Skip to main content

Advertisement

Log in

Retinal Failure in Diabetes: a Feature of Retinal Sensory Neuropathy

  • Microvascular Complications—Neuropathy (R Pop-Busui, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Physiologic adaptations mediate normal responses to short-term and long-term stresses to ensure organ function. Organ failure results if adaptive responses fail to resolve persistent stresses or maladaptive reactions develop. The retinal neurovascular unit likewise undergoes adaptive responses to diabetes resulting in a retinal sensory neuropathy analogous to other sensory neuropathies. Vision-threatening diabetic retinal neuropathy results from unremitting metabolic and inflammatory stresses, leading to macular edema and proliferative diabetic retinopathy, states of “retinal failure.” Current regulatory strategies focus primarily on the retinal failure stages, but new diagnostic modalities and understanding of the pathophysiology of diabetic retinopathy may facilitate earlier treatment to maintain vision in persons with diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Grading diabetic retinopathy from stereoscopic color fundus photographs—an extension of the modified Airlie House classification. ETDRS report number 10. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology. 1991;98(5 Suppl):786-806.

  2. Antonetti DA, Klein R, Gardner TW. Diabetic retinopathy. N Engl J Med. 2012;366(13):1227–39.

    Article  CAS  PubMed  Google Scholar 

  3. Widmaier EP, Raff H, Strang K. Vander’s human physiology: the mechanisms of body function. New York: McGraw-Hill; 2011. Details the general physiologic mechanisms of normal adaptive processes.

    Google Scholar 

  4. Eaton DC, Pooler JP. Renal functions, basic processes, and anatomy. In: Eaton DC, Pooler JP, editors. Vander’s renal physiology. New York: McGraw-Hill; 2013. p. 1–19.

    Google Scholar 

  5. Moreno JA, Radford H, Peretti D et al. Sustained translational repression by eIF2alpha-P mediates prion neurodegeneration. Nature. 2012;485(7399):507–11.

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Barrett KE, Barman SM, Boitano S et al. Circulation through special regions. In: Barrett KE et al., editors. Ganong’s review of medical physiology. New York: McGraw-Hill; 2012.

    Google Scholar 

  7. Pop-Busui R, Herman WH, Feldman EL et al. DCCT and EDIC studies in type 1 diabetes: lessons for diabetic neuropathy regarding metabolic memory and natural history. Curr Diab Rep. 2010;10(4):276–82. Summarizes the major findings from the DCCT/EDIC regarding neuropathy in T1DM.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Bargman JM, Skorecki K. Chronic kidney disease. In: Longo DL et al., editors. Harrison’s principles of internal medicine. New York: McGraw-Hill; 2012.

    Google Scholar 

  9. Edwards JL, Vincent AM, Cheng HT et al. Diabetic neuropathy: mechanisms to management. Pharmacol Ther. 2008;120(1):1–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Zochodne DW. Mechanisms of diabetic neuron damage: molecular pathways. Handb Clin Neurol. 2014;126:379–99.

    Article  PubMed  Google Scholar 

  11. Katirji B, Koontz D. Disorders of peripheral nerves. In: Daroff RB et al., editors. Bradley’s neurology in clinical practice. Philadelphia: Elsevier Saunders; 2012. p. 1977–82.

    Google Scholar 

  12. Kennedy JM, Zochodne DW. Impaired peripheral nerve regeneration in diabetes mellitus. J Peripher Nerv Syst. 2005;10:144–57.

    Article  CAS  PubMed  Google Scholar 

  13. Wolter JR. Diabetic retinopathy. Am J Ophthalmol. 1961;51:1123–39.

    CAS  PubMed  Google Scholar 

  14. Callaghan BC, Little AA, Feldman EL et al. Enhanced glucose control for preventing and treating diabetic neuropathy. Cochrane Database Syst Rev. 2012;6:CD007543. A critical review of the effects of glucose control for diabetic neuropathy.

    PubMed Central  PubMed  Google Scholar 

  15. Calabek B, Callaghan B, Feldman EL. Therapy for diabetic neuropathy: an overview. Handb Clin Neurol. 2014;126:317–33.

    Article  PubMed  Google Scholar 

  16. Petropoulos IN, Green P, Chan AW et al. Corneal confocal microscopy detects neuropathy in patients with type 1 diabetes without retinopathy or microalbuminuria. PLoS One. 2015;10(4), e0123517.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Pittasch D, Lobmann R, Behrens-Baumann W et al. Pupil signs of sympathetic autonomic neuropathy in patients with type 1 diabetes. Diabetes Care. 2002;25(9):1545–50.

    Article  PubMed  Google Scholar 

  18. Yau JW, Rogers SL, Kawasaki R et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35(3):556–64.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Abcouwer SF, Gardner TW. Diabetic retinopathy: loss of neuroretinal adaptation to the diabetic metabolic environment. Ann N Y Acad Sci. 2014;1311:174–90. Summarizes current knowledge of neurovascular adaptations in diabetic retinopathy.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Kuschinsky W. Neuronal-vascular coupling. A unifying hypothesis. Adv Exp Med Biol. 1997;413:167–76.

    Article  CAS  PubMed  Google Scholar 

  21. Bill A, Sperber GO. Control of retinal and choroidal blood flow. Eye. 1990;4(Pt 2):319–25.

    Article  PubMed  Google Scholar 

  22. Kur J, Newman EA, Chan-Ling T. Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease. Prog Retin Eye Res. 2012;31:377–406.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Lott ME, Slocomb JE, Shivkumar V et al. Comparison of retinal vasodilator and constrictor responses in type 2 diabetes. Acta Ophthalmol (Copenh). 2012;90(6):e434–41.

    Article  Google Scholar 

  24. Garhofer G, Zawinka C, Resch H et al. Reduced response of retinal vessel diameters to flicker stimulation in patients with diabetes. Br J Ophthalmol. 2004;88(7):887–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Hellgren KJ, Agardh E, Bengtsson B. Progression of early retinal dysfunction in diabetes over time: results of a long-term prospective clinical study. Diabetes. 2014;63(9):3104–11.

    Article  PubMed  Google Scholar 

  26. Harrison WW, Bearse MA Jr, Schneck ME et al. Prediction, by retinal location, of the onset of diabetic edema in patients with nonproliferative diabetic retinopathy. Invest Ophthalmol Vis Sci. 2011;52(9):6825–31.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Tzekov R, Arden GB. The electroretinogram in diabetic retinopathy. Surv Ophthalmol. 1999;44(1):53–60.

    Article  CAS  PubMed  Google Scholar 

  28. Fort PE, Losiewicz MK, Pennathur S et al. mTORC1-independent reduction of retinal protein synthesis in type 1 diabetes. Diabetes. 2014;63(9):3077–90.

    Article  PubMed Central  PubMed  Google Scholar 

  29. van Guilder HD, Brucklacher RM, Patel K et al. Diabetes downregulates presynaptic proteins and reduces basal synapsin 1 phosphorylation in rat retina. Eur J Neurosci. 2008;28:1–11.

    Google Scholar 

  30. D’Cruz TS, Weibley BN, Kimball SR et al. Post-translational processing of synaptophysin in the rat retina is disrupted by diabetes. PLoS One. 2012;7(9), e44711.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Barber AJ, Gardner TW, Abcouwer SF. The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2011;52(2):1156–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Lasta M, Pemp B, Schmidl D et al. Neurovascular dysfunction precedes neural dysfunction in the retina of patients with type 1 diabetes. Invest Ophthalmol Vis Sci. 2013;54(1):842–7.

    Article  PubMed  Google Scholar 

  33. Sharma K, Karl B, Mathew AV et al. Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J Am Soc Nephrol. 2013;24(11):1901–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Brosius 3rd FC, He JC. JAK inhibition and progressive kidney disease. Curr Opin Nephrol Hypertens. 2015;24(1):88–95.

    Article  CAS  PubMed  Google Scholar 

  35. Brosius FC, Coward RJ. Podocytes, signaling pathways, and vascular factors in diabetic kidney disease. Adv Chronic Kidney Dis. 2014;21(3):304–10.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Hirsch IB, Brownlee M. Beyond hemoglobin A1c—need for additional markers of risk for diabetic microvascular complications. JAMA. 2010;303(22):2291–2.

    Article  CAS  PubMed  Google Scholar 

  37. Jackson GR, Scott IU, Quillen DA et al. Inner retinal visual dysfunction is a sensitive marker of non-proliferative diabetic retinopathy. Br J Ophthalmol. 2012;96(5):699–703.

    Article  PubMed  Google Scholar 

  38. Gardner TW, Jackson GR. Early detection of neural dysfunction in diabetic retinopathy. In: Guthoff RF, Wiedemann P, editors. Nova Acta Leopoldina. 2014. p. 179–86.

    Google Scholar 

  39. DCCT/EDIC Research Group. Intensive diabetes therapy and ocular surgery in type 1 diabetes. N Engl J Med. 2015;372(18):1722–33.

    Article  Google Scholar 

  40. DCCT/EDIC Research Group. Effect of intensive diabetes therapy on the progression of diabetic retinopathy in patients with type 1 diabetes: 18 years of follow-up in the DCCT/EDIC. Diabetes. 2015;64(2):631–42.

    Article  Google Scholar 

Download references

Acknowledgments

This study is supported by the Summer Biomedical Research Program at the University of Michigan Medical School (EG), EY20852 and DK094292, The Taubman Institute, and a Research to Prevent Blindness Physician-Scientist Award (TG). David Murrel, MFA, created the artwork.

Compliance with Ethics Guidelines

Conflict of Interest

Ellyn J. Gray declares that she has no conflict of interest.

Thomas W. Gardner reports personal fees from KalVista, Novo Nordisk, Johnson & Johnson, and Janssen and Puretech and other from BetaStem.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas W. Gardner.

Additional information

This article is part of the Topical Collection on Microvascular Complications—Neuropathy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gray, E.J., Gardner, T.W. Retinal Failure in Diabetes: a Feature of Retinal Sensory Neuropathy. Curr Diab Rep 15, 107 (2015). https://doi.org/10.1007/s11892-015-0683-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-015-0683-5

Keywords

Navigation