Skip to main content
Log in

Canagliflozin: A Review in Type 2 Diabetes

  • Adis Drug Evaluation
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Canagliflozin (Invokana®) is a sodium-glucose co-transporter-2 (SGLT2) inhibitor indicated in various countries worldwide for the once-daily oral treatment of type 2 diabetes (T2D). Canagliflozin lowers blood glucose levels independently of insulin, with the inhibition of SGLT2 reducing renal reabsorption of glucose and increasing excretion of glucose in the urine. In well-designed clinical trials, canagliflozin (as first-line monotherapy or add-on therapy to other antihyperglycaemic agents) improved glycaemic control in adults with T2D, including those of older age and/or at high cardiovascular (CV) risk, and also had beneficial effects on their bodyweight and blood pressure (BP). CV risk reduction, as well as possible renal benefits, were also seen with canagliflozin in T2D patients at high CV risk in the CANVAS Program, an integrated analysis of two large CV outcomes studies. Canagliflozin was generally well tolerated, had a low risk of hypoglycaemia and was most commonly associated with adverse events such as genital and urinary tract infections and increased urination, consistent with its mechanism of action. Although the amputation and fracture risk observed among recipients of the drug require further investigation, canagliflozin is an important option for T2D management in adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. NICE. Type 2 diabetes in adults: management. 2017. http://www.nice.org. Accessed 8 Aug 2017.

  2. Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2015;38(1):140–9.

    Article  PubMed  Google Scholar 

  3. Scheen AJ. SGLT2 inhibitors: benefit/risk balance. Curr Diab Rep. 2016;16(10):92.

    Article  PubMed  CAS  Google Scholar 

  4. Scheen AJ. Pharmacodynamics, efficacy and safety of sodium-glucose co-transporter type 2 (SGLT2) inhibitors for the treatment of type 2 diabetes mellitus. Drugs. 2015;75(1):33–59.

    Article  CAS  PubMed  Google Scholar 

  5. Ohgaki R, Wei L, Yamada K, et al. Interaction of the sodium/glucose cotransporter (SGLT) 2 inhibitor canagliflozin with SGLT1 and SGLT2: inhibition kinetics, sidedness of action, and transporter-associated incorporation accounting for its pharmacodynamic and pharmacokinetic features. J Pharmacol Exp Ther. 2016;358(1):94–102.

    Article  CAS  PubMed  Google Scholar 

  6. Nomura S, Sakamaki S, Hongu M, et al. Discovery of canagliflozin, a novel C-glucoside with thiophene ring, as sodium-dependent glucose cotransporter 2 inhibitor for the treatment of type 2 diabetes mellitus. J Med Chem. 2010;53(17):6355–60.

    Article  CAS  PubMed  Google Scholar 

  7. Devineni D, Curtin CR, Polidori D, et al. Pharmacokinetics and pharmacodynamics of canagliflozin, a sodium glucose co-transporter 2 inhibitor, in subjects with type 2 diabetes mellitus. J Clin Pharmacol. 2013;53(6):601–10.

    Article  CAS  PubMed  Google Scholar 

  8. Sha S, Devineni D, Ghosh A, et al. Pharmacodynamic effects of canagliflozin, a sodium glucose co-transporter 2 inhibitor, from a randomized study in patients with type 2 diabetes. PLoS ONE. 2014;9(9):e110069.

    Article  PubMed  CAS  Google Scholar 

  9. Janssen-Cilag International NV. Invokana film-coated tablets: summary of product characteristics. 2017. http://www.ema.europe.eu. Accessed 8 Aug 2017.

  10. Liang Y, Arakawa K, Ueta K, et al. Effect of canagliflozin on renal threshold for glucose, glycemia, and body weight in normal and diabetic animal models. PLoS One. 2012;7(2):e30555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Oguma T, Nakayama K, Kuriyama C, et al. Intestinal sodium glucose cotransporter 1 inhibition enhances glucagon-like peptide-1 secretion in normal and diabetic rodents. J Pharmacol Exp Ther. 2015;354(3):279–89.

    Article  PubMed  Google Scholar 

  12. Stein P, Berg JK, Morrow L, et al. Canagliflozin, a sodium glucose co-transporter 2 inhibitor, reduces post-meal glucose excursion in patients with type 2 diabetes by a non-renal mechanism: results of a randomized trial. Metabolism. 2014;63(10):1296–303.

    Article  CAS  PubMed  Google Scholar 

  13. Polidori D, Sha S, Mudaliar S, et al. Canagliflozin lowers postprandial glucose and insulin by delaying intestinal glucose absorption in addition to increasing urinary glucose excretion: results of a randomized, placebo-controlled study. Diabetes Care. 2013;36(8):2154–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sha S, Polidori D, Farrell K, et al. Pharmacodynamic differences between canagliflozin and dapagliflozin: results of a randomized, double-blind, crossover study. Diabetes Obes Metab. 2015;17(2):188–97.

    Article  CAS  PubMed  Google Scholar 

  15. Stenlöf K, Cefalu WT, Kim KA, et al. Efficacy and safety of canagliflozin monotherapy in subjects with type 2 diabetes mellitus inadequately controlled with diet and exercise. Diabetes Obes Metab. 2013;15(4):372–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Wilding JP, Charpentier G, Hollander P, et al. Efficacy and safety of canagliflozin in patients with type 2 diabetes mellitus inadequately controlled with metformin and sulphonylurea: a randomised trial. Int J Clin Pract. 2013;67(12):1267–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schernthaner G, Gross JL, Rosenstock J, et al. Canagliflozin compared with sitagliptin for patients with type 2 diabetes who do not have adequate glycemic control with metformin plus sulfonylurea: a 52-week randomized trial. Diabetes Care. 2013;36(9):2508–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Forst T, Guthrie R, Goldenberg R, et al. Efficacy and safety of canagliflozin over 52 weeks in patients with type 2 diabetes on background metformin and pioglitazone. Diabetes Obes Metab. 2014;16(5):467–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Polidori D, Mari A, Ferrannini E. Canagliflozin, a sodium glucose co-transporter 2 inhibitor, improves model-based indices of beta cell function in patients with type 2 diabetes. Diabetologia. 2014;57(5):891–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Scheen AJ, Paquot N. Metabolic effects of SGLT-2 inhibitors beyond increased glucosuria: a review of the clinical evidence. Diabetes Metab. 2014;40(6 Suppl 1):S4–11.

    Article  CAS  PubMed  Google Scholar 

  21. Weir MR, Kline I, Xie J, et al. Effect of canagliflozin on serum electrolytes in patients with type 2 diabetes in relation to estimated glomerular filtration rate (eGFR). Curr Med Res Opin. 2014;30(9):1759–68.

    Article  CAS  PubMed  Google Scholar 

  22. Gilbert RE, Mende C, Vijapurkar U, et al. Effects of canagliflozin on serum magnesium in patients with type 2 diabetes mellitus: a post hoc analysis of randomized controlled trials. Diabetes therapy. 2017;8(2):451–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Davies MJ, Trujillo A, Vijapurkar U, et al. Effect of canagliflozin on serum uric acid in patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2015;17(4):426–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bilezikian JP, Watts NB, Usiskin K, et al. Evaluation of bone mineral density and bone biomarkers in patients with type 2 diabetes treated with canagliflozin. J Clin Endocrinol Metab. 2016;101(1):44–51.

    Article  CAS  PubMed  Google Scholar 

  25. Januzzi JL, Butler J, Jarolim P, et al. Effects of canagliflozin on cardiovascular biomarkers in older patients with type 2 diabetes mellitus. J Am Coll Cardiol. 2017;. doi:10.1016/j.jacc.2017.06.016.

    Google Scholar 

  26. Garvey TW, Van Gaal L, Leiter LA, et al. Effects of canagliflozin versus glimepride on adipokines, inflammatory biomarkers, and chemokines in patients with type 2 diabetes mellitus [abstract no. 252]. Endocr Pract. 2017;23(Suppl 3):58.

    Google Scholar 

  27. Devineni D, Murphy J, Wang SS, et al. Absolute oral bioavailability and pharmacokinetics of canagliflozin: a microdose study in healthy participants. Clin Pharmacol Drug Dev. 2015;4(4):295–304.

    Article  CAS  PubMed  Google Scholar 

  28. Devineni D, Manitpisitkul P, Murphy J, et al. Effect of food on the pharmacokinetics of canagliflozin, a sodium glucose co-transporter 2 inhibitor, and assessment of dose proportionality in healthy participants. Clin Pharmacol Drug Dev. 2015;4(4):279–86.

    Article  CAS  PubMed  Google Scholar 

  29. Francke S, Mamidi RN, Solanki B, et al. In vitro metabolism of canagliflozin in human liver, kidney, intestine microsomes, and recombinant uridine diphosphate glucuronosyltransferases (UGT) and the effect of genetic variability of UGT enzymes on the pharmacokinetics of canagliflozin in humans. J Clin Pharmacol. 2015;55(9):1061–72.

    Article  CAS  PubMed  Google Scholar 

  30. Devineni D, Curtin CR, Marbury TC, et al. Effect of hepatic or renal impairment on the pharmacokinetics of canagliflozin, a sodium glucose co-transporter 2 inhibitor. Clin Ther. 2015;37(3):610–28.e4.

  31. Inagaki N, Kondo K, Yoshinari T, et al. Efficacy and safety of canagliflozin alone or as add-on to other oral antihyperglycemic drugs in Japanese patients with type 2 diabetes: a 52-week open-label study. J Diabetes Investig. 2015;6(2):210–8.

    Article  CAS  PubMed  Google Scholar 

  32. Vercruysse F, Davies MJ, Merton K, et al. Achievement of glycaemic goals without hypoglycaemia with canagliflozin versus glimepiride in patients with type 2 diabetes [abstract no. 714]. Diabetologia. 2016;59(Suppl 1):S339–40.

    Google Scholar 

  33. Woo V, Wysham C, Mathieu C, et al. Canagliflozin reduces both HbA1c and body weight in patients with type 2 diabetes on background dipeptidyl peptidase-4 inhibitors or glucagon-like peptide-1 agonists [abstract no. 186]. Diabetologia. 2015;58(Suppl 1):S93–4.

    Google Scholar 

  34. Lefebvre P, Pilon D, Robitaille M, et al. Glycated hemoglobin (HbA1c) control in patients with type 2 diabetes mellitus (T2DM) treated with canagliflozin in a realworld setting [abstract no. PDB27]. Value Health. 2015;18(3):A57.

    Article  Google Scholar 

  35. Lefebvre P, Chow W, Pilon D, et al. Real-world evaluation of weight loss in patients with type 2 diabetes mellitus treated with canagliflozin—an electronic health record-based study [abstract no. PDB7]. Value Health. 2016;19(3):A198.

    Article  Google Scholar 

  36. Canovatchel W, Thayer S, Chow W, et al. Efficacy of canagliflozin versus dipeptidyl peptidase-4 inhibitors in patients with type 2 diabetes: results from randomised controlled trials and a real-world study [abstract no. 709]. Diabetologia. 2016;59(Suppl 1):S337.

    Google Scholar 

  37. Wysham CH, Pilon D, Ingham M, et al. Real-world glycemic control and treatment costs in patients with T2DM initiated on canagliflozin (CANA) 300 mg or a GLP-1 [abstract no. 1253-P]. In: ADA 77th Scientific Sessions; 2017.

  38. Harashima S, Inagaki N, Kaku K, et al. The long-term efficacy and safety of canagliflozin in combination with insulin in Japanese patients with T2DM [abstract no. 131-OR]. In: ADA 77th Scientific Sessions; 2017.

  39. Stenlöf K, Cefalu WT, Kim KA, et al. Long-term efficacy and safety of canagliflozin monotherapy in patients with type 2 diabetes inadequately controlled with diet and exercise: findings from the 52-week CANTATA-M study. Curr Med Res Opin. 2014;30(2):163–75.

    Article  PubMed  CAS  Google Scholar 

  40. Rosenstock J, Chuck L, Gonzalez-Ortiz M, et al. Initial combination therapy with canagliflozin plus metformin versus each component as monotherapy for drug-naive type 2 diabetes. Diabetes Care. 2016;39(3):353–62.

    Article  PubMed  Google Scholar 

  41. Lavalle-Gonzalez FJ, Januszewicz A, Davidson J, et al. Efficacy and safety of canagliflozin compared with placebo and sitagliptin in patients with type 2 diabetes on background metformin monotherapy: a randomised trial. Diabetologia. 2013;56(12):2582–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cefalu WT, Leiter LA, Yoon K-H, et al. Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU): 52 week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet. 2013;382(9896):941–50.

    Article  CAS  PubMed  Google Scholar 

  43. Leiter LA, Yoon KH, Arias P, et al. Canagliflozin provides durable glycemic improvements and body weight reduction over 104 weeks versus glimepiride in patients with type 2 diabetes on metformin: a randomized, double-blind, phase 3 study. Diabetes Care. 2015;38(3):355–64.

    Article  CAS  PubMed  Google Scholar 

  44. Rodbard HW, Seufert J, Aggarwal N, et al. Efficacy and safety of titrated canagliflozin in patients with type 2 diabetes mellitus inadequately controlled on metformin and sitagliptin. Diabetes Obes Metab. 2016;18(8):812–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Patel CA, Bailey RA, Vijapurkar U, et al. A post hoc analysis of the comparative efficacy of canagliflozin and glimepiride in the attainment of type 2 diabetes-related quality measures. BMC Health Serv Res. 2016;16(a):356.

  46. Cefalu WT, Stenlof K, Leiter LA, et al. Effects of canagliflozin on body weight and relationship to HbA1c and blood pressure changes in patients with type 2 diabetes. Diabetologia. 2015;58(6):1183–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Weir MR, Januszewicz A, Gilbert RE, et al. Effect of canagliflozin on blood pressure and adverse events related to osmotic diuresis and reduced intravascular volume in patients with type 2 diabetes mellitus. J Clin Hypertens. 2014;16(12):875–82.

    Article  CAS  Google Scholar 

  48. Pfeifer M, Townsend RR, Davies MJ, et al. Effects of canagliflozin, a sodium glucose co-transporter 2 inhibitor, on blood pressure and markers of arterial stiffness in patients with type 2 diabetes mellitus: a post hoc analysis. Cardiovasc Diabetol. 2017;16(1):29.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Heerspink HJ, Desai M, Jardine M, et al. Canagliflozin slows progression of renal function decline independently of glycemic effects. J Am Soc Nephrol. 2017;28(1):368–75.

    Article  PubMed  Google Scholar 

  50. Neal B, Perkovic V, de Zeeuw D, et al. Efficacy and safety of canagliflozin, an inhibitor of sodium-glucose cotransporter 2, when used in conjunction with insulin therapy in patients with type 2 diabetes. Diabetes Care. 2015;38(3):403–11.

    Article  CAS  PubMed  Google Scholar 

  51. Fulcher G, Matthews DR, Perkovic V, et al. Efficacy and safety of canagliflozin used in conjunction with sulfonylurea in patients with type 2 diabetes mellitus: a randomized, controlled trial. Diabetes Ther. 2015;6(3):289–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fulcher G, Matthews DR, Perkovic V, et al. Efficacy and safety of canagliflozin when used in conjunction with incretin-mimetic therapy in patients with type 2 diabetes. Diabetes Obes Metab. 2016;18(1):82–91.

    Article  CAS  PubMed  Google Scholar 

  53. Neal B, Perkovic V, de Zeeuw D, et al. Rationale, design, and baseline characteristics of the canagliflozin cardiovascular assessment study (CANVAS)—a randomized placebo-controlled trial. Am Heart J. 2013;166(2):217–23.e11.

  54. Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017. doi:10.1056/NEJMoa1611925.

    Google Scholar 

  55. Davies MJ, Merton K, Vijapurkar U, et al. Efficacy and safety of canagliflozin in patients with type 2 diabetes based on history of cardiovascular disease or cardiovascular risk factors: a post hoc analysis of pooled data. Cardiovasc Diabetol. 2017;16(1):40.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bode B, Stenlöf K, Sullivan D, et al. Efficacy and safety of canagliflozin treatment in older subjects with type 2 diabetes mellitus: a randomized trial. Hosp Pract (1995). 2013;41(2):72–84.

  57. Bode B, Stenlof K, Harris S, et al. Long-term efficacy and safety of canagliflozin over 104 weeks in patients aged 55-80 years with type 2 diabetes. Diabetes Obes Metab. 2015;17(3):294–303.

    Article  CAS  PubMed  Google Scholar 

  58. Sinclair A, Bode B, Harris S, et al. Efficacy and safety of canagliflozin compared with placebo in older patients with type 2 diabetes mellitus: a pooled analysis of clinical studies. BMC Endocr Disord. 2014;14(1):37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Gilbert RE, Weir MR, Fioretto P, et al. Impact of age and estimated glomerular filtration rate on the glycemic efficacy and safety of canagliflozin: a pooled analysis of clinical studies. Can J Diabetes. 2016;40(3):247–57.

    Article  PubMed  Google Scholar 

  60. Sinclair AJ, Bode B, Harris S, et al. Efficacy and safety of canagliflozin in individuals aged 75 and older with type 2 diabetes mellitus: a pooled analysis. J Am Geriatr Soc. 2016;64(3):543–52.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Inagaki N, Kondo K, Yoshinari T, et al. Efficacy and safety of canagliflozin monotherapy in Japanese patients with type 2 diabetes inadequately controlled with diet and exercise: a 24-week, randomized, double-blind, placebo-controlled, phase III study. Expert Opin Pharmacother. 2014;15(11):1501–15.

    Article  CAS  PubMed  Google Scholar 

  62. Ji L, Han P, Liu Y, et al. Canagliflozin in Asian patients with type 2 diabetes on metformin alone or metformin in combination with sulphonylurea. Diabetes Obes Metab. 2015;17(1):23–31.

    Article  CAS  PubMed  Google Scholar 

  63. Inagaki N, Harashima S, Maruyama N, et al. Efficacy and safety of canagliflozin in combination with insulin: a double-blind, randomized, placebo-controlled study in Japanese patients with type 2 diabetes mellitus. Cardiovasc Diabetol. 2016;15:89.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Gavin JR, Davies MJ, Davies M, et al. The efficacy and safety of canagliflozin across racial groups in patients with type 2 diabetes mellitus. Curr Med Res Opin. 2015;31(9):1693–702.

    Article  CAS  PubMed  Google Scholar 

  65. John M, Cerdas S, Violante R, et al. Efficacy and safety of canagliflozin in patients with type 2 diabetes mellitus living in hot climates. Int J Clin Pract. 2016;70(9):775–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Prasanna Kumar KM, Mohan V, Sethi B, et al. Efficacy and safety of canagliflozin in patients with type 2 diabetes mellitus from India. Indian J Endocrinol Metab. 2016;20(3):372–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Davidson JA, Aguilar R, Lavalle Gonzalez FJ, et al. Efficacy and safety of canagliflozin in type 2 diabetes patients of different ethnicity. Ethn Dis. 2016;26(2):221–8.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lavalle-Gonzalez FJ, Eliaschewitz FG, Cerdas S, et al. Efficacy and safety of canagliflozin in patients with type 2 diabetes mellitus from Latin America. Curr Med Res Opin. 2016;32(3):427–39.

    Article  CAS  PubMed  Google Scholar 

  69. Yamout H, Perkovic V, Davies M, et al. Efficacy and safety of canagliflozin in patients with type 2 diabetes and stage 3 nephropathy. Am J Nephrol. 2014;40(1):64–74.

    Article  CAS  PubMed  Google Scholar 

  70. Davies MJ, Merton KW, Vijapurkar U, et al. Canagliflozin improves risk factors of metabolic syndrome in patients with type 2 diabetes mellitus and metabolic syndrome. Diabetes Metab Syndr Obes. 2017;10:47–55.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Wilding JP, Blonde L, Leiter LA, et al. Efficacy and safety of canagliflozin by baseline HbA1c and known duration of type 2 diabetes mellitus. J Diabetes Complicat. 2015;29(3):438–44.

    Article  PubMed  Google Scholar 

  72. Blonde L, Woo V, Mathieu C, et al. Achievement of treatment goals with canagliflozin in patients with type 2 diabetes mellitus: a pooled analysis of randomized controlled trials. Curr Med Res Opin. 2015;31(11):1993–2000.

    Article  CAS  PubMed  Google Scholar 

  73. Bailey RA, Vijapurkar U, Meininger G, et al. Diabetes-related composite quality end point attainment: canagliflozin versus sitagliptin based on a pooled analysis of 2 clinical trials. Clin Ther. 2015;37(5):1045–54.

    Article  CAS  PubMed  Google Scholar 

  74. Leiter LA, Langslet G, Vijapurkar U, et al. Simultaneous reduction in both HbA1c and body weight with canagliflozin versus glimepiride in patients with type 2 diabetes on metformin. Diabetes Ther. 2016;7(2):269–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schernthaner G, Lavalle-Gonzalez FJ, Davidson JA, et al. Canagliflozin provides greater attainment of both HbA1c and body weight reduction versus sitagliptin in patients with type 2 diabetes. Postgrad Med. 2016;128(8):725–30.

    Article  PubMed  Google Scholar 

  76. Leiter LA, Forst T, Polidori D, et al. Effect of canagliflozin on liver function tests in patients with type 2 diabetes. Diabetes Metab. 2016;42(1):25–32.

    Article  CAS  PubMed  Google Scholar 

  77. Bailey RA, Schwab P, Xu Y, et al. Glycemic control outcomes after canagliflozin initiation: observations in a Medicare and commercial managed care population in clinical practice. Clin Ther. 2016;38(9):2046–57.e2.

  78. Chow W, Miyasato G, Kokkotos FK, et al. Real-world canagliflozin utilization: glycemic control among patients with type 2 diabetes mellitus—a multi-database synthesis. Clin Ther. 2016;38(9):2071–82.

    Article  CAS  PubMed  Google Scholar 

  79. Buysman EK, Anderson A, Bacchus S, et al. Retrospective study on the impact of adherence in achieving glycemic goals in type 2 diabetes mellitus patients receiving canagliflozin. Adv Ther. 2017;34(4):937–53.

    Article  CAS  PubMed  Google Scholar 

  80. Usiskin K, Kline I, Fung A, et al. Safety and tolerability of canagliflozin in patients with type 2 diabetes mellitus: pooled analysis of phase 3 study results. Postgrad Med. 2014;126(3):16–34.

    Article  PubMed  Google Scholar 

  81. Bundhun PK, Janoo G, Huang F. Adverse drug events observed in patients with type 2 diabetes mellitus treated with 100 mg versus 300 mg canagliflozin: a systematic review and meta-analysis of published randomized controlled trials. BMC Pharmacol Toxicol. 2017;18(1):19.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Qiu R, Balis D, Xie J, et al. Longer-term safety and tolerability of canagliflozin in patients with type 2 diabetes: a pooled analysis. Curr Med Res Opin. 2017;33(3):553–62.

    Article  CAS  PubMed  Google Scholar 

  83. Yang XP, Lai D, Zhong XY, et al. Efficacy and safety of canagliflozin in subjects with type 2 diabetes: systematic review and meta-analysis. Eur J Clin Pharmacol. 2014;70(10):1149–58.

    Article  CAS  PubMed  Google Scholar 

  84. Nyirjesy P, Sobel JD, Fung A, et al. Genital mycotic infections with canagliflozin, a sodium glucose co-transporter 2 inhibitor, in patients with type 2 diabetes mellitus: a pooled analysis of clinical studies. Curr Med Res Opin. 2014;30(6):1109–19.

    Article  CAS  PubMed  Google Scholar 

  85. Nicolle LE, Capuano G, Fung A, et al. Urinary tract infection in randomized phase III studies of canagliflozin, a sodium glucose co-transporter 2 inhibitor. Postgrad Med. 2014;126(1):7–17.

    Article  PubMed  Google Scholar 

  86. Fioretto P, Weir M, Gilbert R, et al. Effect of longer-term canagliflozin treatment on eGFR in patients with type 2 diabetes mellitus and various degrees of baseline renal function [abstract no. 747]. Diabetologia. 2015;58(Suppl 1):S358–9.

    Google Scholar 

  87. Desai M, Yavin Y, Balis D, et al. Renal safety of canagliflozin, a sodium glucose co-transporter 2 inhibitor, in patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2017;19(6):897–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Janssen Pharmaceuticals Inc. Important safety information. Interim safety analysis from an ongoing trial observed a higher incidence of lower limb amputations (primarily of the toe) in patients treated with Invokana® (canagliflozin). Reminder regarding the importance of foot care in patients with diabetes [media release]. 20 May 2016. https://www.janssenmd.com/sites/default/files/pdf/CAN_DHCP_Letter_2016-05-20.pdf.

  89. Watts NB, Bilezikian JP, Usiskin K, et al. Effects of canagliflozin on fracture risk in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2016;101(1):157–66.

    Article  CAS  PubMed  Google Scholar 

  90. Ruanpeng D, Ungprasert P, Sangtian J, et al. Sodium glucose co-transporter 2 (SGLT2) inhibitors and fracture risk in patients with type 2 diabetes mellitus: a meta-analysis. Diabetes Metab Res Rev. 2017. doi:10.1002/dmrr.2903.

    PubMed  Google Scholar 

  91. Erondu N, Desai M, Ways K, et al. Diabetic ketoacidosis and related events in the canagliflozin type 2 diabetes clinical program. Diabetes Care. 2015;38(9):1680–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rosenthal N, Meininger G, Ways K, et al. Canagliflozin: a sodium glucose co-transporter 2 inhibitor for the treatment of type 2 diabetes mellitus. Ann N Y Acad Sci. 2015;1358:28–43.

    Article  CAS  PubMed  Google Scholar 

  93. Cefalu WT, Riddle MC. SGLT2 inhibitors: the latest “new kids on the block”! Diabetes Care. 2015;38(3):352–4.

    Article  PubMed  PubMed Central  Google Scholar 

  94. American Heart Association. Cardiovascular disease & diabetes. 2017. http://www.heart.org. Accessed 8 Aug 2017.

  95. Van Gaal L, Scheen A. Weight management in type 2 diabetes: current and emerging approaches to treatment. Diabetes Care. 2015;38(6):1161–72.

    Article  PubMed  Google Scholar 

  96. Heerspink HJ, Perkins BA, Fitchett DH, et al. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation. 2016;134(10):752–72.

    Article  CAS  PubMed  Google Scholar 

  97. Majewski C, Bakris GL. Blood pressure reduction: an added benefit of sodium-glucose cotransporter 2 inhibitors in patients with type 2 diabetes. Diabetes Care. 2015;38(3):429–30.

    Article  PubMed  PubMed Central  Google Scholar 

  98. DeFronzo RA, Norton L, Abdul-Ghani M. Renal, metabolic and cardiovascular considerations of SGLT2 inhibition. Nat Rev Nephrol. 2017;13(1):11–26.

    Article  CAS  PubMed  Google Scholar 

  99. Owens DR, Monnier L, Hanefeld M. A review of glucagon-like peptide-1 receptor agonists and their effects on lowering postprandial plasma glucose and cardiovascular outcomes in the treatment of type 2 diabetes mellitus. Diabetes Obs Metab. 2017. doi:10.1111/dom.12998.

    Google Scholar 

  100. Kosiborod M, Cavender MA, Fu AZ, et al. Lower risk of heart failure and death in patients initiated on SGLT-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL study. Circulation. 2017;136(3):249–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Patorno E, Goldfine AB, Schneeweiss S, et al. Cardiovascular safety of canagliflozin vs. other antidiabetic agents in routine care [abstract no. 1497-P]. In: ADA 77th Scientific Session; 2017.

  102. Fadini GP, Avogaro A. SGLT2 inhibitors and amputations in the US FDA Adverse Event Reporting System. Lancet Diabetes Endocrinol. 2017. http://dx.doi.org/10.1016/S2213-8587(17)30257-7

    PubMed  Google Scholar 

  103. Erkens JA, Klungel OH, Stolk RP, et al. Antihypertensive drug therapy and the risk of lower extremity amputations in pharmacologically treated type 2 diabetes patients. Pharmacoepidemiol Drug Saf. 2004;13(3):139–46.

    Article  CAS  PubMed  Google Scholar 

  104. Whittington C, Schubert A, Neslusan C. An assessment of the relative efficacy of sodium glucose co-transporter 2 inhibitors as add-on to metformin in patients with type 2 diabetes mellitus [abstract no. PDB5]. Value Health. 2016;19:A665.

    Article  Google Scholar 

  105. Taieb V, Pacou M, Schroeder M, et al. Network meta-analysis (NMA) to assess relative efficacy measured as percentage of patients treated to HbA1c target with canagliflozin in patients with type 2 diabetes mellitus (T2DM) inadequately controlled on metformin and sulphonylurea (MET + SU) [abstract no. PDB5]. Value Health. 2015;18(7):A598.

    Google Scholar 

  106. Schroeder M, Taieb V, Belhadi D, et al. Bayesian network meta-analysis (NMA) to assess the relative efficacy of canagliflozin monotherapy over 26 weeks in patients with type 2 diabetes mellitus (T2DM) [abstract no. PDB22]. Value Health. 2015;18(3):A56.

    Article  Google Scholar 

  107. Van Sanden S, Diels J, Guillon P, et al. Bayesian network meta-analysis (NMA) to assess relative efficacy of canagliflozin (CANA) versus glucagon-like peptide-1 (GLP-1) agonists in dual and triple therapy in patients with type 2 diabetes mellitus (T2DM) [abstract no. PDB12]. Value Health. 2015;18(3):A54.

    Article  Google Scholar 

  108. Taieb V, Pacou M, Schroeder M, et al. Bayesian network meta-analysis (NMA) to assess the relative efficacy of canagliflozin in patients with type 2 diabetes mellitus (T2DM) inadequately controlled with insulin [abstract no. PDB7]. Value Health. 2015;18(7):A598.

    Google Scholar 

  109. Schroeder M, Johansen P, Willis M, et al. The cost-effectiveness of canagliflozin versus sulphonylurea in patients with type 2 diabetes with inadequate control on metformin monotherapy in the UK [abstract no. P573]. Diabet Med. 2015;32(Suppl 1):205.

    Google Scholar 

  110. Schroeder M, Johansen P, Willis M, et al. The cost-effectiveness of canagliflozin (CANA) versus dapagliflozin (DAPA) 10 mg and empagliflozin (EMPA) 25 mg in patients with type 2 diabetes mellitus (T2DM) as monotherapy in the United Kingdom [abstract no. PDB59]. Value Health. 2015;18(7):A607.

    Article  CAS  PubMed  Google Scholar 

  111. Nielsen AT, Pitcher A, Lovato E, et al. The cost-effectiveness evaluation of canagliflozin versus dapagliflozin in patients with type 2 diabetes mellitus inadequately controlled on metformin monotherapy in Spain [abstract no. PDB50]. Value Health. 2015;18(3):A61.

    Article  Google Scholar 

  112. Nielsen AT, Pitcher A, Lovato E, et al. The cost-effectiveness of canagliflozin (CANA) versus sitagliptin (SITA) as an add-on to metformin or metformin plus sulphonylurea in the treatment of type 2 diabetes mellitus in Spain [abstract no. PDB55]. Value Health. 2015;18(3):A62.

    Article  Google Scholar 

  113. Evans M, Schroeder M, Schubert A, et al. The cost of glycaemic target achievement with sodium glucose co-transporter 2 (SGLT 2) inhibitors in patients with type 2 diabetes mellitus (T2DM) inadequately controlled on metformin and sulphonylurea (MET + SU) in the UK [abstract no. PDB24]. Value Health. 2016;19:A669.

    Article  Google Scholar 

  114. Ravasio R, Pisarra P, Porzio R, et al. Economic evaluation of canagliflozin versus glimepiride and sitagliptin in dual therapy with metformin for the treatment of type 2 diabetes in Italy. Glob Reg Health Technol Assess. 2016;3(2):92–101.

    Article  Google Scholar 

Download references

Acknowledgements

During the peer review process, the manufacturer of canagliflozin was offered the opportunity to review this article. Changes resulting from comments received were made on the basis of scientific and editorial merit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma D. Deeks.

Ethics declarations

Funding

The preparation of this review was not supported by any external funding.

Conflict of interest

Emma Deeks is a salaried employee of Adis/Springer, is responsible for the article content and declares no relevant conflicts of interest. André J. Scheen declares no relevant conflicts of interest related to the content of this review. He has received lecturer/advisor/investigator fees from AstraZeneca, Boehringer Ingelheim, Eli Lilly, GlaxoSmithKline, Janssen, Merck Sharp & Dohme, Novartis, NovoNordisk and Sanofi, and has worked as a clinical investigator in the TECOS, LEADER, EMPA-REG OUTCOME and CANVAS-R trials.

Additional information about this Adis Drug Review can be found at http://www.medengine.com/Redeem/2D48F06076B1EACC.

Additional information

The manuscript was reviewed by: D. S. H. Bell, Southside Endocrinology, Mountain Brook, AL, USA; M. J. Budoff, Division of Cardiology, Los Angeles Biomedical Research Institute at Harbor-UCLA, Torrance, CA, USA; G. Dimitriadis, 2nd Department of Internal Medicine, Research Institute & Diabetes Center, Athens University Medical School, Attikon University Hospital, Athens, Greece; J. C. de Lima - Júnior, Internal Medicine Department, University of Campinas, Campinas, Brazil; J. G. Eriksson, Department of General Practice & Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland and Folkhälsan Research Center, Helsinki, Finland; M. C. Mancini, Sao Paulo University, Endocrinology & Metabology Service and Obesity & Metabolic Syndrome Unit, Hospital das Clinicas/Secretaria Endocrinologia, Sao Paulo, Brazil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deeks, E.D., Scheen, A.J. Canagliflozin: A Review in Type 2 Diabetes. Drugs 77, 1577–1592 (2017). https://doi.org/10.1007/s40265-017-0801-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-017-0801-6

Navigation