Skip to main content
Log in

Metabolic and Glycemic Sequelae of Sleep Disturbances in Children and Adults

  • Pediatric Type 2 Diabetes (PS Zeitler, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

The prevalence of obesity in adults and children has increased greatly in the past three decades, as have metabolic sequelae, such as insulin resistance and type 2 diabetes mellitus (T2DM). Sleep disturbances are increasingly recognized as contributors to this widespread epidemic in adults, and data are emerging in children as well. The categories of sleep disturbances that contribute to obesity and its glycemic co-morbidities include the following: (1) alterations of sleep duration, chronic sleep restriction and excessive sleep; (2) alterations in sleep architecture; (3) sleep fragmentation; (4) circadian rhythm disorders and disruption (i.e., shift work); and (5) obstructive sleep apnea. This article reviews current evidence supporting the contributions that these sleep disorders play in the development of obesity, insulin resistance, and T2DM as well as possibly influences on glycemic control in type 1 diabetes, with a special focus on data in pediatric populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA. 2014;311(8):806–14.

    CAS  PubMed  Google Scholar 

  2. Rocchini AP. Childhood obesity and a diabetes epidemic. N Engl J Med. 2002;346(11):854–5.

    PubMed  Google Scholar 

  3. Dabelea D, Mayer-Davis EJ, Saydah S, Imperatore G, Linder B, Divers J, et al. Prevalence of type 1 and type 2 diabetes among children and adolescents from 2001 to 2009. JAMA. 2014;311(17):1778–86.

    CAS  PubMed  Google Scholar 

  4. Knutson KL, Van Cauter E, Rathouz PJ, DeLeire T, Lauderdale DS. Trends in the prevalence of short sleepers in the USA: 1975–2006. Sleep. 2010;33(1):37–45.

    PubMed Central  PubMed  Google Scholar 

  5. Foundation NS. 2006 Sleep in America Poll Washington, DC: National Sleep Foundation; 2006 [updated 2006; cited 2014 August 3]. Available from: http://sleepfoundation.org/sites/default/files/2006_summary_of_findings.pdf

  6. Cappuccio FP, Taggart FM, Kandala NB, Currie A, Peile E, Stranges S, et al. Meta-analysis of short sleep duration and obesity in children and adults. Sleep. 2008;31(5):619–26.

    PubMed Central  PubMed  Google Scholar 

  7. Androutsos O, Moschonis G, Mavrogianni C, Roma-Giannikou E, Chrousos GP, Kanaka-Gantenbein C, et al. Identification of lifestyle patterns, including sleep deprivation, associated with insulin resistance in children: the Healthy Growth Study. Eur J Clin Nutr. 2014;68(3):344–9.

    CAS  PubMed  Google Scholar 

  8. Buxton OM, Pavlova M, Reid EW, Wang W, Simonson DC, Adler GK. Sleep restriction for 1 week reduces insulin sensitivity in healthy men. Diabetes. 2010;59(9):2126–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Hasler G, Buysse DJ, Klaghofer R, Gamma A, Ajdacic V, Eich D, et al. The association between short sleep duration and obesity in young adults: a 13-year prospective study. Sleep. 2004;27(4):661–6.

    PubMed  Google Scholar 

  10. Vgontzas AN, Fernandez-Mendoza J, Miksiewicz T, Kritikou I, Shaffer ML, Liao D, et al. Unveiling the longitudinal association between short sleep duration and the incidence of obesity: the Penn State Cohort. Int J Obes (Lond). 2014;38(6):825–32.

    CAS  Google Scholar 

  11. Ayas NT, White DP, Al-Delaimy WK, Manson JE, Stampfer MJ, Speizer FE, et al. A prospective study of self-reported sleep duration and incident diabetes in women. Diabetes Care. 2003;26(2):380–4.

    PubMed  Google Scholar 

  12. Gangwisch JE, Heymsfield SB, Boden-Albala B, Buijs RM, Kreier F, Pickering TG, et al. Sleep duration as a risk factor for diabetes incidence in a large U.S. sample. Sleep. 2007;30(12):1667–73.

    PubMed Central  PubMed  Google Scholar 

  13. Reutrakul S, Van Cauter E. Interactions between sleep, circadian function, and glucose metabolism: implications for risk and severity of diabetes. Ann N Y Acad Sci. 2014;1311:151–73.

    CAS  PubMed  Google Scholar 

  14. Holliday EG, Magee CA, Kritharides L, Banks E, Attia J. Short sleep duration is associated with risk of future diabetes but not cardiovascular disease: a prospective study and meta-analysis. PLoS One. 2013;8(11):e82305.

    PubMed Central  PubMed  Google Scholar 

  15. Beihl DA, Liese AD, Haffner SM. Sleep duration as a risk factor for incident type 2 diabetes in a multiethnic cohort. Ann Epidemiol. 2009;19(5):351–7.

    PubMed  Google Scholar 

  16. Gottlieb DJ, Punjabi NM, Newman AB, Resnick HE, Redline S, Baldwin CM, et al. Association of sleep time with diabetes mellitus and impaired glucose tolerance. Arch Intern Med. 2005;165(8):863–7.

    PubMed  Google Scholar 

  17. Cappuccio FP, D’Elia L, Strazzullo P, Miller MA. Quantity and quality of sleep and incidence of type 2 diabetes: a systematic review and meta-analysis. Diabetes Care. 2010;33(2):414–20.

    PubMed Central  PubMed  Google Scholar 

  18. Kita T, Yoshioka E, Satoh H, Saijo Y, Kawaharada M, Okada E, et al. Short sleep duration and poor sleep quality increase the risk of diabetes in Japanese workers with no family history of diabetes. Diabetes Care. 2012;35(2):313–8.

    PubMed Central  PubMed  Google Scholar 

  19. Pyykkonen AJ, Isomaa B, Pesonen AK, Eriksson JG, Groop L, Tuomi T, et al. Subjective sleep complaints are associated with insulin resistance in individuals without diabetes: the PPP-Botnia Study. Diabetes Care. 2012;35(11):2271–8.

    PubMed Central  PubMed  Google Scholar 

  20. Hitze B, Bosy-Westphal A, Bielfeldt F, Settler U, Plachta-Danielzik S, Pfeuffer M, et al. Determinants and impact of sleep duration in children and adolescents: data of the Kiel Obesity Prevention Study. Eur J Clin Nutr. 2009;63(6):739–46.

    CAS  PubMed  Google Scholar 

  21. Spruyt K, Molfese DL, Gozal D. Sleep duration, sleep regularity, body weight, and metabolic homeostasis in school-aged children. Pediatrics. 2011;127(2):e345–52.

    PubMed Central  PubMed  Google Scholar 

  22. Chen X, Beydoun MA, Wang Y. Is sleep duration associated with childhood obesity? A systematic review and meta-analysis. Obesity (Silver Spring). 2008;16(2):265–74.

    Google Scholar 

  23. Mitchell JA, Rodriguez D, Schmitz KH, Audrain-McGovern J. Sleep duration and adolescent obesity. Pediatrics. 2013;131(5):e1428–34.

    PubMed Central  PubMed  Google Scholar 

  24. Jarrin DC, McGrath JJ, Drake CL. Beyond sleep duration: distinct sleep dimensions are associated with obesity in children and adolescents. Int J Obes (Lond). 2013;37(4):552–8.

    CAS  Google Scholar 

  25. Matthews KA, Dahl RE, Owens JF, Lee L, Hall M. Sleep duration and insulin resistance in healthy black and white adolescents. Sleep. 2012;35(10):1353–8.

    PubMed Central  PubMed  Google Scholar 

  26. Javaheri S, Storfer-Isser A, Rosen CL, Redline S. Association of short and long sleep durations with insulin sensitivity in adolescents. J Pediatr. 2011;158(4):617–23.

    PubMed Central  PubMed  Google Scholar 

  27. Tian Z, Ye T, Zhang X, Liu E, Wang W, Wang P, et al. Sleep duration and hyperglycemia among obese and nonobese children aged 3 to 6 years. Arch Pediatr Adolesc Med. 2010;164(1):46–52.

    PubMed  Google Scholar 

  28. Sadeh A, Lavie P, Scher A, Tirosh E, Epstein R. Actigraphic home-monitoring sleep-disturbed and control infants and young children: a new method for pediatric assessment of sleep-wake patterns. Pediatrics. 1991;87(4):494–9.

    CAS  PubMed  Google Scholar 

  29. Spiegel K, Leproult R, Van Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet. 1999;354(9188):1435–9.

    CAS  PubMed  Google Scholar 

  30. Buxton OM, Cain SW, O’Connor SP, Porter JH, Duffy JF, Wang W, et al. Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption. Sci Transl Med. 2012;4(129):129ra43.

    PubMed Central  PubMed  Google Scholar 

  31. Leproult R, Holmback U, Van Cauter E. Circadian misalignment augments markers of insulin resistance and inflammation, independently of sleep loss. Diabetes. 2014;63(6):1860–9.

    CAS  PubMed  Google Scholar 

  32. Nedeltcheva AV, Kessler L, Imperial J, Penev PD. Exposure to recurrent sleep restriction in the setting of high caloric intake and physical inactivity results in increased insulin resistance and reduced glucose tolerance. J Clin Endocrinol Metab. 2009;94(9):3242–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Robertson MD, Russell-Jones D, Umpleby AM, Dijk D-J. Effects of three weeks of mild sleep restriction implemented in the home environment on multiple metabolic and endocrine markers in healthy young men. Metab Clin Exp. 2013;62(2):204–11.

    CAS  PubMed  Google Scholar 

  34. Flint J, Kothare SV, Zihlif M, Suarez E, Adams R, Legido A, et al. Association between inadequate sleep and insulin resistance in obese children. J Pediatr. 2007;150(4):364–9.

    CAS  PubMed  Google Scholar 

  35. Zhu Y, Li AM, Au CT, Kong APS, Zhang J, Wong CK, et al. Association between sleep architecture and glucose tolerance in children and adolescents. Journal of Diabetes. 2014:n/a-n/a

  36. Koren D, Levitt Katz LE, Brar PC, Gallagher PR, Berkowitz RI, Brooks LJ. Sleep architecture and glucose and insulin homeostasis in obese adolescents. Diabetes Care. 2011;34(11):2442–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Klingenberg L, Chaput JP, Holmback U, Visby T, Jennum P, Nikolic M, et al. Acute sleep restriction reduces insulin sensitivity in adolescent boys. Sleep. 2013;36(7):1085–90. Importance: This is the first study to perform experimental sleep restriction in children and then examine the impact on fasting and post-prandial insulin homeostasis and glucose tolerance.

    PubMed Central  PubMed  Google Scholar 

  38. Armitage R, Lee J, Bertram H, Hoffmann R. A preliminary study of slow-wave EEG activity and insulin sensitivity in adolescents. Sleep Med. 2013;14(3):257–60.

    PubMed Central  PubMed  Google Scholar 

  39. Knutson KL, Ryden AM, Mander BA, Van Cauter E. Role of sleep duration and quality in the risk and severity of type 2 diabetes mellitus. Arch Intern Med. 2006;166(16):1768–74.

    PubMed  Google Scholar 

  40. Ohkuma T, Fujii H, Iwase M, Kikuchi Y, Ogata S, Idewaki Y, et al. Impact of sleep duration on obesity and the glycemic level in patients with type 2 diabetes: the Fukuoka Diabetes Registry. Diabetes Care. 2013;36(3):611–7.

    PubMed Central  PubMed  Google Scholar 

  41. Tsai YW, Kann NH, Tung TH, Chao YJ, Lin CJ, Chang KC, et al. Impact of subjective sleep quality on glycemic control in type 2 diabetes mellitus. Fam Pract. 2012;29(1):30–5.

    PubMed  Google Scholar 

  42. Borel AL, Pepin JL, Nasse L, Baguet JP, Netter S, Benhamou PY. Short sleep duration measured by wrist actimetry is associated with deteriorated glycemic control in type 1 diabetes. Diabetes Care. 2013;36(10):2902–8.

    PubMed Central  PubMed  Google Scholar 

  43. Donga E, van Dijk M, van Dijk JG, Biermasz NR, Lammers GJ, van Kralingen K, et al. Partial sleep restriction decreases insulin sensitivity in type 1 diabetes. Diabetes Care. 2010;33(7):1573–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Feupe SF, Frias PF, Mednick SC, McDevitt EA, Heintzman ND. Nocturnal continuous glucose and sleep stage data in adults with type 1 diabetes in real-world conditions. J Diabetes Sci Technol. 2013;7(5):1337–45.

    PubMed Central  PubMed  Google Scholar 

  45. Yeshayahu Y, Mahmud FH. Altered sleep patterns in adolescents with type 1 diabetes: implications for insulin regimen. Diabetes Care. 2010;33(11):e142.

    PubMed  Google Scholar 

  46. Perfect MM, Patel PG, Scott RE, Wheeler MD, Patel C, Griffin K, et al. Sleep, glucose, and daytime functioning in youth with type 1 diabetes. Sleep. 2012;35(1):81–8.

    PubMed Central  PubMed  Google Scholar 

  47. Vgontzas AN, Zoumakis E, Bixler EO, Lin HM, Follett H, Kales A, et al. Adverse effects of modest sleep restriction on sleepiness, performance, and inflammatory cytokines. J Clin Endocrinol Metab. 2004;89(5):2119–26.

    CAS  PubMed  Google Scholar 

  48. Akash MS, Rehman K, Chen S. Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J Cell Biochem. 2013;114(3):525–31.

    CAS  PubMed  Google Scholar 

  49. Calvin AD, Carter RE, Adachi T, Macedo PG, Albuquerque FN, van der Walt C, et al. Effects of experimental sleep restriction on caloric intake and activity energy expenditure. Chest. 2013;144(1):79–86.

    PubMed Central  PubMed  Google Scholar 

  50. Markwald RR, Melanson EL, Smith MR, Higgins J, Perreault L, Eckel RH, et al. Impact of insufficient sleep on total daily energy expenditure, food intake, and weight gain. Proc Natl Acad Sci U S A. 2013;110(14):5695–700.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Pejovic S, Basta M, Vgontzas AN, Kritikou I, Shaffer ML, Tsaoussoglou M, et al. Effects of recovery sleep after one work week of mild sleep restriction on interleukin-6 and cortisol secretion and daytime sleepiness and performance. Am J Physiol Endocrinol Metab. 2013;305(7):E890–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Hart CN, Carskadon MA, Considine RV, Fava JL, Lawton J, Raynor HA, et al. Changes in children’s sleep duration on food intake, weight, and leptin. Pediatrics. 2013;132(6):e1473–80.

    PubMed  Google Scholar 

  53. Broussard JL, Ehrmann DA, Van Cauter E, Tasali E, Brady MJ. Impaired insulin signaling in human adipocytes after experimental sleep restriction: a randomized, crossover study. Ann Intern Med. 2012;157(8):549–57. Importance: This study examined effects of insulin in target tissue – adipocytes – and utilized direct measurements of insulin sensitivity rather than the surrogate of serum insulin levels. This was the first study known to demonstrate tissue-level insulin resistance induced by sleep deprivation.

    PubMed  Google Scholar 

  54. Anafi RC, Pellegrino R, Shockley KR, Romer M, Tufik S, Pack AI. Sleep is not just for the brain: transcriptional responses to sleep in peripheral tissues. BMC Genomics. 2013;14:362.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Massart R, Freyburger M, Suderman M, Paquet J, El Helou J, Belanger-Nelson E, et al. The genome-wide landscape of DNA methylation and hydroxymethylation in response to sleep deprivation impacts on synaptic plasticity genes. Translational Psychiatry. 2014;4:e347. Importance: This study demonstrates that sleep restriction has epigenetic impacts in mice, providing a possible pathophysiologic pathway for the damage incurred by chronic sleep deprivation.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Tasali E, Leproult R, Ehrmann DA, Van Cauter E. Slow-wave sleep and the risk of type 2 diabetes in humans. Proc Natl Acad Sci U S A. 2008;105(3):1044–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Stamatakis KA, Punjabi NM. Effects of sleep fragmentation on glucose metabolism in normal subjects. Chest. 2010;137(1):95–101.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Nonogaki K. New insights into sympathetic regulation of glucose and fat metabolism. Diabetologia. 2000;43(5):533–49.

    CAS  PubMed  Google Scholar 

  59. Mulder AH, Tack CJ, Olthaar AJ, Smits P, Sweep FC, Bosch RR. Adrenergic receptor stimulation attenuates insulin-stimulated glucose uptake in 3 T3-L1 adipocytes by inhibiting GLUT4 translocation. Am J Physiol Endocrinol Metab. 2005;289(4):E627–33.

    CAS  PubMed  Google Scholar 

  60. Matyka KA, Crawford C, Wiggs L, Dunger DB, Stores G. Alterations in sleep physiology in young children with insulin-dependent diabetes mellitus: relationship to nocturnal hypoglycemia. J Pediatr. 2000;137(2):233–8.

    CAS  PubMed  Google Scholar 

  61. Pillar G, Schuscheim G, Weiss R, Malhotra A, McCowen KC, Shlitner A, et al. Interactions between hypoglycemia and sleep architecture in children with type 1 diabetes mellitus. J Pediatr. 2003;142(2):163–8.

    PubMed  Google Scholar 

  62. Pallayova M, Donic V, Gresova S, Peregrim I, Tomori Z. Do differences in sleep architecture exist between persons with type 2 diabetes and nondiabetic controls? J Diabetes Sci Technol. 2010;4(2):344–52.

    PubMed Central  PubMed  Google Scholar 

  63. Jauch-Chara K, Schmid SM, Hallschmid M, Born J, Schultes B. Altered neuroendocrine sleep architecture in patients with type 1 diabetes. Diabetes Care. 2008;31(6):1183–8.

    CAS  PubMed  Google Scholar 

  64. Carskadon MA. Sleep in adolescents: the perfect storm. Pediatr Clin N Am. 2011;58(3):637–47.

    Google Scholar 

  65. Lee A, Ader M, Bray GA, Bergman RN. Diurnal variation in glucose tolerance. Cyclic suppression of insulin action and insulin secretion in normal-weight, but not obese, subjects. Diabetes. 1992;41(6):750–9.

    CAS  PubMed  Google Scholar 

  66. Pan A, Schernhammer ES, Sun Q, Hu FB. Rotating night shift work and risk of type 2 diabetes: two prospective cohort studies in women. PLoS Med. 2011;8(12):e1001141.

    PubMed Central  PubMed  Google Scholar 

  67. Roenneberg T, Allebrandt KV, Merrow M, Vetter C. Social jetlag and obesity. Curr Biol. 2012;22(10):939–43.

    CAS  PubMed  Google Scholar 

  68. Merikanto I, Lahti T, Puolijoki H, Vanhala M, Peltonen M, Laatikainen T, et al. Associations of chronotype and sleep with cardiovascular diseases and type 2 diabetes. Chronobiol Int. 2013;30(4):470–7.

    PubMed  Google Scholar 

  69. Reutrakul S, Hood MM, Crowley SJ, Morgan MK, Teodori M, Knutson KL, et al. Chronotype is independently associated with glycemic control in type 2 diabetes. Diabetes Care. 2013;36(9):2523–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Tomoda A, Kawatani J, Joudoi T, Hamada A, Miike T. Metabolic dysfunction and circadian rhythm abnormalities in adolescents with sleep disturbance. NeuroImage. 2009;47(2):T21–6.

    PubMed  Google Scholar 

  71. Culnan E, Kloss JD, Grandner M. A prospective study of weight gain associated with chronotype among college freshmen. Chronobiol Int. 2013;30(5):682–90.

    PubMed Central  PubMed  Google Scholar 

  72. Tasali E, Mokhlesi B, Van Cauter E. Obstructive sleep apnea and type 2 diabetes: interacting epidemics. Chest. 2008;133(2):496–506.

    PubMed  Google Scholar 

  73. Iiyori N, Alonso LC, Li J, Sanders MH, Garcia-Ocana A, O’Doherty RM, et al. Intermittent hypoxia causes insulin resistance in lean mice independent of autonomic activity. Am J Respir Crit Care Med. 2007;175(8):851–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Punjabi NM, Beamer BA. Alterations in glucose disposal in sleep-disordered breathing. Am J Respir Crit Care Med. 2009;179(3):235–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. O’Brien LM, Gozal D. Autonomic dysfunction in children with sleep-disordered breathing. Sleep. 2005;28(6):747–52.

    PubMed  Google Scholar 

  76. Marcus CL, Brooks LJ, Draper KA, Gozal D, Halbower AC, Jones J, et al. Diagnosis and management of childhood obstructive sleep apnea syndrome. Pediatrics. 2012;130(3):e714–55.

    PubMed  Google Scholar 

  77. Tauman R, O’Brien LM, Gozal D. Hypoxemia and obesity modulate plasma C-reactive protein and interleukin-6 levels in sleep-disordered breathing. Sleep & Breathing = Schlaf & Atmung. 2007;11(2):77–84.

    Google Scholar 

  78. Tauman R, Serpero LD, Capdevila OS, O’Brien LM, Goldbart AD, Kheirandish-Gozal L, et al. Adipokines in children with sleep disordered breathing. Sleep. 2007;30(4):443–9.

    PubMed  Google Scholar 

  79. Pamidi S, Wroblewski K, Broussard J, Day A, Hanlon EC, Abraham V, et al. Obstructive sleep apnea in young lean men: impact on insulin sensitivity and secretion. Diabetes Care. 2012;35(11):2384–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Kaditis AG, Alexopoulos EI, Damani E, Karadonta I, Kostadima E, Tsolakidou A, et al. Obstructive sleep-disordered breathing and fasting insulin levels in nonobese children. Pediatr Pulmonol. 2005;40(6):515–23.

    PubMed  Google Scholar 

  81. Tauman R, O’Brien LM, Ivanenko A, Gozal D. Obesity rather than severity of sleep-disordered breathing as the major determinant of insulin resistance and altered lipidemia in snoring children. Pediatrics. 2005;116(1):e66–73.

    PubMed  Google Scholar 

  82. Gozal D, Capdevila OS, Kheirandish-Gozal L. Metabolic alterations and systemic inflammation in obstructive sleep apnea among nonobese and obese prepubertal children. Am J Respir Crit Care Med. 2008;177(10):1142–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Kelly A, Dougherty S, Cucchiara A, Marcus CL, Brooks LJ. Catecholamines, adiponectin, and insulin resistance as measured by HOMA in children with obstructive sleep apnea. Sleep. 2010;33(9):1185–91.

    PubMed Central  PubMed  Google Scholar 

  84. Lesser DJ, Bhatia R, Tran WH, Oliveira F, Ortega R, Keens TG, et al. Sleep fragmentation and intermittent hypoxemia are associated with decreased insulin sensitivity in obese adolescent Latino males. Pediatr Res. 2012;72(3):293–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Redline S, Storfer-Isser A, Rosen CL, Johnson NL, Kirchner HL, Emancipator J, et al. Association between metabolic syndrome and sleep-disordered breathing in adolescents. Am J Respir Crit Care Med. 2007;176(4):401–8.

    PubMed Central  PubMed  Google Scholar 

  86. Bhushan B, Maddalozzo J, Sheldon SH, Haymond S, Rychlik K, Lales GC, et al. Metabolic alterations in children with obstructive sleep apnea. Int J Pediatr Otorhinolaryngol. 2014;78(5):854–9.

    PubMed  Google Scholar 

  87. Hannon TS, Lee S, Chakravorty S, Lin Y, Arslanian SA. Sleep-disordered breathing in obese adolescents is associated with visceral adiposity and markers of insulin resistance. Int J Pediatr Obes : IJPO : Off J Int Assoc Stud Obes. 2011;6(2):157–60.

    Google Scholar 

  88. Foster GD, Sanders MH, Millman R, Zammit G, Borradaile KE, Newman AB, et al. Obstructive sleep apnea among obese patients with type 2 diabetes. Diabetes Care. 2009;32(6):1017–9.

    PubMed Central  PubMed  Google Scholar 

  89. Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM. Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol. 2013;177(9):1006–14.

    PubMed Central  PubMed  Google Scholar 

  90. Shalitin S, Tauman R, Meyerovitch J, Sivan Y. Are frequency and severity of sleep-disordered breathing in obese children and youth with and without type 2 diabetes mellitus different? Acta diabetologica. 2014. Importance: This is the first pediatric study examining prevalence of obstructive sleep apnea in obese children and adolescents with and without type 2 diabetes mellitus

  91. Villa MP, Multari G, Montesano M, Pagani J, Cervoni M, Midulla F, et al. Sleep apnoea in children with diabetes mellitus: effect of glycaemic control. Diabetologia. 2000;43(6):696–702.

    CAS  PubMed  Google Scholar 

  92. Aronsohn RS, Whitmore H, Van Cauter E, Tasali E. Impact of untreated obstructive sleep apnea on glucose control in type 2 diabetes. Am J Respir Crit Care Med. 2010;181(5):507–13.

    PubMed Central  PubMed  Google Scholar 

  93. Bun Leong W, Banerjee D, Nolen M, Adab P, Neil Thomas G, Taheri S. Hypoxemia and Glycemic Control in Type 2 Diabetes Mellitus with Extreme Obesity. J Clin Endocrinol Metab. 2014:jc20141260

  94. Grimaldi D, Beccuti G, Touma C, Van Cauter E, Mokhlesi B. Association of obstructive sleep apnea in rapid eye movement sleep with reduced glycemic control in type 2 diabetes: therapeutic implications. Diabetes Care. 2014;37(2):355–63.

    PubMed  Google Scholar 

  95. St-Onge MP, Zammit G, Reboussin DM, Kuna ST, Sanders MH, Millman R, et al. Associations of sleep disturbance and duration with metabolic risk factors in obese persons with type 2 diabetes: data from the Sleep AHEAD Study. Nat Sci Sleep. 2012;4:143–50.

    PubMed Central  PubMed  Google Scholar 

  96. Tahrani AA, Ali A, Raymond NT, Begum S, Dubb K, Mughal S, et al. Obstructive sleep apnea and diabetic neuropathy: a novel association in patients with type 2 diabetes. Am J Respir Crit Care Med. 2012;186(5):434–41.

    PubMed Central  PubMed  Google Scholar 

  97. Leong WB, Nolen M, Thomas GN, Adab P, Banerjee D, Taheri S. The impact of hypoxemia on nephropathy in extremely obese patients with type 2 diabetes mellitus. J Clin Sleep Med. 2014;10(7):773–8.

    PubMed Central  PubMed  Google Scholar 

  98. Iftikhar IH, Khan MF, Das A, Magalang UJ. Meta-analysis: continuous positive airway pressure improves insulin resistance in patients with sleep apnea without diabetes. Ann Am Thorac Soc. 2013;10(2):115–20.

    PubMed Central  PubMed  Google Scholar 

  99. Yang D, Liu Z, Yang H, Luo Q. Effects of continuous positive airway pressure on glycemic control and insulin resistance in patients with obstructive sleep apnea: a meta-analysis. Sleep & breathing = Schlaf & Atmung. 2013;17(1):33–8.

    Google Scholar 

  100. Hassaballa H, Tulaimat A, Herdegen J, Mokhlesi B. The effect of continuous positive airway pressure on glucose control in diabetic patients with severe obstructive sleep apnea. Sleep Breathing. 2005;9(4):176–80.

    PubMed  Google Scholar 

  101. Babu AR, Herdegen J, Fogelfeld L, Shott S, Mazzone T. Type 2 diabetes, glycemic control, and continuous positive airway pressure in obstructive sleep apnea. Arch Intern Med. 2005;165(4):447–52.

    PubMed  Google Scholar 

  102. West SD, Nicoll DJ, Wallace TM, Matthews DR, Stradling JR. Effect of CPAP on insulin resistance and HbA1c in men with obstructive sleep apnoea and type 2 diabetes. Thorax. 2007;62(11):969–74.

    PubMed Central  PubMed  Google Scholar 

  103. Nakra N, Bhargava S, Dzuira J, Caprio S, Bazzy-Asaad A. Sleep-disordered breathing in children with metabolic syndrome: the role of leptin and sympathetic nervous system activity and the effect of continuous positive airway pressure. Pediatrics. 2008;122(3):e634–42.

    PubMed  Google Scholar 

  104. Morioka T, Asilmaz E, Hu J, Dishinger JF, Kurpad AJ, Elias CF, et al. Disruption of leptin receptor expression in the pancreas directly affects beta cell growth and function in mice. J Clin Invest. 2007;117(10):2860–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Berentzen NE, Smit HA, Bekkers MBM, Brunekreef B, Koppelman GH, De Jongste JC, et al. Time in bed, sleep quality and associations with cardiometabolic markers in children: the Prevention and Incidence of Asthma and Mite Allergy birth cohort study. J Sleep Res. 2014;23(1):3–12.

    PubMed  Google Scholar 

  106. Pedrosa R, Sena A, Cardoso A, Carvalho D, Medeiros J, Gonzaga N, et al. Sleep duration and cardiovascular risk in children and adolescents with overweight/obesity. European Respiratory Journal. 2013;42(Suppl 57)

  107. Patel MC, Shaikh WA, Singh SK. Association of sleep duration with blood glucose level of Gujarati Indian adolescents. Indian J Physiol Pharmacol. 2012;56(3):229–33.

    PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dorit Koren declares that she has no conflict of interest.

Katie L. O’Sullivan declares that she has no conflict of interest.

Babak Mokhlesi is supported, in part, by NIH grant R01 HL-119161, and he has also received compensation from Philips/Respironics for service as a consultant, and is currently participating in a study sponsored by Philips/Respironics.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorit Koren.

Additional information

Dr. Babak Mokhlesi is the senior author on this manuscript.

This article is part of the Topical Collection on Pediatric Type 2 Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koren, D., O’Sullivan, K.L. & Mokhlesi, B. Metabolic and Glycemic Sequelae of Sleep Disturbances in Children and Adults. Curr Diab Rep 15, 562 (2015). https://doi.org/10.1007/s11892-014-0562-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-014-0562-5

Keywords

Navigation