Skip to main content

Advertisement

Log in

Anti-hypertensive Drug Treatment of Patients with and the Metabolic Syndrome and Obesity: a Review of Evidence, Meta-Analysis, Post hoc and Guidelines Publications

  • Hypertension and Obesity (E Reisin, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Epidemiological studies have shown an increasing prevalence of obesity and the metabolic syndrome worldwide. Lifestyle modifications that include dietary changes, weight reduction, and exercise are the cornerstones in the treatment of this pathology. However, adherence to this approach often meets with failure in clinical practice; therefore, drug therapy should not be delayed. The ideal pharmacological antihypertensive regimen should target the underlying mechanisms involved in this syndrome, including sympathetic activation, increased renal tubular sodium reabsorption, and overexpression of the renin-angiotensin-aldosterone system by the adipocyte. Few prospective trials have been conducted in the search of the ideal antihypertensive regimen in patients with obesity and the metabolic syndrome. We summarize previously published ad hoc studies, prospective studies, and guideline publications regarding the treatment of hypertension in patients with obesity and the metabolic syndrome. We conclude that the optimal antihypertensive drug therapy in these patients has not been defined. Though caution exists regarding the use of thiazide diuretics due to potential metabolic derangements, there is insufficient data to show worsened cardiovascular or renal outcomes in patients treated with these drugs. In regard to beta blockers, the risk of accelerating conversion to diabetes and worsening of inflammatory mediators described in patients treated with traditional beta blockers appears much less pronounced or absent when using the vasodilating beta blockers. Renin-angiotensin-aldosterone system (RAAS) inhibition with an ACE or an ARB and treatment with calcium channel blockers appears safe and well tolerated in obesity-related hypertension and in patients with metabolic syndrome. Future prospective pharmacological studies in this population are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988;37:1595–607.

    CAS  PubMed  Google Scholar 

  2. Gill H, Mugo M, Whaley-Connell A, Stump C, Sowers JR. The key role of insulin resistance in the cardiometabolic-syndrome. Am J Med Sci. 2005;330:290–4.

    PubMed  Google Scholar 

  3. Roberts CK, Hevener AL, Barnard RJ. Metabolic syndrome and insulin resistance: underlying causes and modification by exercise training. Compr Physiol. 2013;3(1):1–58. An excellent review that discusses the effect of exercise on blood pressure reduction.

    PubMed Central  PubMed  Google Scholar 

  4. Ferrannini E, Haffner SM, Mitchell BD, Stern MP. Hyperinsulinaemia: the key feature of a cardiovascular and metabolic syndrome. Diabetologia. 1991;34:416–22. PubMed: 1884900.

    CAS  PubMed  Google Scholar 

  5. Haffner SM, Valdez RA, Hazuda HP, Mitchell BD, Morales PA, Stern MP. Prospective analysis of the insulin-resistance syndrome (syndrome X). Diabetes. 1992;41:715–22.

    CAS  PubMed  Google Scholar 

  6. Despres JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature. 2006;444:881–7.

    CAS  PubMed  Google Scholar 

  7. Despres JP, Lemieux I, Bergeron J, Pibarot P, Mathieu P, Larose E, et al. Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler Thrombrosis Vasc Biol. 2008;28:1039–49.

    CAS  Google Scholar 

  8. Ogden CL, Carroll MD. Prevalence of overweight, obesity, and extreme obesity among adults: United States, Trends 1960–1962 Through 2007–2008. National Center for Health Statistics; 2010.

  9. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA. 2014;311(8):806–14.

    CAS  PubMed  Google Scholar 

  10. WHO. World Health Statistics 2012. http://www.who.int/gho/publications/world_health_statistics/EN_WHS2012_Full.pdf.

  11. Finucane MM, Stevens GA, et al. National, regional, and global trends in body mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet. 2011;377(9765):557–67.

    PubMed  Google Scholar 

  12. Danaei G, Finucane MM, et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet. 2011;378(9785):31–40.

    CAS  PubMed  Google Scholar 

  13. Chan JC, Malik V, Jia W, Kadowaki T, Yajnik CS, Yoon KH, et al. Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA. 2009;301(20):2129.

    CAS  PubMed  Google Scholar 

  14. Nora M, Guimarães M, Almeida R, Martins P, Gonçalves G, Santos M, et al. Excess body mass index loss predicts metabolic syndrome remission after gastric bypass. Diabetol Metab Syndr. 2014;6(1):1–7.

    PubMed Central  PubMed  Google Scholar 

  15. Ilanne-Parikka P, Eriksson JG, Lindstrom J, Peltonen M, Aunola S, Hamalainen H, et al. Effect of lifestyle intervention on the occurrence of metabolic syndrome and its components in the Finnish diabetes prevention study. Diabetes Care. 2008;31:805–7.

    PubMed  Google Scholar 

  16. Orchard TJ, Temprosa M, Goldberg R, Haffner S, Ratner R, Marcovina S, et al. The effect of metformin and intensive lifestyle intervention on the metabolic syndrome: the diabetes prevention program randomized trial. Ann Intern Med. 2005;142:611–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Weston KS, Wisløff U, Coombes JS. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med. 2014;48:1227–34.

    PubMed  Google Scholar 

  18. Babio N, Bullo M, Salas-Salvado J. Mediterranean diet and metabolic syndrome: the evidence. Public Health Nutr. 2009;12(9A):1607–17.

    PubMed  Google Scholar 

  19. Appel LJ, Moore TJ, Obarzanek E, et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH collaborative research group. N Engl J Med. 1997;336:1117–24. A large collaborative study that address ther effect of diet on blood pressure.

    CAS  PubMed  Google Scholar 

  20. Williams DE, Prevost AT, Whichelow MJ, Cox BD, Day NJ, Wareham NJ. A cross-sectional study of dietary patterns with glucose intolerance and other features of the metabolic syndrome. Br J Nutr. 2000;83:257–66.

    CAS  PubMed  Google Scholar 

  21. Chen L, Caballero B, Mitchell DC, Loria C, Lin PH, Champagne CM, et al. Reducing consumption of sugar sweetened beverages is associated with reduced blood pressure. Circulation. 2010;121:2398–406.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Diabetes prevention program research group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.

    CAS  PubMed  Google Scholar 

  23. Diabetes Prevention Program Research Group. Long-term safety, tolerability, and weight loss associated with metformin in the diabetes prevention program outcomes study. Diabetes Care. 2012;35(4):731–7.

    Google Scholar 

  24. Heymsfield SB, Segal KR, Hauptman J, Lucas CP, Boldrin MN, Rissanen A, et al. Effects of weight loss with orlistat on glucose tolerance and progression to type 2 diabetes in obese adults. Arch Intern Med. 2000;160(9):1321.

    CAS  PubMed  Google Scholar 

  25. Reaven G, Segal K, Hauptman J, Boldrin M, Lucas C. Effect of orlistat-assisted weight loss in decreasing coronary heart disease risk in patients with syndrome X. Am J Cardiol. 2001;87(7):827.

    CAS  PubMed  Google Scholar 

  26. Torgerson JS, Hauptman J, Boldrin MN, Sjöström L. XENical in the prevention of diabetes in obese subjects (XENDOS) study: a randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients. Diabetes Care. 2004;27(1):155.

    CAS  PubMed  Google Scholar 

  27. Bray GA, Ryan DH. Medical therapy for the patient with obesity. Circulation. 2012;125(13):1695–703.

    PubMed  Google Scholar 

  28. Li Z, Maglione M, Tu W, Mojica W, Arterburn D, Shugarman LR, et al. Meta-analysis: pharmacologic treatment of obesity. Ann Intern Med. 2005;142(7):532.

    CAS  PubMed  Google Scholar 

  29. Kelley DE, Bray GA, Pi-Sunyer FX, Klein S, Hill J, Miles J, et al. Clinical efficacy of orlistat therapy in overweight and obese patients with insulin-treated type 2 diabetes: a 1-year randomized controlled trial. Diabetes Care. 2002;25(6):1033.

    CAS  PubMed  Google Scholar 

  30. Siebenhofer A, Jeitler K, Horvath K, Berghold A, Siering U, Semlitsch. Long-term effects of weight-reducing drugs in hypertensive patients. Cochrane Database Syst Rev. 2013;3:CD007654.

    PubMed  Google Scholar 

  31. O’Neil PM, Smith SR, Weissman NJ, Fidler MC, Sanchez M, Zhang J, et al. Randomized placebo-controlled clinical trial of lorcaserin for weight loss in type 2 diabetes mellitus: the BLOOM-DM study. Obesity. 2012;20(7):1426.

    PubMed  Google Scholar 

  32. Gadde KM, Allison DB, Ryan DH, Peterson CA, Troupin B, Schwiers ML, et al. Effects of low-dose, controlled-release, phentermine plus topiramate combination on weight and associated comorbidities in overweight and obese adults (CONQUER): a randomised, placebo-controlled, phase 3 trial. Lancet. 2011;377(9774):1341.

    CAS  PubMed  Google Scholar 

  33. Garvey WT, Ryan DH, Look M, Gadde KM, Allison DB, Peterson CA, et al. Two-year sustained weight loss and metabolic benefits with controlled-release phentermine/topiramate in obese and overweight adults (SEQUEL): a randomized, placebo-controlled, phase 3 extension study. Am J Clin Nutr. 2012;95(2):297–308.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Greenway FL, Fujioka K, Plodkowski RA, Mudaliar S, Guttadauria M, Erickson J, et al. Effect of naltrexone plus bupropion on weight loss in overweight and obese adults (COR-I): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2010;376(9741):595.

    CAS  PubMed  Google Scholar 

  35. Apovian CM, Aronne L, Rubino D, Still C, Wyatt H, Burns C, et al. A randomized, phase 3 trial of naltrexone SR/bupropion SR on weight and obesity-related risk factors (COR-II). Obesity. 2013;21(5):935–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Landsberg L, Aronne LJ, Beilin LJ, Burke V, Igel LI, Loyd-Jones D, et al. Obesity related hypertension: pathogenesis, cardiovascular risk, and treatment—a position paper of the obesity society and the American society of hypertension. Obesity. 2013;21(1):8–24. A position paper on obesity-related hypertension.

    PubMed  Google Scholar 

  37. Kirk EP, Klein S. Pathogenesis and pathophysiology of the cardiometabolic syndrome. J Clin Hypertens. 2011;11(12):761–5.

    Google Scholar 

  38. de Faria AP, Modolo R, Fontana V, Moreno H. Adipokines: novel players in resistant hypertension. J Clin Hypertens. 2014;16(10):754–9.

    Google Scholar 

  39. Rahmouni K. Obesity associated hypertension: recent progress in deciphering the pathogenesis. Hypertension. 2014;64:215–21. An excellent review that examine the pathogenesis of obesity hypertension.

    CAS  PubMed  Google Scholar 

  40. Yvan-Charvet L, Quignard-Boulange A. Role of adipose tissue renin-angiotensin system in metabolic and inflammatory diseases associated with obesity. Kidney Int. 2011;79:162–8.

    CAS  PubMed  Google Scholar 

  41. Engeli S, Schling P, Gorzelniak K, Boschmann M, Janke J, Ailhaud G, et al. The adipose tissue renin-angiotensin-aldosterone system: role in the metabolic syndrome? Int J Biochem Cell Biol. 2003;35:807–25.

    CAS  PubMed  Google Scholar 

  42. Vykoukal D, Davies MG. Vascular biology of the metabolic syndrome. J Vasc Surg. 2011;54(3):819–31.

    PubMed Central  PubMed  Google Scholar 

  43. Frigolet ME, Torres N, Tovar AR. The renin-angiotensin system in adipose tissue and its metabolic consequences during obesity. J Nutr Biochem. 2013;24:2003–15.

    CAS  PubMed  Google Scholar 

  44. Cassis IA, Police SB, Yiannikouris F, Thatcher SE. Local adipose tissue renin-angiotensin system. Curr Hypertens Rep. 2008;10:93–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Faloia E, Gatti C, Camilloni MA, Marinello B, Sardu C, Garrapa GG, et al. Comparison of circulating and local adipose tissue renin-angiotensin system in normotensive and hypertensive obese subjects. J Endocrinol Investig. 2002;25:309–14.

    CAS  Google Scholar 

  46. Massiera F, Bloch-Faure M, Ceiler D, Murakami K, Fukamizu A, Gasc JM, et al. Adipose angiotensinogen is involved in adipose tissue growth and blood pressure regulation. FASEB J. 2001;15:2727–9.

    CAS  PubMed  Google Scholar 

  47. Yasue S, Masuzaki H, Okada S, Ishii T, Kozuka C, Tanaka T, et al. Adipose tissue-specific regulation of angiotensinogen in obese humans and mice: impact of nutritional status and adipocyte hypertrophy. Am J Hypertens. 2010;23:425–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Van Harmelen V, Ariapart P, Hoffstedt J, et al. Increased adipose tissue angiotensinogen gene expression in human obesity. Obes Res. 2000;8:337–41.

    PubMed  Google Scholar 

  49. Massiera F, Seydoux J, Geloen A, et al. Angiotensinogen-deficient mice exhibit impairment of diet-induced weight gain with alteration in adipose tissue development and increased locomotor activity. Endocrinology. 2001;142:5220–5.

    CAS  PubMed  Google Scholar 

  50. Yvan-Charvet L, Even P, Bloch-Faure M, et al. Deletion of the angiotensin type 2 receptor reduces adipose cell size and protects from diet-induced obesity and insulin resistance. Diabetes. 2005;54:991–9.

    CAS  PubMed  Google Scholar 

  51. Kouyama R, Suganami T, Nishida J, et al. Attenuation of diet-induced weight gain and adiposity through increased energy expenditure in mice lacking angiotensin II type 1a receptor. Endocrinology. 2005;146:3481–9.

    CAS  PubMed  Google Scholar 

  52. Yiannikouris F, Gupte M, Putnam K, Thatcher S, Charnigo R, Rateri DL, et al. Adipocyte deficiency of angiotensinogen prevents obesity-induced hypertension in male mice. Hypertension. 2012;60:1524–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Briones AM, Nguyen Dinh Cat A, Callera GE, Yogi A, Burger D, He Y, et al. Adipocytes produce aldosterone through calcineurin-dependent signaling pathways: implications in diabetes mellitus-associated obesity and vascular dysfunction. Hypertension. 2012;59:1069–78.

    CAS  PubMed  Google Scholar 

  54. De Souza F, Muxfeldt E, Fiszman R, Salles G. Efficacy of spironolactone therapy in patients with true resistant hypertension. Hypertension. 2010;55:147–52.

    PubMed  Google Scholar 

  55. Hirata A, Maeda N, Hiuge A, Hibuse T, Fujita K, Okada T, et al. Blockade of mineralocorticoid receptor reverses adipocyte dysfunction and insulin resistance in obese mice. Cardiovasc Res. 2009;84(1):164–72.

    CAS  PubMed  Google Scholar 

  56. Schafer N, Lohmann C, Winnik S, van Tits LJ, Miranda MX, Vergopoulos A, et al. Endothelial mineralocorticoid receptor activation mediates endothelial dysfunction in diet-induced obesity. Eur Heart J. 2013;34(45):3515–24.

    PubMed Central  PubMed  Google Scholar 

  57. Bender SB, McGraw AP, Jaffe IZ, Sowers JR. Mineralocorticoid receptor-mediated vascular insulin resistance: an early contributor to diabetes-related vascular disease? Diabetes. 2013;62(2):313–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Caprio M, Antelmi A, Chetrite G, Muscat A, Mammi C, Marzolla V, et al. Antiadipogenic effects of the mineralocorticoid receptor antagonist drospirenone: potential implications for the treatment of metabolic syndrome. Endocrinology. 2011;152(1):113–25.

    CAS  PubMed  Google Scholar 

  59. Armani A, Cinti F, Marzolla V, Morgan J, Cranston GA, Antelmi A, et al. Mineralocorticoid receptor antagonism induces browning of white adipose tissue through impairment of autophagy and prevents adipocyte dysfunction in high-fat-diet-fed mice. FASEB J. 2014;28(8):3745–57.

    CAS  PubMed  Google Scholar 

  60. Nagase M, Fujita T. Mineralocorticoid receptor activation in obesity hypertension. Hypertens Res. 2009;32(8):649–57.

    CAS  PubMed  Google Scholar 

  61. Troisi RJ, Weiss ST, Parker DR, Sparrow D, Young JB, Landsberg L. Relation of obesity and diet to sympathetic nervous system activity. Hypertension. 1991;17:669–77.

    CAS  PubMed  Google Scholar 

  62. Grassi G, Seravalle G, Cattaneo BM, Bolla GB, Lanfranchi A, Colombo M, et al. Sympathetic activation in obese normotensive subjects. Hypertension. 1995;25:560–3.

    CAS  PubMed  Google Scholar 

  63. Konno S, Hirooka Y, Kishi T, Sunagawa K. Sympathoinhibitory effects of telmisartan through the reduction of oxidative stress in the rostral ventrolateral medulla of obesity-induced rats. J Hypertens. 2012;30(10):1992–9.

    CAS  PubMed  Google Scholar 

  64. Huggett RJ, Burns J, Mackintosh AF, Mary DASG. Sympathetic neural activation in nondiabetic metabolic syndrome and its further augmentation by hypertension. Hypertension. 2004;44:847–52.

    CAS  PubMed  Google Scholar 

  65. Grassi G. Sympathetic overdrive and cardiovascular risk in the metabolic syndrome. Hypertens Res. 2006;29:839–47.

    CAS  PubMed  Google Scholar 

  66. Grassi G. Adrenergic overdrive as the link among hypertension, obesity and impaired thermogenesis: lights and shadows. Hypertension. 2007;49:5–6.

    CAS  PubMed  Google Scholar 

  67. Raumouni K, Correla MI, Haynes WG, Mark AL. Obesity associated hypertension: new insights into mechanisms. Hypertension. 2005;25:9–14.

    Google Scholar 

  68. Simonds SE, Cowley MA, Enriori PJ. Leptin increasing sympathetic nerve outflow in obesity: a cure for obesity or a potential contributor to metabolic syndrome? Adipocyte. 2012;1(3):177–81.

    PubMed Central  PubMed  Google Scholar 

  69. Hamnvik OR, Liu X, Petrou M, Gong H, Chamberland JP, Kim EH, et al. Soluble leptin receptor and leptin are associated with baseline adiposity and metabolic risk factors, and predict adiposity, metabolic syndrome and glucose levels at 2 year follow up: the Cyprus Metabolism Prospective Cohort Study. Metab Clin Exp. 2011;60:987–93.

    CAS  PubMed  Google Scholar 

  70. Smith MM, Minson CT. Obesity and adipokines: effects on sympathetic overactivity. J Physiol. 2012;590(8):1787–801.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Shek EW, Brands MW, Hall JE. Chronic leptin infusion increases arterial pressure. Hypertension. 1998;31:409–14.

    CAS  PubMed  Google Scholar 

  72. Haynes WG, Morgan DA, Walsh SA, Mark AL, Sivitz WI. Receptor mediated regional sympathetic nerve activation by leptin. J Clin Investig. 1997;100:270–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Kazumi T, Kawaguchi A, Katoh J, Iwahashi M, Yoshino G. Fasting insulin and leptin levels are associated with systolic blood pressure independent of percentage body fat and body fat mass index. J Hypertens. 1999;17:1451–5.

    CAS  PubMed  Google Scholar 

  74. Agata J, Masuda A, Takada M, Higashiura K, Murakami H, Miyazaki Y, et al. High plasma immunoreactive leptin level in essential hypertension. Am J Hypertens. 1997;10:1171–4.

    CAS  PubMed  Google Scholar 

  75. Bravo PE, Morse S, Borne DM, Aguilar EA, Reisin E. Leptin and hypertension in obesity. Vasc Health Risk Manag. 2006;2(2):163–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Dudenbostel T, Calhoun DA. Resistant hypertension, obstructive sleep apnoea and aldosterone. J Hum Hypertens. 2012;26(5):281–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Somers VK, Dyken ME, Clary MP, Abboud FM. Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Investig. 1995;96:1897–904.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Abdel-Kader K, Dohar S, Shah N, Jhamb M, Reis SE, Strollo P, et al. Resistant hypertension and obstructive sleep apnea in the setting of kidney disease. J Hypertens. 2012;30(5):960–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo Jr JL, et al. National heart, lung, and blood institute joint national committee on prevention, detection, evaluation, and treatment of high blood pressure; national high blood pressure education program coordinating committee. The seventh report of the joint national committee on prevention, detection, evaluation and treatment of high blood pressure: the JNC 7 report. JAMA. 2003;289(19):2560–72.

    CAS  PubMed  Google Scholar 

  80. ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA. 2002;288(23):2981.

    Google Scholar 

  81. Rapoport MI, Hurd HF. Thiazide-induced glucose intolerance treated with potassium. Arch Intern Med. 1964;113:405–8.

    CAS  PubMed  Google Scholar 

  82. Amery A, Berthaux P, Bulpitt C, Deruyttere M, de Schaepdryver A, Dollery C, et al. Glucose intolerance during diuretic therapy: results of trial by the European working party on hypertension in the elderly. Lancet. 1978;1(8066):681–3.

    CAS  PubMed  Google Scholar 

  83. Hoskins B, Jackson 3rd CM. The mechanism of chlorothiazide-induced carbohydrate intolerance. J Pharmacol Exp Ther. 1978;206(2):423–30.

    CAS  PubMed  Google Scholar 

  84. Helderman JH, Elahi D, Andersen DK, Raizes GS, Tobin JD, Shocken D, et al. Prevention of the glucose intolerance of thiazide diuretics by maintenance of body potassium. Diabetes. 1983;32(2):106–11.

    CAS  PubMed  Google Scholar 

  85. Plavinik FL, Rodrigues C, Zanella MT, Ribeiro AB. Hypokalemia, glucose intolerance, and hyperinsulinemia during diuretic therapy. Hypertension. 1992;19(2 suppl):26–9.

    Google Scholar 

  86. Carlsen JE, Kober L, Torp-Pedersen C, Johansen P. Relation between dose of bendrofluazide, antihypertensive effect, and adverse biochemical effects. Br Med J. 1990;300(6730):975–8.

    CAS  Google Scholar 

  87. Harper R, Ennis CN, Sheridan B, Atkinson AB, Johnston GD, Bell PM. Effects of low dose versus conventional dose thiazide diuretic on insulin action in essential hypertension. Br Med J. 1994;309(6949):226–30.

    CAS  Google Scholar 

  88. Harper R, Ennis CN, Heaney AP, Sheridan B, Gormley M, Atkinson AB, et al. A comparison of the effects of low and conventional dose thiazide diuretic on insulin action in hypertensive patients with NIDDM. Diabetologia. 1995;38(7):853–9.

    CAS  PubMed  Google Scholar 

  89. Punzi HA, Punzi CF. Antihypertensive and lipid-lowering heart attack trial study; trinity hypertension research institute. Metabolic issues in the antihypertensive and lipid-lowering heart attack trial study. Curr Hyperten Rep. 2004;6(2):106–10.

    Google Scholar 

  90. Messerli FH. ALLHAT, or the soft science of the secondary end point. Ann Intern Med. 2003;139(9):777–80.

    PubMed  Google Scholar 

  91. Barzilay JI, Davis BR, Cutler JA, Pressel SL, Whelton PK, Basile J, et al. ALLHAT Collaborative Research Group. Fasting glucose levels and incident diabetes mellitus in older nondiabetic adults randomized to receive 3 different classes of antihypertensive treatment: a report from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Arch Intern Med. 2006;166(2):2191–201.

    CAS  PubMed  Google Scholar 

  92. Black HR, Davis B, Barzilay J, Nwachuku C, Baimbridge C, Marginean H, et al. Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. Metabolic and clinical outcomes in nondiabetic individuals with the metabolic syndrome assigned to chlorthalidone, amlodipine, or Lisinopril as initial treatment for hypertension: a report from the Antihypertensive and Lipid-Lowering treatment to prevent Heart Attack Trial (ALLHAT). Diabetes Care. 2008;31(2):353–60.

    CAS  PubMed  Google Scholar 

  93. Reisin E, Graves JW, Yamal JM, Barzilay JI, Pressel SL, Einhorn PT, et al. Blood pressure control and cardiovascular outcomes in normal-weight, overweight, and obese hypertensive patients treated with three different antihypertensives in ALLHAT. J Hypertens. 2014;32(7):1503–13. A post hoc study in a large population that sought to determine the effect of clorthalidone versus lisinopril or amlodipine in normal weight,overweight and obese patients.

    CAS  PubMed  Google Scholar 

  94. Barzilay JI, Davis BR, Pressel SL, Cutler JA, Einhorn PT, Black HR, et al. Long-term effects of incident diabetes mellitus on cardiovascular outcomes in people treated for hypertension: the ALLHAT diabetes extension study. Circ Cardiovasc Qual Outcomes. 2012;5(2):153–62.

    PubMed Central  PubMed  Google Scholar 

  95. Kostis JB, Wilson AC, Freudenberger RS, Cosgrove NM, Pressel SL, Davis BR, et al. Long-term effect of diuretic based therapy on fatal outcomes in subjects with isolated systolic hypertension with and without diabetes. Am J Cardiol. 2005;95:29–35.

    CAS  PubMed  Google Scholar 

  96. Reisin E, Weir MR, Falkner B, Hutchinson HG, Anzalone DA, Tuck ML. For the Treatment in Obese Patients with Hypertension (TROPHY) study group. Hypertension. 1997;30(1):140–5. One of the first prospective,multicenter study that examine the effect of hydrochlorothiazide versus lisinopril in obese hypertensive patients.

    CAS  PubMed  Google Scholar 

  97. Reisin E, Jack AV. Obesity and hypertension: mechanisms, cardio-renal consequences and therapeutic approaches. Med Clin North Am. 2009;93(3):733–51.

    CAS  PubMed  Google Scholar 

  98. Kintscher U, Bramlage P, Paar WD, Thoenes M, Unger T. Irbesartan for the treatment of hypertension in patients with the metabolic syndrome: a sub analysis of the treat to target post authorization survey. Prospective, observational two armed study in 14,200 patients. Cardiovasc Diabetol. 2007;6:12.

    PubMed Central  PubMed  Google Scholar 

  99. Benson SC, Pershadsingh HA, Ho CI, Chittiboyina A, Desai P, Prevenec M, et al. Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPARgamma-modulating activities. Hypertension. 2004;43(5):993–1002.

    CAS  PubMed  Google Scholar 

  100. Schupp M, Janke J, Clasen R, Unger T, Kintsher U. Angiotensin type I receptor blockers induce peroxisome proliferator-activated receptor-gamma activity. Circulation. 2004;109(17):2054–7.

    CAS  PubMed  Google Scholar 

  101. Zappe DH, Sowers JR, Hsueh WA, Haffner SM, Deedwania PC, Fonseca VA, et al. Metabolic and antihypertensive effects of combined angiotensin receptor blocker and diuretic therapy in Prediabetic hypertensive patients with the cardiometabolic syndrome. J Clin Hypertens. 2008;10(12):894–903.

    CAS  Google Scholar 

  102. Yao Y, Zou R, Liu X, Jiang J, Huang Q, He Y, et al. Telmisartan but not valsartan inhibits TGF-beta mediated accumulation of extracellular matrix via activation of PPARgamma. J Huazhong Univ Sci Technolog Med Sci. 2008;28(5):543–8.

    CAS  PubMed  Google Scholar 

  103. Julius S, Weber MA, Kjeldsen SE, McInnes GT, Zanchetti A, Brunner HR, et al. The Valsartan Antihypertensive Long-Term Use Evaluation (VALUE) Trial: outcomes in patients receiving monotherapy. Hypertension. 2006;48:385–91.

    CAS  PubMed  Google Scholar 

  104. Aksnes TA, Kjeldsen SE, Rostrup M, Omvik P, Hua TA, Julius S. New onset diabetes and cardiac outcome: impact of new-onset diabetes mellitus on cardiac outcomes in the valsartan antihypertensive long-term use evaluation (VALUE) trial population. Hypertension. 2007;50:467–73.

    CAS  PubMed  Google Scholar 

  105. Niskanen L, Hedner T, Hanson L, Lanke J, Niklason A, CAPPP study group. Reduced cardiovascular morbidity and mortality in hypertensive diabetic patients on first-line therapy with an ACE inhibitor compared with a diuretic/β-blocker-based Treatment Regimen: a subanalysis of the captopril prevention project. Diabetes Care. 2001;24:2091–6.

    CAS  PubMed  Google Scholar 

  106. Parving HH, Brenner BM, McMurray JJ, de Zeeuw D, Haffner SM, Solomon SD, et al. Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N Engl J Med. 2012;367(23):2204–13.

    CAS  PubMed  Google Scholar 

  107. Friedrich S, Schmieder RE. Review of direct renin inhibition by aliskiren. J Renin-Angiotensin-Aldosterone Syst. 2013;14(3):193–6.

    CAS  PubMed  Google Scholar 

  108. Jamerson K, Weber MA, Bakris GL, Dahlof B, Pitt B, Shi V, et al. Benazapril plus amlodipine or hydrochlorothiazide for hypertension in high-risk patients. New England Journal. 2008;359(23):2417–28.

    CAS  Google Scholar 

  109. Bakris GL, Sarafi dis PA, Weir MR, Dahlof B, Pitt B, Jamerson K, et al. Renal outcomes with different fixed dose combination therapies in patients with hypertension at high risk for cardiovascular events (ACCOMPLISH): a prespecified secondary analysis of a randomized controlled trial. Lancet. 2010;375:1173–81.

    CAS  PubMed  Google Scholar 

  110. Bakris G, Briasoulis A, Dahlof B, Jamerson K, Weber MA, Kelly RY, et al. Comparison of benazepril plus amlodipine or hydrochlorothiazide in high risk patients with hypertension and coronary artery disease. Am J Cardiol. 2013;112:255–9.

    CAS  PubMed  Google Scholar 

  111. Weber MA, Jamerson K, Bakris GL, Weir MR, Zappe D, Zhang Y, et al. Effects of body size and hypertension treatments on cardiovascular event rates: subanalysis of the ACCOMPLISH randomized controlled trial. Lancet. 2013;381:537–45.

    PubMed  Google Scholar 

  112. Ripley TL, Saseen JJ. Beta-blockers: a review of their pharmacological and physiological diversity in hypertension. Ann Pharmacother. 2014;48(6):723–33.

    CAS  PubMed  Google Scholar 

  113. Messerli FH, Grossman E. Beta-blockers in hypertension: is carvedilol different. Am J Cardiol. 2004;93(9A):7B–12.

    CAS  PubMed  Google Scholar 

  114. Deedwania P. Hypertension, dyslipidemia and insulin resistance in patients with diabetes or the cardiometabolic syndrome: benefits of vasodilating beta blockers. J Clin Hypertens. 2011;13:52–9.

    CAS  Google Scholar 

  115. Reisin E, Owen J. Treatment—special conditions: metabolic syndrome: obesity and the hypertension connection. J Am Soc Hypertens. 2015;9(2):156–9.

    PubMed  Google Scholar 

  116. Pepine CJ, Handberg EM, Cooper-DeHoff RM, et al. A calcium antagonist versus a non-calcium antagonist hypertension treatment strategy for patients with coronary artery disease. The International Verapamil-Trandolapril Study (INVEST): a randomized controlled trial. JAMA. 2003;290:2805–16.

    CAS  PubMed  Google Scholar 

  117. Dahlof B, Devereux RB, Kjeldsen SE, et al. Cardiovascular morbidity and mortality in the Losartan Intervention for Endpoint reduction in hypertension study (LIFE): a randomized trial against atenolol. Lancet. 2002;359:995–1003.

    CAS  PubMed  Google Scholar 

  118. Gress TW, Nieto FJ, Shahar E, et al. Hypertension and antihypertensive therapy as risk factors for type 2 diabetes mellitus. Atherosclerosis risk in communities study. N Engl J Med. 2000;342:905–12.

    CAS  PubMed  Google Scholar 

  119. The Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and the European Society of Cardiology (ESC). 2013 ESH/ESC guidelines for the management of arterial hypertension. J Hypertens. 2013;31:1281–357.

    Google Scholar 

  120. James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. 2014 Evidence based guideline for the management of high blood pressure in adults: report from the panel members appointment to the eighth Joint National Committee (JNC 8). JAMA. 2014;311(5):507–20.

    CAS  PubMed  Google Scholar 

  121. National Clinical Guideline Centre. Hypertension: the clinical management of primary hypertension in adults: update of clinical guidelines 18 to 34. Royal College of Physicians (UK) 2011.

  122. Dasqupta K, Quinn RR, Zarnke KB, Rabi DM, Ravani P, Daskalopoulou SS, et al. The 2014 Canadian hypertension education program recommendations for blood pressure measurement, diagnosis, assessment of risk, prevention, and treatment of hypertension. Can J Cardiol. 2014;30(5):485–501.

    Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Jonathan G. Owen and Efrain Reisin declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan G. Owen.

Additional information

This article is part of the Topical Collection on Hypertension and Obesity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Owen, J.G., Reisin, E. Anti-hypertensive Drug Treatment of Patients with and the Metabolic Syndrome and Obesity: a Review of Evidence, Meta-Analysis, Post hoc and Guidelines Publications. Curr Hypertens Rep 17, 46 (2015). https://doi.org/10.1007/s11906-015-0558-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-015-0558-9

Keywords

Navigation