Skip to main content

Advertisement

Log in

Horizons in the Pharmacotherapy of Obesity

  • Metabolism (P Trayhurn, Section Editor)
  • Published:
Current Obesity Reports Aims and scope Submit manuscript

Abstract

Obesity drugs have had a chequered history. In the recent past, only the low efficacy, pancreatic lipase inhibitor orlistat was available worldwide and it was little used. The 5HT2C agonist, lorcaserin, and two combinations of old drugs have been approved in the United States but not in Europe. The diabetes drug liraglutide has been approved in both the US and Europe and seems likely to be most widely accepted. In view of regulators’ caution in approving obesity drugs, some (like beloranib) may initially be progressed for niche obesity markets. New drug targets have been identified in brown adipose tissue with the aim of not only activating thermogenesis but also increasing the capacity for thermogenesis in this tissue. Attempts are being made to match the efficacy of bariatric surgery by mimicking multiple gut hormones. Unapproved pharmacotherapies are tempting for some patients. Others remain optimistic about more conventional routes to pharmacotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Clapham JC, Arch JR. Targeting thermogenesis and related pathways in anti-obesity drug discovery. Pharmacol Ther. 2011;131:295–308.

    Article  CAS  PubMed  Google Scholar 

  2. Rodgers RJ, Tschop MH, Wilding JP. Anti-obesity drugs: past, present and future. Dis Model Mech. 2012;5:621–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Cheung BM, Cheung TT, Samaranayake NR. Safety of antiobesity drugs. Ther Adv Drug Saf. 2013;4:171–81.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Hampp C, Kang EM, Borders-Hemphill V. Use of prescription antiobesity drugs in the United States. Pharmacotherapy. 2013;33:1299–307. Shows the dominance of phentermine and the limited use of orlistat in the US between 2002 and 2011.

    Article  PubMed  Google Scholar 

  5. Rucker D, Padwal R, Li SK, et al. Long term pharmacotherapy for obesity and overweight: updated meta-analysis. BMJ. 2007;335:1194–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Yanovski SZ, Yanovski JA. Long-term drug treatment for obesity: a systematic and clinical review. JAMA. 2014;311:74–86. Overview of drug efficacy.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Dombrowski SU, Knittle K, Avenell A, et al. Long term maintenance of weight loss with non-surgical interventions in obese adults: systematic review and meta-analyses of randomised controlled trials. BMJ. 2014;348:g2646.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Douglas IJ, Bhaskaran K, Batterham RL, et al. The effectiveness of pharmaceutical interventions for obesity: weight loss with orlistat and sibutramine in a United kingdom population-based cohort. Br J Clin Pharmacol. 2014;79:1020–7. Efficacy may be lower in clinical practice than in clinical trials.

  9. Top 100 diet pills Cametor review. Available at http://top100dietpills.com/cametor-review/. Accessed 14 Apr 2015.

  10. Kopelman P, Bryson A, Hickling R, et al. Cetilistat (ATL-962), a novel lipase inhibitor: a 12-week randomized, placebo-controlled study of weight reduction in obese patients. Int J Obes. 2007;31:494–9.

    Article  CAS  Google Scholar 

  11. Kopelman P, Groot Gde H, Rissanen A, et al. Weight loss, HbA1c reduction, and tolerability of cetilistat in a randomized, placebo-controlled phase 2 trial in obese diabetics: comparison with orlistat (Xenical). Obesity (Silver Spring). 2010;18:108–15.

    Article  CAS  Google Scholar 

  12. Wolfe SM. When EMA and FDA decisions conflict: differences in patients or in regulation? BMJ. 2013;347:f5140.

    Article  PubMed  Google Scholar 

  13. Woloshin S, Schwartz LM. The new weight-loss drugs, lorcaserin and phentermine-topiramate: slim pickings? JAMA Intern Med. 2014;174:615–9.

    Article  PubMed  Google Scholar 

  14. Pucci A, Finer N. New medications for treatment of obesity: metabolic and cardiovascular effects. Can J Cardiol. 2015;31:142–52. Authoritative. Includes analysis of the differing stances of the FDA and EMA.

    Article  PubMed  Google Scholar 

  15. Aronne L, Shanahan W, Fain R, et al. Safety and efficacy of lorcaserin: a combined analysis of the BLOOM and BLOSSOM trials. Postgrad Med. 2014;126:7–18.

    Article  PubMed  Google Scholar 

  16. Vivus Investor relations. Financial information. Available at http://ir.vivus.com/financials.cfm. Accessed 14 Apr 2015.

  17. Ogden CL, Carroll MD, Kit BK, et al. Prevalence of obesity among adults: United States, 2011–2012. NCHS Data Brief: 2013; 1–8.

  18. Neoh SL, Sumithran P, Haywood CJ, et al. Combination phentermine and topiramate for weight maintenance: the first Australian experience. Med J Aust. 2014;201:224–6.

    Article  PubMed  Google Scholar 

  19. FiercePharma: arena narrows loss as Belviq sales pick up. Available at http://www.fiercepharma.com/story/arena-narrows-loss-belviq-sales-pick/2014-11-03. Accessed 14 Apr 2015.

  20. The Wall Street Journal: consumer groups urge Europe not to approve the orexigen diet pill. Available at http://blogs.wsj.com/pharmalot/2015/01/28/consumer-groups-urge-europe-not-to-approve-the-orexigen-diet-pill/. Accessed 14 Apr 2015.

  21. Caixas A, Albert L, Capel I, et al. Naltrexone sustained-release/bupropion sustained-release for the management of obesity: review of the data to date. Drug Des Devel Ther. 2014;8:1419–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Forbes: top FDA official says Orexigen study result “unreliable,” “misleading”. Available at http://www.forbes.com/sites/matthewherper/2015/03/05/top-fda-official-says-orexigen-data-unreliable-likely-false/?utm_campaign=yahootix&partner=yahootix. Accessed 14 Apr 2015.

  23. FiercePharma: surprise: obesity med contrave might help CV outcomes. Too bad Orexigen blabbed it. Available at http://www.fiercepharmamarketing.com/story/surprise-obesity-med-contrave-might-help-cv-outcomes-too-bad-orexigen-blabb/2015-03-04. Accessed 14 Apr 2015.

  24. Verpeut JL, Bello NT. Drug safety evaluation of naltrexone/bupropion for the treatment of obesity. Expert Opin Drug Saf. 2014;13:831–41.

    CAS  PubMed  Google Scholar 

  25. Ng SY, Wilding JP. Liraglutide in the treatment of obesity. Expert Opin Biol Ther. 2014;14:1215–24.

    Article  CAS  PubMed  Google Scholar 

  26. Astrup A, Rossner S, Van Gaal L, et al. Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study. Lancet. 2009;374:1606–16.

    Article  CAS  PubMed  Google Scholar 

  27. Wadden TA, Hollander P, Klein S, et al. Weight maintenance and additional weight loss with liraglutide after low-calorie-diet-induced weight loss: the SCALE maintenance randomized study. Int J Obes. 2013;37:1443–51.

    Article  CAS  Google Scholar 

  28. Beiroa D, Imbernon M, Gallego R, et al. GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes. 2014;63:3346–58.

    Article  CAS  PubMed  Google Scholar 

  29. Trujillo JM, Nuffer W, Ellis SL. GLP-1 receptor agonists: a review of head-to-head clinical studies. Ther Adv Endocrinol Metab. 2015;6:19–28.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Blevins T, Pullman J, Malloy J, et al. DURATION-5: exenatide once weekly resulted in greater improvements in glycemic control compared with exenatide twice daily in patients with type 2 diabetes. J Clin Endocrinol Metab. 2011;96:1301–10.

    Article  CAS  PubMed  Google Scholar 

  31. Garber A, Henry RR, Ratner R, et al. Liraglutide, a once-daily human glucagon-like peptide 1 analogue, provides sustained improvements in glycaemic control and weight for 2 years as monotherapy compared with glimepiride in patients with type 2 diabetes. Diabetes Obes Metab. 2011;13:348–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. European Medicines Agency: European Medicines Agency launches adaptive licensing pilot project. Available at http://www.ema.europa.eu/docs/en_GB/document_library/Press_release/2014/03/WC500163410.pdf. Accessed 14 Apr 2015.

  33. Joharapurkar AA, Dhanesha NA, Jain MR. Inhibition of the methionine aminopeptidase 2 enzyme for the treatment of obesity. Diabetes Metab Syndr Obes. 2014;7:73–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Zafgen: Beloranib. Available at http://www.zafgen.com/zafgen/our-approach/beloranib Accessed 15 Apr 2015.

  35. Kim DD, Krishnarajah J, Lillioja S, et al. Efficacy and safety of beloranib for weight loss in obese adults: a randomized controlled trial. Diabetes Obes Metab. 2015.

  36. Golay A. Metformin and body weight. Int J Obes. 2008;32:61–72.

    Article  CAS  Google Scholar 

  37. Chilton M, Dunkley A, Carter P, et al. The effect of antiobesity drugs on waist circumference: a mixed treatment comparison. Diabetes Obes Metab. 2014;16:237–47.

    Article  CAS  PubMed  Google Scholar 

  38. McDonagh MS, Selph S, Ozpinar A, et al. Systematic review of the benefits and risks of metformin in treating obesity in children aged 18 years and younger. JAMA Pediatr. 2014;168:178–84. Use of an old and relatively safe drug in children.

    Article  PubMed  Google Scholar 

  39. Linneke JL, Jorgensen GK, Csillag C. Metformin for weight loss and control in patients with mood disorder. J Clin Psychiatry. 2014;75:e1140–1. Metformin is surprisingly effective in controlling body weight in some patients.

    Article  PubMed  Google Scholar 

  40. Jarskog LF, Hamer RM, Catellier DJ, et al. Metformin for weight loss and metabolic control in overweight outpatients with schizophrenia and schizoaffective disorder. Am J Psychiatr. 2013;170:1032–40.

    Article  PubMed  Google Scholar 

  41. Praharaj SK, Jana AK, Goyal N, et al. Metformin for olanzapine-induced weight gain: a systematic review and meta-analysis. Br J Clin Pharmacol. 2011;71:377–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Wang M, Tong JH, Zhu G, et al. Metformin for treatment of antipsychotic-induced weight gain: a randomized, placebo-controlled study. Schizophr Res. 2012;138:54–7.

    Article  PubMed  Google Scholar 

  43. Hoffmann VP, Case M, Jacobson JG. Assessment of treatment algorithms including amantadine, metformin, and zonisamide for the prevention of weight gain with olanzapine: a randomized controlled open-label study. J Clin Psychiatry. 2012;73:216–23.

    Article  CAS  PubMed  Google Scholar 

  44. Gross C, Blasey CM, Roe RL, et al. Mifepristone treatment of olanzapine-induced weight gain in healthy men. Adv Ther. 2009;26:959–69.

    Article  CAS  PubMed  Google Scholar 

  45. Poyurovsky M, Fuchs C, Pashinian A, et al. Reducing antipsychotic-induced weight gain in schizophrenia: a double-blind placebo-controlled study of reboxetine-betahistine combination. Psychopharmacology (Berlin). 2013;226:615–22.

    Article  CAS  Google Scholar 

  46. Thomas JJ, Koh KA, Eddy KT, et al. Do DSM-5 eating disorder criteria overpathologize normative eating patterns among individuals with obesity? J Obes. 2014;2014:320803.

    Article  PubMed Central  PubMed  Google Scholar 

  47. FDA News Release: FDA expands uses of Vyvanse to treat binge-eating disorder. Available at http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm432543.htm. Accessed 15 Apr 2015.

  48. McElroy SL, Hudson JI, Mitchell JE, et al. Efficacy and safety of lisdexamfetamine for treatment of adults with moderate to severe binge-eating disorder: a randomized clinical trial. JAMA Psychiatry. 2015;72:235–46.

    Article  PubMed  Google Scholar 

  49. Citrome L. Lisdexamfetamine for binge eating disorder in adults: a systematic review of the efficacy and safety profile for this newly approved indication - what is the number needed to treat, number needed to harm and likelihood to be helped or harmed? Int J Clin Pract. 2015;69:410–21. Lisdexamfetamine has been approved for the treatment of binge eating disorder in the US.

    Article  CAS  PubMed  Google Scholar 

  50. Reas DL, Grilo CM. Current and emerging drug treatments for binge eating disorder. Expert Opin Emerg Drugs. 2014;19:99–142.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Grilo CM, Masheb RM, White MA, et al. Treatment of binge eating disorder in racially and ethnically diverse obese patients in primary care: randomized placebo-controlled clinical trial of self-help and medication. Behav Res Ther. 2014;58:1–9.

    Article  PubMed  Google Scholar 

  52. Bocarsly ME, Hoebel BG, Paredes D, et al. GS 455534 selectively suppresses binge eating of palatable food and attenuates dopamine release in the accumbens of sugar-bingeing rats. Behav Pharmacol. 2014;25:147–57.

    Article  CAS  PubMed  Google Scholar 

  53. Piccoli L, Micioni Di Bonaventura MV, Cifani C, et al. Role of orexin-1 receptor mechanisms on compulsive food consumption in a model of binge eating in female rats. Neuropsychopharmacology. 2012;37:1999–2011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Jackson CW, Cates M, Lorenz R. Pharmacotherapy of eating disorders. Nutr Clin Pract. 2010;25:143–59.

    Article  PubMed  Google Scholar 

  55. Serretti A, Mandelli L. Antidepressants and body weight: a comprehensive review and meta-analysis. J Clin Psychiatry. 2010;71:1259–72.

    Article  PubMed  Google Scholar 

  56. Chang SH, Stoll CR, Song J, et al. The effectiveness and risks of bariatric surgery: an updated systematic review and meta-analysis, 2003-2012. JAMA Surg. 2014;149:275–87.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Cooper TC, Simmons EB, Webb K, et al. Trends in weight regain following Roux-en-Y gastric bypass (RYGB) bariatric surgery. Obes Surg. 2015;25:1474–81.

    Article  PubMed  Google Scholar 

  58. Guerdjikova AI, Kotwal R, McElroy SL. Response of recurrent binge eating and weight gain to topiramate in patients with binge eating disorder after bariatric surgery. Obes Surg. 2005;15:273–7.

    Article  PubMed  Google Scholar 

  59. Jackson VM, Price DA, Carpino PA. Investigational drugs in phase II clinical trials for the treatment of obesity: implications for future development of novel therapies. Expert Opin Investig Drugs. 2014;23:1055–66.

    Article  CAS  PubMed  Google Scholar 

  60. Bays HE, Weinstein R, Law G, et al. Canagliflozin: effects in overweight and obese subjects without diabetes mellitus. Obesity (Silver Spring). 2014;22:1042–9.

    Article  CAS  Google Scholar 

  61. Virtanen KA, Lidell ME, Orava J, et al. Functional brown adipose tissue in healthy adults. N Engl J Med. 2009;360:1518–25.

    Article  CAS  PubMed  Google Scholar 

  62. Trayhurn P, Arch JRS. New physiological aspects of brown adipose tissue. Curr Obes Rep. 2014;3:414–21.

    Article  Google Scholar 

  63. Rosenwald M, Wolfrum C. The origin and definition of brite versus white and classical brown adipocytes. Adipocytes. 2014;3:4–9.

    Article  Google Scholar 

  64. Poher AL, Altirriba J, Veyrat-Durebex C, et al. Brown adipose tissue activity as a target for the treatment of obesity/insulin resistance. Front Physiol. 2015;6:4.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Gaich G, Chien JY, Fu H, et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab. 2013;18:333–40.

    Article  CAS  PubMed  Google Scholar 

  66. Lee P, Linderman JD, Smith S, et al. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab. 2014;19:302–9.

    Article  CAS  PubMed  Google Scholar 

  67. Albrecht E, Norheim F, Thiede B, et al. Irisin—a myth rather than an exercise-inducible myokine. Sci Rep. 2015;5:8889. An important warning about studies on irisin.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Emilsson V, Summers RJ, Hamilton S, et al. The effects of the beta3-adrenoceptor agonist BRL 35135 on UCP isoform mRNA expression. Biochem Biophys Res Commun. 1998;252:450–4.

    Article  CAS  PubMed  Google Scholar 

  69. Nagase I, Sasaki N, Tsukazaki K, et al. Hyperplasia of brown adipose tissue after chronic stimulation of beta 3-adrenergic receptor in rats. Jpn J Vet Res. 1994;42:137–45.

    CAS  PubMed  Google Scholar 

  70. Champigny O, Ricquier D, Blondel O, et al. Beta 3-adrenergic receptor stimulation restores message and expression of brown-fat mitochondrial uncoupling protein in adult dogs. Proc Natl Acad Sci U S A. 1991;88:10774–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Fisher MH, Amend AM, Bach TJ, et al. A selective human beta3 adrenergic receptor agonist increases metabolic rate in rhesus monkeys. J Clin Invest. 1998;101:2387–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Wang Q, Zhang M, Ning G, et al. Brown adipose tissue in humans is activated by elevated plasma catecholamines levels and is inversely related to central obesity. PLoS One. 2011;6:e21006.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Hadi M, Chen CC, Whatley M, et al. Brown fat imaging with (18)F-6-fluorodopamine PET/CT, (18)F-FDG PET/CT, and (123)I-MIBG SPECT: a study of patients being evaluated for pheochromocytoma. J Nucl Med. 2007;48:1077–83.

    Article  CAS  PubMed  Google Scholar 

  74. Cypess AM, Weiner LS, Roberts-Toler C, et al. Activation of human brown adipose tissue by a beta3-adrenergic receptor agonist. Cell Metab. 2015;21:33–8. Suggests that β 3 -adrenoceptor agonists might yet have potential in the treatment of obesity.

  75. Hall KD, Sacks G, Chandramohan D, et al. Quantification of the effect of energy imbalance on bodyweight. Lancet. 2011;378:826–37.

    Article  PubMed  Google Scholar 

  76. Svane MS, Madsbad S. Bariatric surgery—effects on obesity and related co-morbidities. Curr Diabetes Rev. 2014;10:208–14.

    Article  CAS  PubMed  Google Scholar 

  77. Miras AD, le Roux CW. Can medical therapy mimic the clinical efficacy or physiological effects of bariatric surgery? Int J Obes. 2014;38:325–33.

    Article  CAS  Google Scholar 

  78. Troke RC, Tan TM, Bloom SR. The future role of gut hormones in the treatment of obesity. Ther Adv Chronic Dis. 2014;5:4–14. Authoritative overview of opportunities.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Finan B, Yang B, Ottaway N, et al. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat Med. 2015;21:27–36.

    Article  CAS  PubMed  Google Scholar 

  80. Ryan KK, Tremaroli V, Clemmensen C, et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature. 2014;509:183–8. Evidence from an animal model that the effect of sleeve gastrectomy on body weight is due to stimulation of the bile acid receptor FXR.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Ma Y, Huang Y, Yan L, et al. Synthetic FXR agonist GW4064 prevents diet-induced hepatic steatosis and insulin resistance. Pharm Res. 2013;30:1447–57.

    Article  PubMed Central  PubMed  Google Scholar 

  82. Watanabe M, Horai Y, Houten SM, et al. Lowering bile acid pool size with a synthetic farnesoid X receptor (FXR) agonist induces obesity and diabetes through reduced energy expenditure. J Biol Chem. 2011;286:26913–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Zhang Y, Lee FY, Barrera G, et al. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci U S A. 2006;103:1006–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Fang S, Suh JM, Reilly SM, et al. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat Med. 2015;21:159–65. Anti-obesity effect in mice of a gut-restricted FXR agonist.

    Article  CAS  PubMed  Google Scholar 

  85. O'Hara WJ, Allen C, Shephard RJ, et al. Fat loss in the cold—a controlled study. J Appl Physiol Respir Environ Exerc Physiol. 1979;46:872–7.

    PubMed  Google Scholar 

  86. Lichtenbelt W, Kingma B, van der Lans A, et al. Cold exposure—an approach to increasing energy expenditure in humans. Trends Endocrinol Metab. 2014;25:165–7.

    Article  CAS  PubMed  Google Scholar 

  87. Yoneshiro T, Aita S, Matsushita M, et al. Recruited brown adipose tissue as an antiobesity agent in humans. J Clin Invest. 2013;123:3404–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Blondin DP, Labbe SM, Phoenix S, et al. Contributions of white and brown adipose tissues and skeletal muscles to acute cold-induced metabolic responses in healthy men. J Physiol. 2015;593:701–14.

    Article  CAS  PubMed  Google Scholar 

  89. Snitker S, Fujishima Y, Shen H, et al. Effects of novel capsinoid treatment on fatness and energy metabolism in humans: possible pharmacogenetic implications. Am J Clin Nutr. 2009;89:45–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Martinez de Morentin PB, Whittle AJ, Ferno J, et al. Nicotine induces negative energy balance through hypothalamic AMP-activated protein kinase. Diabetes. 2012;61:807–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Chiolero A, Faeh D, Paccaud F, et al. Consequences of smoking for body weight, body fat distribution, and insulin resistance. Am J Clin Nutr. 2008;87:801–9.

    CAS  PubMed  Google Scholar 

  92. Allen AM, Kleppinger A, Lando H, et al. Effect of nicotine patch on energy intake and weight gain in postmenopausal women during smoking cessation. Eat Behav. 2013;14:420–3.

    Article  PubMed  Google Scholar 

  93. Middlekauff HR, Park J, Moheimani RS. Adverse effects of cigarette and noncigarette smoke exposure on the autonomic nervous system: mechanisms and implications for cardiovascular risk. J Am Coll Cardiol. 2014;64:1740–50.

    Article  CAS  PubMed  Google Scholar 

  94. Bhaskaran K, Hajat S, Haines A, et al. Effects of ambient temperature on the incidence of myocardial infarction. Heart. 2009;95:1760–9.

    Article  CAS  PubMed  Google Scholar 

  95. Haider A, Yassin A, Doros G, et al. Effects of long-term testosterone therapy on patients with “diabesity”: results of observational studies of pooled analyses in obese hypogonadal men with type 2 diabetes. Int J Endocrinol. 2014;2014:683515.

    PubMed Central  PubMed  Google Scholar 

  96. Haider A, Saad F, Doros G, et al. Hypogonadal obese men with and without diabetes mellitus type 2 lose weight and show improvement in cardiovascular risk factors when treated with testosterone: an observational study. Obes Res Clin Pract. 2014;8:e339–49. Prolonged effect of testosterone on body weight.

    Article  PubMed  Google Scholar 

  97. Traish AM. Testosterone and weight loss: the evidence. Curr Opin Endocrinol Diabetes Obes. 2014;21:313–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Grossmann M, Hoermann R, Wittert G, et al. Effects of testosterone treatment on glucose metabolism and symptoms in men with type 2 diabetes and the metabolic syndrome: a systematic review and meta-analysis of randomized controlled clinical trials. Clin Endocrinol. 2014;83:344–51.

    Article  Google Scholar 

  99. Miner M, Barkin J, Rosenberg MT. Testosterone deficiency: myth, facts, and controversy. Can J Urol. 2014;21 Suppl 2:39–54.

    PubMed  Google Scholar 

  100. Cheung KK, Luk AO, So WY, et al. Testosterone level in men with type 2 diabetes mellitus and related metabolic effects: a review of current evidence. J Diabetes Investig. 2015;6:112–23. The testosterone debate.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Professor Mike Cawthorne, who died on 21 July 2015, commented on the manuscript. The author worked with and was inspired by Mike Cawthorne for much of the past 40 years.

Compliance with Ethics Guidelines

Conflict of Interest

Jonathan RS Arch declares that he has no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan R. S. Arch.

Additional information

This article is part of the Topical Collection on Metabolism

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arch, J.R.S. Horizons in the Pharmacotherapy of Obesity. Curr Obes Rep 4, 451–459 (2015). https://doi.org/10.1007/s13679-015-0177-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13679-015-0177-4

Keywords

Navigation