google Scholar 

  • Yee GC, Evans WE. Reappraisal of guidelines for pharmacokinetic monitoring of aminoglycosides. Pharmacotherapy 1: 55–74, 1981

    PubMed  CAS  Google Scholar 

  • Zysset T, Weitholtz H. Differential effect of type I and type II diabetes on antipyrine disposition in man. European Journal of Clinical Pharmacology 34: 369–375, 1988

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gwilt, P.R., Nahhas, R.R. & Tracewell, W.G. The Effects of Diabetes Mellitus on Pharmacokinetics and Pharmacodynamics in Humans. Clin. Pharmacokinet. 20, 477–490 (1991). https://doi.org/10.2165/00003088-199120060-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199120060-00004

Keywords

Navigation