Skip to main content

Advertisement

Log in

Management of Severe Insulin Resistance in Patients with Type 1 Diabetes

  • Treatment of Type 1 Diabetes (M Pietropaolo, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Managing severe insulin resistance (IR) in patients with type 1 diabetes (T1DM) can be challenging for both clinicians and patients. As average weight for patients with T1DM has increased in recent decades, IR in this population has become more widespread. Currently, almost 50 % of patients with T1DM are overweight or obese. While intensive insulin therapy is associated with reduction in complications, aggressive treatment can lead to weight gain. With increasing weight, insulin can become less effective to control glycemia, resulting in higher insulin doses and hence more weight gain. Novel strategies to break this vicious cycle are needed. This review will investigate current research on insulin formulations, lifestyle modification, adjunct therapies, and surgery that may help better manage patients with T1DM and IR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ogden CL, Yanovski SZ, Carroll MD, Flegal KM. The epidemiology of obesity. Gastroenterology. 2007;132(6):2087–102.

    Article  PubMed  Google Scholar 

  2. Conway B, Miller RG, Costacou T, Fried L, Kelsey S, Evans RW, et al. Temporal patterns in overweight and obesity in type 1 diabetes. Diabet Med. 2010;27(4):398–404.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Chillaron JJ, Goday A, Flores-Le-Roux JA, Benaiges D, Carrera MJ, Puig J, et al. Estimated glucose disposal rate in assessment of the metabolic syndrome and microvascular complications in patients with type 1 diabetes. J Clin Endocrinol Metab. 2009;94(9):3530–4.

    Article  CAS  PubMed  Google Scholar 

  4. Pambianco G, Costacou T, Orchard TJ. The prediction of major outcomes of type 1 diabetes: a 12 years prospective evaluation of three separate definitions of the metabolic syndrome and their components and estimated glucose disposal rate: the Pittsburgh epidemiology of diabetes complications study experience. Diabetes Care. 2007;30(5):1248–54.

    Article  PubMed  Google Scholar 

  5. McGill M, Molyneaux L, Twigg SM, Yue DK. The metabolic syndrome in type 1 diabetes: does it exist and does it matter? J Diabet Complicat. 2008;22(1):18–23.

    Article  Google Scholar 

  6. Thorn LM, Forsblom C, Fagerudd J, Thomas MC, Pettersson-Fernholm K, Saraheimo M, et al. Metabolic syndrome in type 1 diabetes: association with diabetic nephropathy and glycemic control (the FinnDiane study). Diabetes Care. 2005;28(8):2019–24.

    Article  PubMed  Google Scholar 

  7. Teupe B, Bergis K. Epidemiological evidence for “double diabetes”. Lancet. 1991;337(8737):361–2.

    Article  CAS  PubMed  Google Scholar 

  8. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–86.

    Article  Google Scholar 

  9. Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ, et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005;353(25):2643–53.

    Article  PubMed  Google Scholar 

  10. Lane WS, Cochran EK, Jackson JA, Scism-Bacon JL, Corey IB, Hirsch IB, et al. High-dose insulin therapy: is it time for U-500 insulin? Endocr Pract. 2009;15(1):71–9.

    Article  PubMed  Google Scholar 

  11. Binder C. Absorption of injected insulin. A clinical-pharmacological study. Acta Pharmacol Toxicol (Copenh). 1969;27 Suppl 2:1–84.

    Google Scholar 

  12. de la Pena A, Riddle M, Morrow LA, Jiang HH, Linnebjerg H, Scott A, et al. Pharmacokinetics and pharmacodynamics of high-dose human regular U-500 insulin versus human regular U-100 insulin in healthy obese subjects. Diabetes Care. 2011;34(12):2496–501.

    Article  PubMed Central  PubMed  Google Scholar 

  13. de la Pena A, Ma X, Reddy S, Ovalle F, Bergenstal RM, Jackson JA. Application of PK/PD modeling and simulation to dosing regimen optimization of high-dose human regular U-500 insulin. J Diabetes Sci Technol. 2014;8(4):821–9.

    Article  PubMed  Google Scholar 

  14. Reutrakul S, Wroblewski K, Brown RL. Clinical use of U-500 regular insulin: review and meta-analysis. J Diabetes Sci Technol. 2012;6(2):412–20. A meta-analysis of U-500R efficacy used as MDI or via insulin pump, mostly in patients with T2DM. Both methods of U-500R delivery were associated with significant HbA1c reduction. U-500R MDI was associated with weight gain and increase in total daily insulin dose while U-500R via insulin pump was not.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Garg R, Lawrence IG, Akinsola MO, Davies MJ, McNally PG. Improved glycaemic control in severely insulin resistant, insulin treated diabetic patients with U500 human actrapid over 2 years follow-up. Diabetologia. 2004;47 Suppl 1:A58.

    Google Scholar 

  16. Boldo A, Comi RJ. Clinical experience with U-500 insulin: risks and benefits. Endocr Pract 2012;18(1):56–61.

  17. Nayyar V, Lawrence IG, Kong MF, Gallagher A, Gregory R, Hiles S, et al. Long-term follow-up of patietns on U-500 human actrapid. Diabetologia. 2007;50(Suppl1):S538.

    Google Scholar 

  18. Grunberger G, Abelseth JM, Bailey TS, Bode BW, Handelsman Y, Hellman R, et al. Consensus statement by the American association of clinical endocrinologists/american college of endocrinology insulin pump management task force. Endocr Pract. 2014;20(5):463–89.

    Article  PubMed  Google Scholar 

  19. Lane WS, Weinrib SL, Rappaport JM, Przestrzelski T. A prospective trial of U-500 insulin delivered by omnipod in patients with type 2 diabetes and severe insulin resistance. Endocr Pract 2010;16(5):778–84.

  20. Lane WS, Weinrib SL, Rappaport JM, Hale CB, Farmer LK, Lane RS. The effect of long-term use of U-500 insulin via continuous subcutaneous infusion on durability of glycemic control and weight in obese, insulin-resistant patients with type 2 diabetes. Endocr Pract. 2013;19(2):196–201.

    Article  PubMed  Google Scholar 

  21. Eby EL, Wang P, Curtis BH, Xie J, Haldane DC, Idris I, et al. Cost, healthcare resource utilization, and adherence of individuals with diabetes using U-500 or U-100 insulin: a retrospective database analysis. J Med Econ. 2013;16(4):529–38.

    Article  PubMed  Google Scholar 

  22. Bulchandani DG, Konrady T, Hamburg MS. Clinical efficacy and patient satisfaction with U-500 insulin pump therapy in patients with type 2 diabetes. Endocr Pract. 2007;13(7):721–5.

    Article  PubMed  Google Scholar 

  23. Becker RH, Dahmen R, Bergmann K, Lehmann A, Jax T, Heise T. New insulin glargine 300 units.mL-1 provides a more even activity profile and prolonged glycemic control at steady state compared with insulin glargine 100 units.mL-1. Diabetes Care. 2015;38(4):637–43. A randomized, double-blinded, crossover PK/PD study using automaied euglycemic clamp in 30 patients with T1DM comparing Gla-100 to Gla-300 at 0.4 units/kg for 8 days. Gla-300 resulted in a more even steady state PK/PD profiles with longer duration of action (median 30 h) than Gla-100.

  24. Becker RH, Nowotny I, Teichert L, Bergmann K, Kapitza C. Low within- and between-day variability in exposure to new insulin glargine 300 U/ml. Diabetes Obes Metab. 2015;17(3):261–7.

    Article  CAS  PubMed  Google Scholar 

  25. Home PD, Bergenstal RM, Riddle MC, Ziemen M, Rojeski M, Espinasse M, et al. Glycemic control and hypoglycemia with new insulin glargine 300U/mL in people with T1DM (edition 4). Diabetes. 2014;63 Suppl 1:LB19. In an open-label study, 549 patients with T1DM were randomized 1:1:1:1 to once-daily Gla-300 or Gla-100, morning or evening for 6 months. HbA1c levels were comparable between Gla-300 and Gal-100. Hypoglycemia was similar but nocturnal hypoglycemia was lower in the Gla-300 group in the first 8 weeks. Total daily insulin dose was higher and weight gain was lower with Gla-300. Morning and evening injections had similar outcomes.

  26. Matsuhisa M, Koyama M, Cheng X, Shimizu S, Hirose T, EDITION JP1 Study Group. New insulin glargine 300 U/mL: glycemic control and hypoglycemia in Japanese people with T1DM (edition JP 1). Diabetes. 2014;63 Suppl 1:LB22. An open-label study compared Gla-300 vs. Gal-100 in 243 Japanese patients with T1DM for 6 months. Both insulins resulted in similar HbA1c reduction, with less confirmed or severe nocturnal hypoglycemic events with Gla-300, particularly in the first 8 weeks.

    Google Scholar 

  27. Heise T, Hermanski L, Nosek L, Feldman A, Rasmussen S, Haahr H. Insulin degludec: four times lower pharmacodynamic variability than insulin glargine under steady-state conditions in type 1 diabetes. Diabetes Obes Metab. 2012;14(9):859–64.

    Article  CAS  PubMed  Google Scholar 

  28. Heise T, Nosek L, Bottcher SG, Hastrup H, Haahr H. Ultra-long-acting insulin degludec has a flat and stable glucose-lowering effect in type 2 diabetes. Diabetes Obes Metab. 2012;14(10):944–50.

    Article  CAS  PubMed  Google Scholar 

  29. Heller S, Buse J, Fisher M, Garg S, Marre M, Merker L, et al. Insulin degludec, an ultra-longacting basal insulin, versus insulin glargine in basal-bolus treatment with mealtime insulin Aspart in type 1 diabetes (BEGIN basal-bolus type 1): a phase 3, randomised, open-label, treat-to-target non-inferiority trial. Lancet. 2012;379(9825):1489–97. A 1 year randomized-controlled trial comparing insulin degludec and glargine in 629 patients with T1DM. HbA1c reduction and overall confirmed hypoglycemia was comparable but nocturnal confirmed hypoglycemia was 25 % lower in degludec vs. glargine group.

  30. Mathieu C, Hollander P, Miranda-Palma B, Cooper J, Franek E, Russell-Jones D, et al. Efficacy and safety of insulin degludec in a flexible dosing regimen vs insulin glargine in patients with type 1 diabetes (BEGIN: flex T1): a 26 weeks randomized, treat-to-target trial with a 26 weeks extension. J Clin Endocrinol Metab. 2013;98(3):1154–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Vora J, Christensen T, Rana A, Bain SC. Insulin degludec versus insulin glargine in type 1 and type 2 diabetes mellitus: a meta-analysis of endpoints in phase 3a trials. Diabetes Ther. 2014;5(2):435–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Hirsch IB, Bode B, Courreges JP, Dykiel P, Franek E, Hermansen K, et al. Insulin degludec/insulin Aspart administered once daily at any meal, with insulin Aspart at other meals versus a standard basal-bolus regimen in patients with type 1 diabetes: a 26 weeks, phase 3, randomized, open-label, treat-to-target trial. Diabetes Care. 2012;35(11):2174–81. A 26 weeks randomized-controlled trial comparing insulin degludec/aspart (IDegAsp) to detemir with aspart at other meals in 548 patients with T1DM. IDeg/Asp was comparable to detemir in HbA1c reduction but with 37 % less nocturnal hypoglycemia. IDeg/Asp was associated with more weight gain but less total daily insulin dose by 13 %.

  33. Davies MJ, Gross JL, Ono Y, Sasaki T, Bantwal G, Gall MA, et al. Efficacy and safety of insulin degludec given as part of basal-bolus treatment with mealtime insulin Aspart in type 1 diabetes: a 26 weeks randomized, open-label, treat-to-target non-inferiority trial. Diabetes Obes Metab. 2014;16(10):922–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Korsatko S, Deller S, Koehler G, Mader JK, Neubauer K, Adrian CL, et al. A comparison of the steady-state pharmacokinetic and pharmacodynamic profiles of 100 and 200 U/mL formulations of ultra-long-acting insulin degludec. Clin Drug Investig. 2013;33(7):515–21. A PK/PD study using euglycemic glucose clamp in 33 patients with T1DM comparing degludec U100 and degludec U200 at 0.4 units/kg for 8 days. Both insulins had similar PK/PD profiles with evenly distributed glucose-lowering effect between the fist and second 12 h post-dosing. The authors concluded that both insulins are bioequivalent and can be used interchangeably.

  35. Segal AR, El SN. Are you ready for more insulin concentrations? J Diabetes Sci Technol. 2015;9(2):331–8.

    Article  PubMed  Google Scholar 

  36. Rosenfalck AM, Almdal T, Viggers L, Madsbad S, Hilsted J. A low-fat diet improves peripheral insulin sensitivity in patients with type 1 diabetes. Diabet Med. 2006;23(4):384–92.

    Article  CAS  PubMed  Google Scholar 

  37. Strychar I, Ishac A, Rivard M, Lussier-Cacan S, Beauregard H, Aris-Jilwan N, et al. Impact of a high-monounsaturated-fat diet on lipid profile in subjects with type 1 diabetes. J Am Diet Assoc. 2003;103(4):467–74.

    PubMed  Google Scholar 

  38. Strychar I, Cohn JS, Renier G, Rivard M, Aris-Jilwan N, Beauregard H, et al. Effects of a diet higher in carbohydrate/lower in fat versus lower in carbohydrate/higher in monounsaturated fat on postmeal triglyceride concentrations and other cardiovascular risk factors in type 1 diabetes. Diabetes Care. 2009;32(9):1597–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Cadario F, Prodam F, Pasqualicchio S, Bellone S, Bonsignori I, Demarchi I, et al. Lipid profile and nutritional intake in children and adolescents with type 1 diabetes improve after a structured dietician training to a Mediterranean-style diet. J Endocrinol Investig. 2012;35(2):160–8.

    CAS  Google Scholar 

  40. Ramalho AC, de Lourdes LM, Nunes F, Cambui Z, Barbosa C, Andrade A, et al. The effect of resistance versus aerobic training on metabolic control in patients with type-1 diabetes mellitus. Diabetes Res Clin Pract. 2006;72(3):271–6.

    Article  CAS  PubMed  Google Scholar 

  41. Lehmann R, Kaplan V, Bingisser R, Bloch KE, Spinas GA. Impact of physical activity on cardiovascular risk factors in IDDM. Diabetes Care. 1997;20(10):1603–11.

    Article  CAS  PubMed  Google Scholar 

  42. Wallberg-Henriksson H, Gunnarsson R, Henriksson J, DeFronzo R, Felig P, Ostman J, et al. Increased peripheral insulin sensitivity and muscle mitochondrial enzymes but unchanged blood glucose control in type I diabetics after physical training. Diabetes. 1982;31(12):1044–50.

    Article  CAS  PubMed  Google Scholar 

  43. Yardley JE, Hay J, Abou-Setta AM, Marks SD, McGavock J. A systematic review and meta-analysis of exercise interventions in adults with type 1 diabetes. Diabetes Res Clin Pract. 2014;106(3):393–400. A meta-analysis of six randomized-controlled trials on the effects of exercise interventions in 323 patients with T1DM. HbA1c significantly reduced by 0.78 % (4 trials), insulin dose decreased (1 trial) and cardiorespiratory fitness improved.Larger studies are needed.

  44. Leroux C, Gingras V, Desjardins K, Brazeau AS, Ott-Braschi S, Strychar I, et al. In adult patients with type 1 diabetes healthy lifestyle associates with a better cardiometabolic profile. Nutr Metab Cardiovasc Dis. 2015. doi:10.1016/j.numecd.2015.01.004. A study in 115 patients with T1DM assessed healthy lifestyle habits including regular physical activity, good diet quality and non-smoking status. More healthy habits were associated with lower BMI, waist circumference, body fat, blood pressure and choletserol levels. Only 11 % had all three healthy habits.

    PubMed  Google Scholar 

  45. Schimmack G, Defronzo RA, Musi N. AMP-activated protein kinase: role in metabolism and therapeutic implications. Diabetes Obes Metab. 2006;8(6):591–602.

    Article  CAS  PubMed  Google Scholar 

  46. Nadeau KJ, Chow K, Alam S, Lindquist K, Campbell S, McFann K, et al. Effects of low dose metformin in adolescents with type I diabetes mellitus: a randomized, double-blinded placebo-controlled study. Pediatr Diabetes. 2015;16(3):196–203.

    Article  CAS  PubMed  Google Scholar 

  47. Pitocco D, Zaccardi F, Tarzia P, Milo M, Scavone G, Rizzo P, et al. Metformin improves endothelial function in type 1 diabetic subjects: a pilot, placebo-controlled randomized study. Diabetes Obes Metab. 2013;15(5):427–31. A 6 months randomized-controlled trial was conducted in 42 patients with T1DM to receive metformin or placebo. There was a significant improvement in endothelial dysfunction as measured by flow-mediated dilation, irrespective of glycemic improvement or weight loss. In contrary, PGF2α, a marker of oxidative stress, increased with metformin treatment.

  48. Jacobsen IB, Henriksen JE, Beck-Nielsen H. The effect of metformin in overweight patients with type 1 diabetes and poor metabolic control. Basic Clin Pharmacol Toxicol. 2009;105(3):145–9.

    Article  CAS  PubMed  Google Scholar 

  49. Lund SS, Tarnow L, Astrup AS, Hovind P, Jacobsen PK, Alibegovic AC, et al. Effect of adjunct metformin treatment in patients with type-1 diabetes and persistent inadequate glycaemic control. A randomized study. PLoS One. 2008;3(10), e3363.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Khan AS, McLoughney CR, Ahmed AB. The effect of metformin on blood glucose control in overweight patients with type 1 diabetes. Diabet Med. 2006;23(10):1079–84.

    Article  CAS  PubMed  Google Scholar 

  51. Sarnblad S, Kroon M, Aman J. Metformin as additional therapy in adolescents with poorly controlled type 1 diabetes: randomised placebo-controlled trial with aspects on insulin sensitivity. Eur J Endocrinol. 2003;149(4):323–9.

    Article  PubMed  Google Scholar 

  52. Hamilton J, Cummings E, Zdravkovic V, Finegood D, Daneman D. Metformin as an adjunct therapy in adolescents with type 1 diabetes and insulin resistance: a randomized controlled trial. Diabetes Care. 2003;26(1):138–43.

    Article  CAS  PubMed  Google Scholar 

  53. Meyer L, Bohme P, Delbachian I, Lehert P, Cugnardey N, Drouin P, et al. The benefits of metformin therapy during continuous subcutaneous insulin infusion treatment of type 1 diabetic patients. Diabetes Care. 2002;25(12):2153–8.

    Article  CAS  PubMed  Google Scholar 

  54. Liu C, Wu D, Zheng X, Li P, Li L. Efficacy and safety of metformin for patients with type 1 diabetes mellitus: a meta-analysis. Diabetes Technol Ther. 2015;17(2):142–8. The most recent meta-analysis of efficacy and safety of metformin use in patients with T1DM from 8 randomized-controlled trials. There were no significant differences between metformin and placebo in HbA1c reduction, fasting glucose or triglycerides levels. Metformin was associated with reduction in total daily insulin dose, body weight, cholesterol, LDL and HDL levels. Gastrointestinal side effects increased but otherwise it was safe as severe hypoglycemia and diabetes ketoacidosis did not increase.

  55. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10 years follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577–89.

    Article  CAS  PubMed  Google Scholar 

  56. Lind M, Svensson AM, Rosengren A. Glycemic control and excess mortality in type 1 diabetes. N Engl J Med. 2015;372(9):880–1.

    CAS  PubMed  Google Scholar 

  57. www.clinicaltrials.gov. REducing With MetfOrmin Vascular Adverse Lesions in Type 1 Diabetes (REMOVAL), NCT01483560. 2015.

  58. Ryan GJ, Jobe LJ, Martin R. Pramlintide in the treatment of type 1 and type 2 diabetes mellitus. Clin Ther. 2005;27(10):1500–12.

    Article  CAS  PubMed  Google Scholar 

  59. Weyer C, Maggs DG, Young AA, Kolterman OG. Amylin replacement with pramlintide as an adjunct to insulin therapy in type 1 and type 2 diabetes mellitus: a physiological approach toward improved metabolic control. Curr Pharm Des. 2001;7(14):1353–73.

    Article  CAS  PubMed  Google Scholar 

  60. Whitehouse F, Kruger DF, Fineman M, Shen L, Ruggles JA, Maggs DG, et al. A randomized study and open-label extension evaluating the long-term efficacy of pramlintide as an adjunct to insulin therapy in type 1 diabetes. Diabetes Care. 2002;25(4):724–30.

    Article  CAS  PubMed  Google Scholar 

  61. Ratner RE, Dickey R, Fineman M, Maggs DG, Shen L, Strobel SA, et al. Amylin replacement with pramlintide as an adjunct to insulin therapy improves long-term glycaemic and weight control in type 1 diabetes mellitus: a 1 year, randomized controlled trial. Diabet Med. 2004;21(11):1204–12.

    Article  CAS  PubMed  Google Scholar 

  62. Xiang AH, Peters RK, Kjos SL, Marroquin A, Goico J, Ochoa C, et al. Effect of pioglitazone on pancreatic beta-cell function and diabetes risk in Hispanic women with prior gestational diabetes. Diabetes. 2006;55(2):517–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Tafuri KS, Godil MA, Lane AH, Wilson TA. Effect of pioglitazone on the course of new-onset type 1 diabetes mellitus. J Clin Res Pediatr Endocrinol. 2013;5(4):236–9.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Zdravkovic V, Hamilton JK, Daneman D, Cummings EA. Pioglitazone as adjunctive therapy in adolescents with type 1 diabetes. J Pediatr. 2006;149(6):845–9.

    Article  CAS  PubMed  Google Scholar 

  65. Bhat R, Bhansali A, Bhadada S, Sialy R. Effect of pioglitazone therapy in lean type 1 diabetes mellitus. Diabetes Res Clin Pract. 2007;78(3):349–54.

    Article  CAS  PubMed  Google Scholar 

  66. Stone ML, Walker JL, Chisholm D, Craig ME, Donaghue KC, Crock P, et al. The addition of rosiglitazone to insulin in adolescents with type 1 diabetes and poor glycaemic control: a randomized-controlled trial. Pediatr Diabetes. 2008;9(4 Pt 1):326–34.

    Article  CAS  PubMed  Google Scholar 

  67. Strowig SM, Raskin P. The effect of rosiglitazone on overweight subjects with type 1 diabetes. Diabetes Care. 2005;28(7):1562–7.

    Article  CAS  PubMed  Google Scholar 

  68. Holst JJ. The physiology of glucagon-like peptide 1.(0031–9333 (Print)).

  69. Raman VS, Mason KJ, Rodriguez LM, Hassan K, Yu X, Bomgaars L, et al. The role of adjunctive Exenatide therapy in pediatric type 1 diabetes. Diabetes Care. 2010;33(6):1294–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Varanasi A, Bellini N, Rawal D, Vora M, Makdissi A, Dhindsa S, et al. Liraglutide as additional treatment for type 1 diabetes. Eur J Endocrinol. 2011;165(1):77–84.

    Article  CAS  PubMed  Google Scholar 

  71. Kielgast U, Krarup T, Holst JJ, Madsbad S. Four weeks of treatment with liraglutide reduces insulin dose without loss of glycemic control in type 1 diabetic patients with and without residual beta-cell function. Diabetes Care. 2011;34(7):1463–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Ellis SL, Moser EG, Snell-Bergeon JK, Rodionova AS, Hazenfield RM, Garg SK. Effect of sitagliptin on glucose control in adult patients with type 1 diabetes: a pilot, double-blind, randomized, crossover trial. Diabet Med. 2011;28(10):1176–81.

    Article  CAS  PubMed  Google Scholar 

  73. Savarese G, Perrone-Filardi P, D’Amore C, Vitale C, Trimarco B, Pani L, et al. Cardiovascular effects of dipeptidyl peptidase-4 inhibitors in diabetic patients: a meta-analysis. Int J Cardiol. 2015;181:239–44.

    Article  PubMed  Google Scholar 

  74. van de Laar FA, Lucassen PL, Akkermans RP, van de Lisdonk EH, Rutten GE, van Weel C. Alpha-glucosidase inhibitors for patients with type 2 diabetes: results from a Cochrane systematic review and meta-analysis. Diabetes Care. 2005;28(1):154–63.

    Article  PubMed  Google Scholar 

  75. Neuser D, Benson A, Bruckner A, Goldberg RB, Hoogwerf BJ, Petzinna D. Safety and tolerability of acarbose in the treatment of type 1 and type 2 diabetes mellitus. Clin Drug Investig. 2005;25(9):579–87.

    Article  CAS  PubMed  Google Scholar 

  76. Dash S, Crisp S, Hartnell S, Donald S, Davenport K, Simmons D, et al. Successful use of acarbose to manage post-prandial glycaemia in two patients with type 1 diabetes on continuous subcutaneous insulin infusion. Diabetes Res Clin Pract. 2012;95(3):e49–51.

    Article  CAS  PubMed  Google Scholar 

  77. Nagai E, Katsuno T, Miyagawa J, Konishi K, Miuchi M, Ochi F, et al. Effects of miglitol in combination with intensive insulin therapy on blood glucose control with special reference to incretin responses in type 1 diabetes mellitus. Endocr J. 2011;58(10):869–77.

    Article  CAS  PubMed  Google Scholar 

  78. Juntti-Berggren L, Pigon J, Hellstrom P, Holst JJ, Efendic S. Influence of acarbose on post-prandial insulin requirements in patients with type 1 diabetes. Diabetes Nutr Metab. 2000;13(1):7–12.

    CAS  PubMed  Google Scholar 

  79. Hollander P, Pi-Sunyer X, Coniff RF. Acarbose in the treatment of type I diabetes. Diabetes Care. 1997;20(3):248–53.

    Article  CAS  PubMed  Google Scholar 

  80. Sels JP, Verdonk HE, Wolffenbuttel BH. Effects of acarbose (glucobay) in persons with type 1 diabetes: a multicentre study. Diabetes Res Clin Pract. 1998;41(2):139–45.

    Article  CAS  PubMed  Google Scholar 

  81. Riccardi G, Giacco R, Parillo M, Turco S, Rivellese AA, Ventura MR, et al. Efficacy and safety of acarbose in the treatment of type 1 diabetes mellitus: a placebo-controlled, double-blind, multicentre study. Diabet Med. 1999;16(3):228–32.

    Article  CAS  PubMed  Google Scholar 

  82. Lamos EM, Younk LM, Davis SN. Empagliflozin, a sodium glucose co-transporter 2 inhibitor, in the treatment of type 1 diabetes. Expert Opin Investig Drugs. 2014;23(6):875–82.

    Article  CAS  PubMed  Google Scholar 

  83. Wilding JP, Woo V, Soler NG, Pahor A, Sugg J, Rohwedder K, et al. Long-term efficacy of dapagliflozin in patients with type 2 diabetes mellitus receiving high doses of insulin: a randomized trial. Ann Intern Med. 2012;156(6):405–15.

    Article  PubMed  Google Scholar 

  84. Henry RR, Rosenstock J, Edelman S, Mudaliar S, Chalamandaris AG, Kasichayanula S, et al. Exploring the potential of the SGLT2 inhibitor dapagliflozin in type 1 diabetes: a randomized, double-blind, placebo-controlled pilot study. Diabetes Care. 2015;38(3):412–9. A short, randomized, double-blinded, placebo-controlled proof-of-concept study that evaluated the SGLT2 inhibitor dapagliflozin in T1DM. Dose-related reductions in 24-h glucose levels, glycemic variability and insulin dose were suggested.

    Article  CAS  PubMed  Google Scholar 

  85. Perkins BA, Cherney DZ, Partridge H, Soleymanlou N, Tschirhart H, Zinman B, et al. Sodium-glucose cotransporter 2 inhibition and glycemic control in type 1 diabetes: results of an 8 weeks open-label proof-of-concept trial. Diabetes Care. 2014;37(5):1480–3.

    Article  PubMed  Google Scholar 

  86. U.S. Food and Drug Administration. FDA drug safety communication: FDA warns that SGLT2 inhibitors for diabetes may result in a serious condition of too much acid in the blood. http://www.fda.gov/Drugs/DrugSafety/ucm446845.htm. Accessed 15 May 2015.

  87. Powell DR, Smith M, Greer J, Harris A, Zhao S, DaCosta C, et al. LX4211 increases serum glucagon-like peptide 1 and peptide YY levels by reducing sodium/glucose cotransporter 1 (SGLT1)-mediated absorption of intestinal glucose. J Pharmacol Exp Ther. 2013;345(2):250–9.

    Article  CAS  PubMed  Google Scholar 

  88. Sands AT, Zambrowicz BP, Rosenstock J, Lapuerta P, Bode BW, Garg SK, et al. Sotagliflozin, a dual SGLT1 and SGLT2 inhibitor, as adjunct therapy to insulin in type 1 diabetes. Diabetes Care. 2015;38(7):1181–8.

    Article  PubMed  Google Scholar 

  89. Acerini CL, Dunger DB. Insulin-like growth factor-I for the treatment of type 1 diabetes. Diabetes Obes Metab. 2000;2(6):335–43.

    Article  CAS  PubMed  Google Scholar 

  90. Acerini CL, Patton CM, Savage MO, Kernell A, Westphal O, Dunger DB. Randomised placebo-controlled trial of human recombinant insulin-like growth factor I plus intensive insulin therapy in adolescents with insulin-dependent diabetes mellitus. Lancet. 1997;350(9086):1199–204. A randomized-controlled trial of rhIGF-1 in 53 adolescent patients with T1DMfor 24 weeks. HbA1c reduction was 0.6 % at 12 weeks but was not sustained at 24 weeks. Greater HbA1c reduction was seen in those with higher IGF-1 levels. No advrese effects on retinal changes, urine albumin secretion, or renal function were seen.

  91. Thrailkill KM, Quattrin T, Baker L, Kuntze JE, Compton PG, Martha Jr PM. Cotherapy with recombinant human insulin-like growth factor I and insulin improves glycemic control in type 1 diabetes. RhIGF-I in IDDM study group. Diabetes Care. 1999;22(4):585–92.

    Article  CAS  PubMed  Google Scholar 

  92. Cheetham TD, Jones J, Taylor AM, Holly J, Matthews DR, Dunger DB. The effects of recombinant insulin-like growth factor I administration on growth hormone levels and insulin requirements in adolescents with type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1993;36(7):678–81.

    Article  CAS  PubMed  Google Scholar 

  93. Saukkonen T, Amin R, Williams RM, Fox C, Yuen KC, White MA, et al. Dose-dependent effects of recombinant human insulin-like growth factor (IGF)-I/IGF binding protein-3 complex on overnight growth hormone secretion and insulin sensitivity in type 1 diabetes. J Clin Endocrinol Metab. 2004;89(9):4634–41.

    Article  CAS  PubMed  Google Scholar 

  94. Clemmons DR, Moses AC, McKay MJ, Sommer A, Rosen DM, Ruckle J. The combination of insulin-like growth factor I and insulin-like growth factor-binding protein-3 reduces insulin requirements in insulin-dependent type 1 diabetes: evidence for in vivo biological activity. J Clin Endocrinol Metab. 2000;85(4):1518–24.

    CAS  PubMed  Google Scholar 

  95. Thankamony A, Tossavainen PH, Sleigh A, Acerini C, Elleri D, Dalton RN, et al. Short-term administration of pegvisomant improves hepatic insulin sensitivity and reduces Soleus muscle intramyocellular lipid content in young adults with type 1 diabetes. J Clin Endocrinol Metab. 2014;99(2):639–47. A study explored the benefits of pegvisomant, a GH receptor antagonist, in 10 patients with T1DM for 4 weeks. This resulted in lower IGF-1 levels, reduced insulin requirements and glucose production rates during the overnight euglycemic steady state, suggesting an improved hepatic insulin sensitivity.

  96. Sjostrom L. Review of the key results from the swedish obese subjects (SOS) trial—a prospective controlled intervention study of bariatric surgery. J Intern Med. 2013;273(3):219–34.

    Article  CAS  PubMed  Google Scholar 

  97. Mingrone G, Panunzi S, De GA, Guidone C, Iaconelli A, Leccesi L, et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med. 2012;366(17):1577–85.

    Article  CAS  PubMed  Google Scholar 

  98. Czupryniak L, Strzelczyk J, Cypryk K, Pawlowski M, Szymanski D, Lewinski A, et al. Gastric bypass surgery in severely obese type 1 diabetic patients. Diabetes Care. 2004;27(10):2561–2.

    Article  PubMed  Google Scholar 

  99. Czupryniak L, Wiszniewski M, Szymanski D, Pawlowski M, Loba J, Strzelczyk J. Long-term results of gastric bypass surgery in morbidly obese type 1 diabetes patients. Obes Surg. 2010;20(4):506–8.

    Article  PubMed  Google Scholar 

  100. Raab H, Weiner RA, Frenken M, Rett K, Weiner S. Obesity and metabolic surgery in type 1 diabetes mellitus. Nutr Hosp. 2013;28 Suppl 2:31–4.

    CAS  PubMed  Google Scholar 

  101. Chuang J, Zeller MH, Inge T, Crimmins N. Bariatric surgery for severe obesity in two adolescents with type 1 diabetes. Pediatrics. 2013;132(4):e1031–4.

    Article  PubMed Central  PubMed  Google Scholar 

  102. Lannoo M, Dillemans B, Van NY, Fieuws S, Mathieu C, Gillard P, et al. Bariatric surgery induces weight loss but does not improve glycemic control in patients with type 1 diabetes. Diabetes Care. 2014;37(8):e173–4. A retrospective study of 22 patients with T1DM who underwent gastric bypass surgery. Participants had significant decreases in BMI and total daily insulin dose. Improvement in glycemic control was not confirmed.

    Article  PubMed  Google Scholar 

  103. Mendez CE, Tanenberg RJ, Pories W. Outcomes of Roux-en-Y gastric bypass surgery for severely obese patients with type 1 diabetes: a case series report. Diabetes Metab Syndr Obes. 2010;3:281–3.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Rebecca Schechter declares that she has no conflict of interest.

Sirimon Reutrakul reports personal fees from Sanofi Aventis and grants from Merck.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirimon Reutrakul.

Additional information

This article is part of the Topical Collection on Treatment of Type 1 Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schechter, R., Reutrakul, S. Management of Severe Insulin Resistance in Patients with Type 1 Diabetes. Curr Diab Rep 15, 77 (2015). https://doi.org/10.1007/s11892-015-0641-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-015-0641-2

Keywords

Navigation