Skip to main content
Log in

The Evolving Understanding of the Contribution of Lipid Metabolism to Diabetic Kidney Disease

  • Microvascular Complications—Nephropathy (T Isakova, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Although diabetes is mainly diagnosed based on elevated glucose levels, dyslipidemia is also observed in these patients. Chronic kidney disease (CKD), a frequent occurrence in patients with diabetes, is associated with major abnormalities in circulating lipoproteins and renal lipid metabolism. At baseline, most renal epithelial cells rely on fatty acids as their energy source. CKD, including that which occurs in diabetes, is characterized by tubule epithelial lipid accumulation. Whether this is due to increased uptake or greater local fatty acid synthesis is unknown. We have recently shown that CKD also leads to decreased fatty acid oxidation, which might be an additional mechanism leading to lipid accumulation. Defective fatty acid utilization causes energy depletion resulting in increased apoptosis and dedifferentiation, which in turn contributes to fibrosis and CKD progression. Enhanced fatty acid oxidation in the kidney induced by fenofibrate, a peroxisomal proliferator-activated receptor (PPAR)-α agonist, showed benefit in mouse models of CKD. Fenofibrate treatment also reduced albuminuria in patients with diabetes in multiple clinical trials. Taken together, these findings suggest that further understanding of lipid metabolism in diabetic kidney disease may lead to novel therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Aon MA, Bhatt N, Cortassa SC. Mitochondrial and cellular mechanisms for managing lipid excess. Front Physiol. 2014;5:282.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Goldberg IJ, Trent CM, Schulze PC. Lipid metabolism and toxicity in the heart. Cell Metab. 2012;15(6):805–12. This paper provides a thorough review of fatty acid metabolism in the heart and highlights diabetic or obese conditions, alterations in lipid metabolism and possible treatments to alleviate lipid-related pathology.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Barkoudah E, Skali H, Uno H, Solomon SD, Pfeffer MA. Mortality rates in trials of subjects with type 2 diabetes. J Am Heart Assoc. 2012;1(1):8–15.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Jiang T et al. Diet-induced obesity in C57BL/6J mice causes increased renal lipid accumulation and glomerulosclerosis via a sterol regulatory element-binding protein-1c-dependent pathway. J Biol Chem. 2005;280(37):32317–25.

    Article  CAS  PubMed  Google Scholar 

  5. Wang W et al. Deletion of scavenger receptor A protects mice from progressive nephropathy independent of lipid control during diet-induced hyperlipidemia. Kidney Int. 2012;81(10):1002–14. This study highlights the important role of a transmembrane receptor in hyperlipidemic kidney and tubular cell injury.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Weinberg JM. Lipotoxicity. Kidney Int. 2006;70(9):1560–6.

    Article  CAS  PubMed  Google Scholar 

  7. Kimmelstiel P, Wilson C. Intercapillary lesions in the glomeruli of the kidney. Am J Pathol. 1936;12(1):83–98.

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Chajek T, Stein O, Stein Y. Pre- and post-natal development of lipoprotein lipase and hepatic triglyceride hydrolase activity in rat tissues. Atherosclerosis. 1977;26:549–61.

    Article  CAS  PubMed  Google Scholar 

  9. Goldberg IJ et al. Localization of lipoprotein lipase mRNA in selected rat tissues. J Lipid Res. 1989;30(10):1569–77.

    CAS  PubMed  Google Scholar 

  10. Coburn CT et al. Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice. J Biol Chem. 2000;275(42):32523–9.

    Article  CAS  PubMed  Google Scholar 

  11. Bobulescu IA, Dubree M, Zhang J, McLeroy P, Moe OW. Effect of renal lipid accumulation on proximal tubule Na+/H+ exchange and ammonium secretion. Am J Physiol Renal Physiol. 2008;294(6):F1315–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Bobulescu IA. Renal lipid metabolism and lipotoxicity. Curr Opin Nephrol Hypertens. 2010;19(4):393–402.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Ginsberg HN. Diabetic dyslipidemia: basic mechanisms underlying the common hypertriglyceridemia and low HDL cholesterol levels. Diabetes. 1996;45 Suppl 3:S27–30.

    Article  CAS  PubMed  Google Scholar 

  14. Haemmerle G et al. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science. 2006;312(5774):734–7.

    Article  CAS  PubMed  Google Scholar 

  15. Eckel RH. Lipoprotein lipase. A multifunctional enzyme relevant to common metabolic diseases. N Engl J Med. 1989;320(16):1060–8.

    Article  CAS  PubMed  Google Scholar 

  16. Taskinen MR et al. Dual metabolic defects are required to produce hypertriglyceridemia in obese subjects. Arterioscler Thromb Vasc Biol. 2011;31(9):2144–50.

    Article  CAS  PubMed  Google Scholar 

  17. Vaziri ND. Dyslipidemia of chronic renal failure: the nature, mechanisms, and potential consequences. Am J Physiol Renal Physiol. 2006;290(2):F262–72.

    Article  CAS  PubMed  Google Scholar 

  18. Chauhan V, Vaid M. Dyslipidemia in chronic kidney disease: managing a high-risk combination. Postgrad Med. 2009;121(6):54–61.

    Article  PubMed  Google Scholar 

  19. Arici M et al. Fatty acids carried on albumin modulate proximal tubular cell fibronectin production: a role for protein kinase C. Nephrol Dial Transplant. 2002;17(10):1751–7.

    Article  CAS  PubMed  Google Scholar 

  20. Thomas ME, Harris KP, Walls J, Furness PN, Brunskill NJ. Fatty acids exacerbate tubulointerstitial injury in protein-overload proteinuria. Am J Physiol Renal Physiol. 2002;283(4):F640–7.

    Article  PubMed  Google Scholar 

  21. Susztak K, Ciccone E, McCue P, Sharma K, Bottinger EP. Multiple metabolic hits converge on CD36 as novel mediator of tubular epithelial apoptosis in diabetic nephropathy. PLoS Med. 2005;2(2):e45.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Ruggiero C et al. Albumin-bound fatty acids but not albumin itself alter redox balance in tubular epithelial cells and induce a peroxide-mediated redox-sensitive apoptosis. Am J Physiol Renal Physiol. 2014;306(8):F896–906.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Sun L, Halaihel N, Zhang W, Rogers T, Levi M. Role of sterol regulatory element-binding protein 1 in regulation of renal lipid metabolism and glomerulosclerosis in diabetes mellitus. J Biol Chem. 2002;277(21):18919–27.

    Article  CAS  PubMed  Google Scholar 

  24. Wang Z et al. Regulation of renal lipid metabolism, lipid accumulation, and glomerulosclerosis in FVBdb/db mice with type 2 diabetes. Diabetes. 2005;54(8):2328–35.

    Article  CAS  PubMed  Google Scholar 

  25. Jiang T, Liebman SE, Lucia MS, Li J, Levi M. Role of altered renal lipid metabolism and the sterol regulatory element binding proteins in the pathogenesis of age-related renal disease. Kidney Int. 2005;68(6):2608–20.

    Article  CAS  PubMed  Google Scholar 

  26. Kang HM et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat Med. 2015;21(1):37–46. This novel study provides evidence for the first time that it is not necessarily the increase in fatty acid levels but its defective oxidation that may play a key role in kidney fibrosis.

    Article  CAS  PubMed  Google Scholar 

  27. Ledo N et al. Functional genomic annotation of genetic risk loci highlights inflammation and epithelial biology networks in CKD. J Am Soc Nephrol. 2015;26(3):692–714.

    Article  CAS  PubMed  Google Scholar 

  28. Reidy K, Kang HM, Hostetter T, Susztak K. Molecular mechanisms of diabetic kidney disease. J Clin Invest. 2014;124(6):2333–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Muoio DM et al. Muscle-specific deletion of carnitine acetyltransferase compromises glucose tolerance and metabolic flexibility. Cell Metab. 2012;15(5):764–77. This study provides key evidence for the lipid overload theory in skeletal muscle in contrast to the lipotoxicity theory.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Markwell MA, McGroarty EJ, Bieber LL, Tolbert NE. The subcellular distribution of carnitine acyltransferases in mammalian liver and kidney. A new peroxisomal enzyme. J Biol Chem. 1973;248(10):3426–32.

    CAS  PubMed  Google Scholar 

  31. Haynie KR, Vandanmagsar B, Wicks SE, Zhang J, Mynatt RL. Inhibition of carnitine palymitoyltransferase1b induces cardiac hypertrophy and mortality in mice. Diabetes Obes Metab. 2014;16(8):757–60.

    Article  CAS  PubMed  Google Scholar 

  32. Vickers AE. Characterization of hepatic mitochondrial injury induced by fatty acid oxidation inhibitors. Toxicol Pathol. 2009;37(1):78–88.

    Article  CAS  PubMed  Google Scholar 

  33. Son NH et al. PPARgamma-induced cardiolipotoxicity in mice is ameliorated by PPARalpha deficiency despite increases in fatty acid oxidation. J Clin Invest. 2010;120(10):3443–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Liu L et al. DGAT1 expression increases heart triglyceride content but ameliorates lipotoxicity. J Biol Chem. 2009;284(52):36312–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Muoio DM, Neufer PD. Lipid-induced mitochondrial stress and insulin action in muscle. Cell Metab. 2012;15(5):595–605. This paper discusses mitochondrial lipid overload and its potential role in insulin sensitivity and emphasizes the advances of this hypothesis.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Goodpaster BH, He J, Watkins S, Kelley DE. Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab. 2001;86(12):5755–61.

    Article  CAS  PubMed  Google Scholar 

  37. Wang Z et al. Resting energy expenditure-fat-free mass relationship: new insights provided by body composition modeling. Am J Physiol Endocrinol Metab. 2000;279(3):E539–45.

    CAS  PubMed  Google Scholar 

  38. Nieth H, Schollmeyer P. Substrate-utilization of the human kidney. Nature. 1966;209(5029):1244–5.

    Article  CAS  PubMed  Google Scholar 

  39. Milne GL, Musiek ES, Morrow JD. F2-isoprostanes as markers of oxidative stress in vivo: an overview. Biomark Biochem Indic Expo Response Susceptibility Chem. 2005;10(1):S10–23.

    CAS  Google Scholar 

  40. Morrow JD. Quantification of isoprostanes as indices of oxidant stress and the risk of atherosclerosis in humans. Arterioscler Thromb Vasc Biol. 2005;25(2):279–86.

    Article  CAS  PubMed  Google Scholar 

  41. Stadler K et al. Involvement of inducible nitric oxide synthase in hydroxyl radical-mediated lipid peroxidation in streptozotocin-induced diabetes. Free Radic Biol Med. 2008;45(6):866–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Higdon A, Diers AR, Oh JY, Landar A, Darley-Usmar VM. Cell signalling by reactive lipid species: new concepts and molecular mechanisms. Biochem J. 2012;442(3):453–64. This study highlights that reactive lipids are not only deleterious, but they play major roles in signaling pathways as well due to their reactive, electrophile nature.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Cooper CE, Patel RP, Brookes PS, Darley-Usmar VM. Nanotransducers in cellular redox signaling: modification of thiols by reactive oxygen and nitrogen species. Trends Biochem Sci. 2002;27(10):489–92.

    Article  CAS  PubMed  Google Scholar 

  44. Rudolph TK, Freeman BA. Transduction of redox signaling by electrophile-protein reactions. Sci Signal. 2009; 2(90 re7).

  45. Morton J et al. Low HDL cholesterol and the risk of diabetic nephropathy and retinopathy: results of the ADVANCE study. Diabetes Care. 2012;35(11):2201–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Anonymous. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med. 1993;329(14):977–986.

  47. Baigent C et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet. 2011;377(9784):2181–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Portilla D, Mandel LJ, Bar-Sagi D, Millington DS. Anoxia induces phospholipase A2 activation in rabbit renal proximal tubules. Am J Physiol. 1992;262(3 Pt 2):F354–60.

    CAS  PubMed  Google Scholar 

  49. Davis TM et al. Effects of fenofibrate on renal function in patients with type 2 diabetes mellitus: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Diabetologia. 2011;54(2):280–90.

    Article  CAS  PubMed  Google Scholar 

  50. Ting RD et al. Benefits and safety of long-term fenofibrate therapy in people with type 2 diabetes and renal impairment: the FIELD Study. Diabetes Care. 2012;35(2):218–25. The studies described in this paper collectively summarize the advantages and potential disadvantages of fenofibrate therapy in diabetic kidney disease patients.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Kostapanos MS, Florentin M, Elisaf MS. Fenofibrate and the kidney: an overview. Eur J Clin Investig. 2013;43(5):522–31.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research in the Stadler and Susztak laboratories are supported by DiaComp Pilot and Feasibility grants (14GHSU1393, through Georgia Regents University/NIH) and the Pennington Foundation (K.St), NIH (K.Su) DK076077, DK087635 and HL45095, HL073029, and DK095684 (IJG).

Compliance with Ethics Guidelines

Conflict of Interest

Krisztian Stadler, Ira J. Goldberg, and Katalin Susztak declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katalin Susztak.

Additional information

This article is part of the Topical Collection on Microvascular Complications—Nephropathy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stadler, K., Goldberg, I.J. & Susztak, K. The Evolving Understanding of the Contribution of Lipid Metabolism to Diabetic Kidney Disease. Curr Diab Rep 15, 40 (2015). https://doi.org/10.1007/s11892-015-0611-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-015-0611-8

Keywords

Navigation