Skip to main content
Log in

Interrelations among the adipocytokines leptin and adiponectin, oxidative stress and aseptic inflammation markers in pre- and early-pubertal normal-weight and obese boys

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Presumed interrelationships among deleterious aspects of adipose tissue metabolism, inflammation, and cellular oxidative stress could be influenced by pubertal hormonal changes. They were investigated in pre- and early pubertal normal-weight and obese boys before and after an exercise bout employed as an energy demanding stimulator.

Methods

Cross-sectional study. Seventy-six healthy pre- (mean ± SD, 10.6 ± 0.2 years old, 28 normal-weight, and 11 obese) and early-(11.4 ± 0.2 years old, 25 normal-weight, and 12 obese) pubertal boys, were blood-sampled before and after a bout of exercise at 70% VO2 max. Leptin, adiponectin, markers of inflammation (high-sensitivity C-reactive protein, high sensitivity IL-6), pro- (thiobarbitouric acid reactive substances, protein carbonyls) and anti- (glutathione, oxidized glutathione, glutathione peroxidase, catalase, total antioxidant capacity) oxidation were measured.

Results

Baseline and post-exercise adiponectin was greater and leptin and high-sensitivity C-reactive protein were lower in normal-weight than in obese pre- and early pubertal boys, while high sensitivity IL-6 was greater in obese than in normal-weight pre-pubertal boys. In pre-pubertal obese boys: at baseline, high-sensitivity C-reactive protein correlated negatively with catalase; high sensitivity IL-6 correlated positively with protein carbonyls; Δ (difference during exercise) adiponectin correlated positively with Δcatalase. In all boys: at baseline, high sensitivity IL-6 correlated positively with leptin and was the best negative and the second best positive predictor for post-exercise glutathione/oxidized glutathione and protein carbonyls, respectively; leptin was the best negative predictor for post-exercise glutathione; waist to height ratio was the best positive predictor for post-exercise thiobarbitouric acid reactive substances; body mass index z-score and adiponectin were, respectively, the best positive predictor for post-exercise protein carbonyls and catalase.

Conclusions

In all subjects, leptin and adiponectin predict negatively and positively anti-oxidation, respectively, while high sensitivity IL-6 predicts positively and negatively pro- and anti-oxidation, respectively. High-sensitivity C-reactive protein is increased and negatively associated with anti-oxidation in pre-pubertal obese boys, suggesting that childhood obesity is associated with aseptic inflammation and oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. E. Erhardt, R. Foraita, I. Pigeot, G. Barba, T. Veidebaum, M. Tornaritis, N. Michels, G. Eiben, W. Ahrens, L.A. Moreno, E. Kovacs, D. Molnar, Reference values for leptin and adiponectin in children below the age of 10 based on the IDEFICS cohort. Int. J. Obes. (Lond). 38(Suppl 2), S32–38 (2014). doi:10.1038/ijo.2014.133ijo2014133

    Article  CAS  Google Scholar 

  2. S.S. Martin, A. Qasim, M.P. Reilly, Leptin resistance: a possible interface of inflammation and metabolism in obesity-related cardiovascular disease. J. Am. Coll. Cardiol. 52(15), 1201–1210 (2008). doi:10.1016/j.jacc.2008.05.060 S0735-1097(08)02435-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. E. Fuentes, F. Fuentes, G. Vilahur, L. Badimon, I. Palomo, Mechanisms of chronic state of inflammation as mediators that link obese adipose tissue and metabolic syndrome. Mediat. Inflamm. 136584 (2013). doi:10.1155/2013/136584

    Article  Google Scholar 

  4. A. Korner, J. Kratzsch, R. Gausche, M. Schaab, S. Erbs, W. Kiess, New predictors of the metabolic syndrome in children-role of adipocytokines. Pediatr. Res. 61(6), 640–645 (2007). doi:10.1203/01.pdr.0000262638.48304.ef

    Article  PubMed  Google Scholar 

  5. L. Marseglia, S. Manti, G. D’Angelo, A. Nicotera, E. Parisi, G. Di Rosa, E. Gitto, T. Arrigo, Oxidative stress in obesity: a critical component in human diseases. Int. J. Mol. Sci. 16(1), 378–400 (2015). doi:10.3390/ijms16010378ijms16010378

    Article  Google Scholar 

  6. S. Furukawa, T. Fujita, M. Shimabukuro, M. Iwaki, Y. Yamada, Y. Nakajima, O. Nakayama, M. Makishima, M. Matsuda, I. Shimomura, Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest. 114(12), 1752–1761 (2004). doi:10.1172/JCI21625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. A.F. Soares, M. Guichardant, D. Cozzone, N. Bernoud-Hubac, N. Bouzaidi-Tiali, M. Lagarde, A. Geloen, Effects of oxidative stress on adiponectin secretion and lactate production in 3T3-L1 adipocytes. Free Radic. Biol. Med. 38(7), 882–889 (2005). doi:10.1016/j.freeradbiomed.2004.12.010

    Article  CAS  PubMed  Google Scholar 

  8. P.W. Franks, R.L. Hanson, W.C. Knowler, M.L. Sievers, P.H. Bennett, H.C. Looker, Childhood obesity, other cardiovascular risk factors, and premature death. N. Engl. J. Med. 362(6), 485–493 (2010). doi:10.1056/NEJMoa0904130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. N. Mauras, C. Delgiorno, C. Kollman, K. Bird, M. Morgan, S. Sweeten, P. Balagopal, L. Damaso, Obesity without established comorbidities of the metabolic syndrome is associated with a proinflammatory and prothrombotic state, even before the onset of puberty in children. J. Clin. Endocrinol. Metab. 95(3), 1060–1068 (2010). doi:10.1210/jc.2009-1887jc.2009-1887

    Article  CAS  PubMed  Google Scholar 

  10. A. Nappo, L. Iacoviello, A. Fraterman, E.M. Gonzalez-Gil, C. Hadjigeorgiou, S. Marild, D. Molnar, L.A. Moreno, J. Peplies, I. Sioen, T. Veidebaum, A. Siani, P. Russo, High-sensitivity C-reactive protein is a predictive factor of adiposity in children: results of the identification and prevention of dietary- and lifestyle-induced health effects in children and infants (IDEFICS) study. J. Am. Heart. Assoc. 2(3), e000101 (2013). doi:10.1161/JAHA.113.0001012/3/e000101

    Article  PubMed  PubMed Central  Google Scholar 

  11. M.L. Hribal, T.V. Fiorentino, G. Sesti, Role of C reactive protein (CRP) in leptin resistance. Curr. Pharm. Des. 20(4), 609–615 (2014). doi:CPD-EPUB-20130514-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. N. Ouchi, S. Kihara, T. Funahashi, T. Nakamura, M. Nishida, M. Kumada, Y. Okamoto, K. Ohashi, H. Nagaretani, K. Kishida, H. Nishizawa, N. Maeda, H. Kobayashi, H. Hiraoka, Y. Matsuzawa, Reciprocal association of C-reactive protein with adiponectin in blood stream and adipose tissue. Circulation. 107(5), 671–674 (2003)

    Article  CAS  PubMed  Google Scholar 

  13. P. Mandal, B.T. Pratt, M. Barnes, M.R. McMullen, L.E. Nagy, Molecular mechanism for adiponectin-dependent M2 macrophage polarization: link between the metabolic and innate immune activity of full-length adiponectin. J. Biol. Chem. 286(15), 13460–13469 (2011). doi:10.1074/jbc.M110.204644M110.204644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. P.J. Simons, P.S. van den Pangaart, J.M. Aerts, L. Boon, Pro-inflammatory delipidizing cytokines reduce adiponectin secretion from human adipocytes without affecting adiponectin oligomerization. J. Endocrinol. 192(2), 289–299 (2007). doi:10.1677/JOE-06-0047

    Article  CAS  PubMed  Google Scholar 

  15. L.E. Hand, P. Usan, G.J. Cooper, L.Y. Xu, B. Ammori, P.S. Cunningham, R. Aghamohammadzadeh, H. Soran, A. Greenstein, A.S. Loudon, D.A. Bechtold, D.W. Ray, Adiponectin induces A20 expression in adipose tissue to confer metabolic benefit. Diabetes. 64(1), 128–136 (2015). doi:10.2337/db13-1835

    Article  CAS  PubMed  Google Scholar 

  16. H. Nascimento, E. Costa, S. Rocha, C. Lucena, P. Rocha-Pereira, C. Rego, H.F. Mansilha, A. Quintanilha, L. Aires, J. Mota, A. Santos-Silva, L. Belo, Adiponectin and markers of metabolic syndrome in obese children and adolescents: impact of 8-mo regular physical exercise program. Pediatr. Res. 76(2), 159–165 (2014). doi:10.1038/pr.2014.73

    Article  CAS  PubMed  Google Scholar 

  17. K. Fisher-Wellman, R.J. Bloomer, Acute exercise and oxidative stress: a 30 year history. Dyn. Med. 8, 1 (2009). doi:10.1186/1476-5918-8-1

    Article  PubMed  PubMed Central  Google Scholar 

  18. G. Paltoglou, I.G. Fatouros, G. Valsamakis, M. Schoina, A. Avloniti, A. Chatzinikolaou, A. Kambas, D. Draganidis, A. Mantzou, M. Papagianni, C. Kanaka-Gantenbein, G.P. Chrousos, G. Mastorakos, Antioxidation improves in puberty in normal weight and obese boys, in positive association with exercise-stimulated growth hormone secretion. Pediatr. Res. 78(2), 158–164 (2015). doi:10.1038/pr.2015.85

    Article  PubMed  Google Scholar 

  19. R.J. Alleman, L.A. Katunga, M.A. Nelson, D.A. Brown, E.J. Anderson, The “Goldilocks Zone” from a redox perspective-adaptive vs. deleterious responses to oxidative stress in striated muscle. Front Physiol. 5, 358 (2014). doi:10.3389/fphys.2014.00358

    Article  PubMed  PubMed Central  Google Scholar 

  20. C.M. Burt Solorzano, C.R. McCartney, Obesity and the pubertal transition in girls and boys. Reproduction 140(3), 399–410 (2010). doi:10.1530/REP-10-0119

    Article  PubMed  PubMed Central  Google Scholar 

  21. J.D. Veldhuis, S.M. Pincus, R. Mitamura, K. Yano, N. Suzuki, Y. Ito, Y. Makita, A. Okuno, Developmentally delimited emergence of more orderly luteinizing hormone and testosterone secretion during late prepuberty in boys. J. Clin. Endocrinol. Metab. 86(1), 80–89 (2001)

    CAS  PubMed  Google Scholar 

  22. A. Luger, P.A. Deuster, S.B. Kyle, W.T. Gallucci, L.C. Montgomery, P.W. Gold, D.L. Loriaux, G.P. Chrousos, Acute hypothalamic-pituitary-adrenal responses to the stress of treadmill exercise. Physiologic adaptations to physical training. N. Engl. J. Med. 316(21), 1309–1315 (1987). doi:10.1056/NEJM198705213162105

    Article  CAS  PubMed  Google Scholar 

  23. G. Mastorakos, M. Pavlatou, Exercise as a stress model and the interplay between the hypothalamus-pituitary-adrenal and the hypothalamus-pituitary-thyroid axes. Horm. Metab. Res. 37(9), 577–584 (2005). doi:10.1055/s-2005-870426

    Article  CAS  PubMed  Google Scholar 

  24. G. Mastorakos, M. Pavlatou, E. Diamanti-Kandarakis, G.P. Chrousos, Exercise and the stress system. Hormones (Athens) 4(2), 73–89 (2005)

    Google Scholar 

  25. T.J. Cole, M.C. Bellizzi, K.M. Flegal, W.H. Dietz, Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 320(7244), 1240–1243 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. D. Chiotis, X. Krikos, G. Tsiftis, M. Hatzisymeon, M. Maniati-Christidi, A. Dacou-Voutetaki, Body mass index and prevalence of obesity in subjects of Hellenic origin aged 0–18 years living in the Athens area. Ann. Clin. Pediatr. Unive Athen. 51, 139–154 (2004)

    Google Scholar 

  27. K. Albertsson-Wikland, S. Rosberg, B. Lannering, L. Dunkel, G. Selstam, E. Norjavaara, Twenty-four-hour profiles of luteinizing hormone, follicle-stimulating hormone, testosterone, and estradiol levels: a semilongitudinal study throughout puberty in healthy boys. J. Clin. Endocrinol. Metab. 82(2), 541–549 (1997). doi:10.1210/jcem.82.2.3778

    CAS  PubMed  Google Scholar 

  28. A.S. Kelly, J. Steinberger, T.P. Olson, D.R. Dengel, In the absence of weight loss, exercise training does not improve adipokines or oxidative stress in overweight children. Metabolism 56(7), 1005–1009 (2007). doi:10.1016/j.metabol.2007.03.009

    Article  CAS  PubMed  Google Scholar 

  29. K. Margonis, I.G. Fatouros, A.Z. Jamurtas, M.G. Nikolaidis, I. Douroudos, A. Chatzinikolaou, A. Mitrakou, G. Mastorakos, I. Papassotiriou, K. Taxildaris, D. Kouretas, Oxidative stress biomarkers responses to physical overtraining: implications for diagnosis. Free Radic. Biol. Med. 43(6), 901–910 (2007). doi:10.1016/j.freeradbiomed.2007.05.022

    Article  CAS  PubMed  Google Scholar 

  30. E.I. Germanou, A. Chatzinikolaou, P. Malliou, A. Beneka, A.Z. Jamurtas, C. Bikos, D. Tsoukas, A. Theodorou, I. Katrabasas, K. Margonis, I. Douroudos, A. Gioftsidou, I.G. Fatouros, Oxidative stress and inflammatory responses following an acute bout of isokinetic exercise in obese women with knee osteoarthritis. Knee. 20(6), 581–590 (2013). doi:10.1016/j.knee.2012.10.020

    Article  PubMed  Google Scholar 

  31. I. Barbas, I.G. Fatouros, Douroudos II, A. Chatzinikolaou, Y. Michailidis, D. Draganidis, A.Z. Jamurtas, M.G. Nikolaidis, C. Parotsidis, A.A. Theodorou, I. Katrabasas, K. Margonis, I. Papassotiriou, K. Taxildaris, Physiological and performance adaptations of elite Greco-Roman wrestlers during a one-day tournament. Eur. J. Appl. Physiol. 111(7), 1421–1436 (2011). doi:10.1007/s00421-010-1761-7

    Article  PubMed  Google Scholar 

  32. J. Mi, M.N. Munkonda, M. Li, M.X. Zhang, X.Y. Zhao, P.C. Fouejeu, K. Cianflone, Adiponectin and leptin metabolic biomarkers in chinese children and adolescents. J. Obes. 2010, 892081 (2010). doi:10.1155/2010/892081

    Article  PubMed  PubMed Central  Google Scholar 

  33. A.D. Aygun, S. Gungor, B. Ustundag, M.K. Gurgoze, Y. Sen, Proinflammatory cytokines and leptin are increased in serum of prepubertal obese children. Mediators Inflamm. 2005(3), 180–183 (2005). doi:10.1155/MI.2005.180

    Article  PubMed  PubMed Central  Google Scholar 

  34. A. Jmal, O. Bouyahya, I. Ayadi, H. Occhi, M. Feki, N. Kaabachi, A. Sammoud, M. Abdennebi, S. Boukthir, Serum leptin concentration in Tunisian non obese children. Ann. Biol. Clin. (Paris) 68(3), 311–315 (2010). doi:10.1684/abc.2010.0433

    CAS  Google Scholar 

  35. G.A. Martos-Moreno, V. Barrios, J. Argente, Normative data for adiponectin, resistin, interleukin 6, and leptin/receptor ratio in a healthy Spanish pediatric population: relationship with sex steroids. Eur. J. Endocrinol. 155(3), 429–434 (2006). doi:10.1530/eje.1.02227

    Article  CAS  PubMed  Google Scholar 

  36. T. Reinehr, C. Roth, T. Menke, W. Andler, Adiponectin before and after weight loss in obese children. J. Clin. Endocrinol. Metab. 89(8), 3790–3794 (2004). doi:10.1210/jc.2003-031925

    Article  CAS  PubMed  Google Scholar 

  37. R.R. Kraemer, V.D. Castracane, Effect of acute and chronic exercise on ghrelin and adipocytokines during pubertal development. Med. Sport Sci. 55, 156–173 (2010). doi:10.1159/000321979000321979

    Article  CAS  PubMed  Google Scholar 

  38. A.Z. Jamurtas, V. Theocharis, G. Koukoulis, N. Stakias, I.G. Fatouros, D. Kouretas, Y. Koutedakis, The effects of acute exercise on serum adiponectin and resistin levels and their relation to insulin sensitivity in overweight males. Eur. J. Appl. Physiol. 97(1), 122–126 (2006). doi:10.1007/s00421-006-0169-x

    Article  CAS  PubMed  Google Scholar 

  39. C. Maziere, G. Alimardani, F. Dantin, F. Dubois, M.A. Conte, J.C. Maziere, Oxidized LDL activates STAT1 and STAT3 transcription factors: possible involvement of reactive oxygen species. FEBS Lett. 448(1), 49–52 (1999). doi:S0014-5793(99)00324-5

    Article  CAS  PubMed  Google Scholar 

  40. L. Gong, F. Yuan, J. Teng, X. Li, S. Zheng, L. Lin, H. Deng, G. Ma, C. Sun, Y. Li, Weight loss, inflammatory markers, and improvements of iron status in overweight and obese children. J. Pediatr. 164(4), 795–800 (2014). doi:10.1016/j.jpeds.2013.12.004

    Article  CAS  PubMed  Google Scholar 

  41. E. Cholez, V. Debuysscher, J. Bourgeais, C. Boudot, J. Leprince, F. Tron, B. Brassart, A. Regnier, E. Bissac, E. Pecnard, F. Gouilleux, K. Lassoued, V. Gouilleux-Gruart, Evidence for a protective role of the STAT5 transcription factor against oxidative stress in human leukemic pre-B cells. Leukemia 26(11), 2390–2397 (2012). doi:10.1038/leu.2012.112

    Article  CAS  PubMed  Google Scholar 

  42. W.S. Hahn, J. Kuzmicic, J.S. Burrill, M.A. Donoghue, R. Foncea, M.D. Jensen, S. Lavandero, E.A. Arriaga, D.A. Bernlohr, Proinflammatory cytokines differentially regulate adipocyte mitochondrial metabolism, oxidative stress, and dynamics. Am. J. Physiol. Endocrinol. Metab. 306(9), E1033–1045 (2014). doi:10.1152/ajpendo.00422.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. S. Araki, K. Dobashi, K. Kubo, Y. Yamamoto, K. Asayama, A. Shirahata, N-acetylcysteine attenuates TNF-alpha induced changes in secretion of interleukin-6, plasminogen activator inhibitor-1 and adiponectin from 3T3-L1 adipocytes. Life Sci. 79(25), 2405–2412 (2006). doi:10.1016/j.lfs.2006.08.004

    Article  CAS  PubMed  Google Scholar 

  44. B. Frossi, M. De Carli, K.C. Daniel, J. Rivera, C. Pucillo, Oxidative stress stimulates IL-4 and IL-6 production in mast cells by an APE/Ref-1-dependent pathway. Eur. J. Immunol. 33(8), 2168–2177 (2003). doi:10.1002/eji.200323995

    Article  CAS  PubMed  Google Scholar 

  45. E.S. Ford, D.A. Galuska, C. Gillespie, J.C. Will, W.H. Giles, W.H. Dietz, C-reactive protein and body mass index in children: findings from the third national health and nutrition examination survey, 1988–1994. J. Pediatr. 138(4), 486–492 (2001). doi:10.1067/mpd.2001.112898

    Article  CAS  PubMed  Google Scholar 

  46. B.H. Lourenco, M.A. Cardoso, C-reactive protein concentration predicts change in body mass index during childhood. PLoS One 9(3), e90357 (2014). doi:10.1371/journal.pone.0090357

    Article  PubMed  PubMed Central  Google Scholar 

  47. S.V. Galcheva, V.M. Iotova, Y.T. Yotov, S. Bernasconi, M.E. Street, Circulating proinflammatory peptides related to abdominal adiposity and cardiometabolic risk factors in healthy prepubertal children. Eur. J. Endocrinol. 164(4), 553–558 (2011). doi:10.1530/eje-10-1124

    Article  CAS  PubMed  Google Scholar 

  48. H. Liu, Y. Yang, G. Huang, S. Tan, Y. Liu, Positive association of pro-inflammatory biomarkers and increased oxidative stress in the healthy elderly. Arch. Gerontol. Geriatr. 54(2), e8–e12 (2012). doi:10.1016/j.archger.2011.05.016

    Article  CAS  PubMed  Google Scholar 

  49. A. Mohn, D. Marzio, C. Giannini, R. Capanna, M. Marcovecchio, F. Chiarelli, Alterations in the oxidant-antioxidant status in prepubertal children with growth hormone deficiency: effect of growth hormone replacement therapy. Clin. Endocrinol. (Oxf). 63(5), 537–542 (2005). doi:10.1111/j.1365-2265.2005.02378.x

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Mastorakos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from the parents/guardians of each child, while verbal consent to participate in the study was obtained from all children.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paltoglou, G., Schoina, M., Valsamakis, G. et al. Interrelations among the adipocytokines leptin and adiponectin, oxidative stress and aseptic inflammation markers in pre- and early-pubertal normal-weight and obese boys. Endocrine 55, 925–933 (2017). https://doi.org/10.1007/s12020-017-1227-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-017-1227-3

Keywords

Navigation