Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transplant Toxicities

Blood glucose control using a computer-guided glucose management system in allogeneic hematopoietic cell transplant recipients

Abstract

Allogeneic hematopoietic cell transplantation (HCT) is a potentially curative treatment for patients with hematological malignancies. However, is associated with substantial rates of morbidity and mortality. We and others have shown that malglycemia is associated with adverse transplant outcome. Therefore, improving glycemic control may improve transplant outcome. In this prospective study we evaluated the feasibility of using Glucommander (a Computer-Guided Glucose Management System; CGGM) in order to achieve improved glucose control in hospitalized HCT patients. Nineteen adult patients contributed 21 separate instances on CGGM. Patients were on CGGM for a median of 43 h. Median initial blood glucose (BG) on CGGM was 244 mg/dL, and patients on 20 study instances reached the study BG target of 100–140 mg/dL after a median of 6 h. After BG reached the target range, the median average BG level per patient was 124 mg/dL. Six patients had a total of 10 events of BG <70 mg/dL (0.9% of BG measurements), and no patients experienced BG level <40 mg/dL. The total estimated duration of BG <70 mg/dL was 3 h (0.2% of the total CGGM time). In conclusion, our study demonstrates that stringent BG control in HCT patients using CGGM is feasible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Preiser JC, Devos P . Clinical experience with tight glucose control by intensive insulin therapy. Crit Care Med 2007; 35: S503–S507.

    Article  CAS  Google Scholar 

  2. van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M et al. Intensive insulin therapy in critically ill patients. N Engl J Med 2001; 345: 1359–1367.

    Article  CAS  Google Scholar 

  3. Vanhorebeek I, Langouche L, Van den Berghe G . Tight blood glucose control with insulin in the ICU: facts and controversies. Chest 2007; 132: 268–278.

    Article  CAS  Google Scholar 

  4. Krinsley JS, Grover A . Severe hypoglycemia in critically ill patients: risk factors and outcomes. Crit Care Med 2007; 35: 2262–2267.

    Article  Google Scholar 

  5. Van den Berghe G, Wilmer A, Hermans G, Meersseman W, Wouters PJ, Milants I et al. Intensive insulin therapy in the medical ICU. New Engl J Med 2006; 354: 449–461.

    Article  CAS  Google Scholar 

  6. Malmberg K, Ryden L, Wedel H, Birkeland K, Bootsma A, Dickstein K et al. Intense metabolic control by means of insulin in patients with diabetes mellitus and acute myocardial infarction (DIGAMI 2): effects on mortality and morbidity. Eur Heart J 2005; 26: 650–661.

    Article  CAS  Google Scholar 

  7. Mehta SR, Yusuf S, Diaz R, Zhu J, Pais P, Xavier D et al. Effect of glucose-insulin-potassium infusion on mortality in patients with acute ST-segment elevation myocardial infarction: the CREATE-ECLA randomized controlled trial. JAMA 2005; 293: 437–446.

    Article  Google Scholar 

  8. Brunkhorst FM, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, Weiler N et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med 2008; 358: 125–139.

    Article  CAS  Google Scholar 

  9. Krinsley JS . Effect of an intensive glucose management protocol on the mortality of critically ill adult patients. Mayo Clin Proc 2004; 79: 992–1000.

    Article  Google Scholar 

  10. Preiser JC, Devos P . Current status of tight blood sugar control. Curr Infect Dis Rep 2008; 10: 377–382.

    Article  Google Scholar 

  11. Gunst J, Van den Berghe G . Blood glucose control in the intensive care unit: benefits and risks. Semin Dial 2010; 23: 157–162.

    Article  Google Scholar 

  12. Umpierrez G, Cardona S, Pasquel F, Jacobs S, Peng L, Unigwe M et al. Randomized controlled trial of intensive versus conservative glucose control in patients undergoing coronary artery bypass graft surgery: GLUCO-CABG trial. Diabetes Care 2015; 38: 1665–1672.

    Article  CAS  Google Scholar 

  13. Van den Berghe G, Wilmer A, Milants I, Wouters PJ, Bouckaert B, Bruyninckx F et al. Intensive insulin therapy in mixed medical/surgical intensive care units: benefit versus harm. Diabetes 2006; 55: 3151–3159.

    Article  CAS  Google Scholar 

  14. Scalea TM, Bochicchio GV, Bochicchio KM, Johnson SB, Joshi M, Pyle A . Tight glycemic control in critically injured trauma patients. Ann Surg 2007; 246: 605–610.

    Article  Google Scholar 

  15. Bhatia A, Cadman B, Mackenzie I . Hypoglycemia and cardiac arrest in a critically ill patient on strict glycemic control. Anesth Analg 2006; 102: 549–551.

    Article  Google Scholar 

  16. Vriesendorp TM, DeVries JH, van Santen S, Moeniralam HS, de Jonge E, Roos YB et al. Evaluation of short-term consequences of hypoglycemia in an intensive care unit. Crit Care Med 2006; 34: 2714–2718.

    Article  CAS  Google Scholar 

  17. Krinsley JS, Jones RL . Cost analysis of intensive glycemic control in critically ill adult patients. Chest 2006; 129: 644–650.

    Article  Google Scholar 

  18. Egi M, Bellomo R, Stachowski E, French CJ, Hart G . Variability of blood glucose concentration and short-term mortality in critically ill patients. Anesthesiology 2006; 105: 244–252.

    Article  CAS  Google Scholar 

  19. Krinsley JS . Glycemic variability: a strong independent predictor of mortality in critically ill patients. Crit Care Med 2008; 36: 3008–3013.

    Article  CAS  Google Scholar 

  20. Ali NA, O'Brien JM Jr., Dungan K, Phillips G, Marsh CB, Lemeshow S et al. Glucose variability and mortality in patients with sepsis. Crit Care Med 2008; 36: 2316–2321.

    Article  Google Scholar 

  21. Fahy BG, Sheehy AM, Coursin DB . Glucose control in the intensive care unit. Crit Care Med 2009; 37: 1769–1776.

    Article  CAS  Google Scholar 

  22. Kurosawa S, Yakushijin K, Yamaguchi T, Atsuta Y, Nagamura-Inoue T, Akiyama H et al. Changes in incidence and causes of non-relapse mortality after allogeneic hematopoietic cell transplantation in patients with acute leukemia/myelodysplastic syndrome: an analysis of the Japan Transplant Outcome Registry. Bone Marrow Transplant 2013; 48: 529–536.

    Article  CAS  Google Scholar 

  23. Kurosawa S, Yakushijin K, Yamaguchi T, Atsuta Y, Nagamura-Inoue T, Akiyama H et al. Recent decrease in non-relapse mortality due to GVHD and infection after allogeneic hematopoietic cell transplantation in non-remission acute leukemia. Bone Marrow Transplant 2013; 48: 1198–1204.

    Article  CAS  Google Scholar 

  24. Hammer MJ, Casper C, Gooley TA, O'Donnell PV, Boeckh M, Hirsch IB . The contribution of malglycemia to mortality among allogeneic hematopoietic cell transplant recipients. Biol Blood Marrow Transplant 2009; 15: 344–351.

    Article  Google Scholar 

  25. Fuji S, Kim SW, Mori S, Fukuda T, Kamiya S, Yamasaki S et al. Hyperglycemia during the neutropenic period is associated with a poor outcome in patients undergoing myeloablative allogeneic hematopoietic stem cell transplantation. Transplantation 2007; 84: 814–820.

    Article  Google Scholar 

  26. Gebremedhin E, Behrendt CE, Nakamura R, Parker P, Salehian B . Severe hyperglycemia immediately after allogeneic hematopoietic stem-cell transplantation is predictive of acute graft-versus-host disease. Inflammation 2013; 36: 177–185.

    Article  CAS  Google Scholar 

  27. Fuji S, Kim SW, Mori S, Kamiya S, Yoshimura K, Yokoyama H et al. Intensive glucose control after allogeneic hematopoietic stem cell transplantation: a retrospective matched-cohort study. Bone Marrow Transplant 2009; 44: 105–111.

    Article  CAS  Google Scholar 

  28. Davidson PC, Steed RD, Bode BW . Glucommander: a computer-directed intravenous insulin system shown to be safe, simple, and effective in 120,618 h of operation. Diabetes Care 2005; 28: 2418–2423.

    Article  CAS  Google Scholar 

  29. Core Team R . R: A language and environment for statistical computing. R Foundation for Statistical Computing: Vienna, Austria, 2015. URL https://www.R-project.org/.

    Google Scholar 

  30. Wickham H . ggplot2: elegant graphics for data analysis. Springer: New York, NY, USA, 2009.

    Book  Google Scholar 

  31. Ouattara A, Lecomte P, Le Manach Y, Landi M, Jacqueminet S, Platonov I et al. Poor intraoperative blood glucose control is associated with a worsened hospital outcome after cardiac surgery in diabetic patients. Anesthesiology 2005; 103: 687–694.

    Article  CAS  Google Scholar 

  32. Williams LS, Rotich J, Qi R, Fineberg N, Espay A, Bruno A et al. Effects of admission hyperglycemia on mortality and costs in acute ischemic stroke. Neurology 2002; 59: 67–71.

    Article  CAS  Google Scholar 

  33. Furnary AP, Wu Y . Clinical effects of hyperglycemia in the cardiac surgery population: the Portland Diabetic Project. Endocr Pract 2006; 12: 22–26.

    Article  Google Scholar 

  34. Wiener RS, Wiener DC, Larson RJ . Benefits and risks of tight glucose control in critically ill adults: a meta-analysis. JAMA 2008; 300: 933–944.

    Article  CAS  Google Scholar 

  35. Investigators N-SS, Finfer S, Chittock DR, Su SY, Blair D, Foster D et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med 2009; 360: 1283–1297.

    Article  Google Scholar 

  36. Kramer AH, Roberts DJ, Zygun DA . Optimal glycemic control in neurocritical care patients: a systematic review and meta-analysis. Crit Care 2012; 16: R203.

    Article  Google Scholar 

  37. Sheean PM, Freels SA, Helton WS, Braunschweig CA . Adverse clinical consequences of hyperglycemia from total parenteral nutrition exposure during hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2006; 12: 656–664.

    Article  Google Scholar 

  38. Investigators N-SS, Finfer S, Liu B, Chittock DR, Norton R, Myburgh JA et al. Hypoglycemia and risk of death in critically ill patients. N Engl J Med 2012; 367: 1108–1118.

    Article  Google Scholar 

  39. Antin JH . Acute graft-versus-host disease: inflammation run amok? J Clin Invest 2001; 107: 1497–1498.

    Article  CAS  Google Scholar 

  40. Shoelson SE, Lee J, Goldfine AB . Inflammation and insulin resistance. J Clin Invest 2006; 116: 1793–1801.

    Article  CAS  Google Scholar 

  41. Pidala J, Kim J, Kharfan-Dabaja MA, Nishihori T, Field T, Perkins J et al. Dysglycemia following glucocorticoid therapy for acute graft-versus-host disease adversely affects transplantation outcomes. Biol Blood Marrow Transplant 2011; 17: 239–248.

    Article  CAS  Google Scholar 

  42. Golovchenko I, Goalstone ML, Watson P, Brownlee M, Draznin B . Hyperinsulinemia enhances transcriptional activity of nuclear factor-kappaB induced by angiotensin II, hyperglycemia, and advanced glycosylation end products in vascular smooth muscle cells. Circ Res 2000; 87: 746–752.

    Article  CAS  Google Scholar 

  43. Dandona P, Aljada A, Mohanty P, Ghanim H, Hamouda W, Assian E et al. Insulin inhibits intranuclear nuclear factor kappaB and stimulates IkappaB in mononuclear cells in obese subjects: evidence for an anti-inflammatory effect? J Clin Endocrinol Metab 2001; 86: 3257–3265.

    CAS  PubMed  Google Scholar 

  44. Fuji S, Einsele H, Savani BN, Kapp M . Systematic nutritional support in allogeneic hematopoietic stem cell transplant recipients. Biol Blood Marrow Transplant 2015; 21: 1707–1713.

    Article  Google Scholar 

  45. Avanzini F, Marelli G, Saltafossi D, Longhi C, Carbone S, Carlino L et al. Effectiveness, safety and feasibility of an evidence-based insulin infusion protocol targeting moderate glycaemic control in intensive cardiac care units. Eur Heart J Acute Cardiovasc Care 2015.

  46. Boutin JM, Gauthier L . Insulin infusion therapy in critically ill patients. Can J Diabetes 2014; 38: 144–150.

    Article  Google Scholar 

  47. Giani E, Scaramuzza AE, Zuccotti GV . Impact of new technologies on diabetes care. World J Diabetes 2015; 6: 999–1004.

    Article  Google Scholar 

  48. Scaramuzza AE, Zuccotti GV . Modern clinical management helps reducing the impact of type 1 diabetes in children. Pharmacol Res 2015; 98: 16–21.

    Article  Google Scholar 

  49. Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study G, Tamborlane WV, Beck RW, Bode BW, Buckingham B, Chase HP et al. Continuous glucose monitoring and intensive treatment of type 1 diabetes. N Engl J Med 2008; 359: 1464–1476.

    Article  Google Scholar 

  50. Vigersky RA, Fonda SJ, Chellappa M, Walker MS, Ehrhardt NM . Short- and long-term effects of real-time continuous glucose monitoring in patients with type 2 diabetes. Diabetes Care 2012; 35: 32–38.

    Article  CAS  Google Scholar 

  51. Barassi A, Umbrello M, Ghilardi F, Damele CA, Massaccesi L, Iapichino G et al. Evaluation of the performance of a new OptiScanner 5000 system for an intermittent glucose monitoring. Clin Chim Acta 2015; 438: 252–254.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Bar.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espina, C., Jenkins, I., Taylor, L. et al. Blood glucose control using a computer-guided glucose management system in allogeneic hematopoietic cell transplant recipients. Bone Marrow Transplant 51, 973–979 (2016). https://doi.org/10.1038/bmt.2016.78

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2016.78

This article is cited by

Search

Quick links