Skip to main content

Advertisement

Log in

Assessing Premorbid Cognitive Ability in Adults With Type 2 Diabetes Mellitus—a Review With Implications for Future Intervention Studies

  • Psychosocial Aspects (KK Hood, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Associations between type 2 diabetes mellitus (T2DM) and accelerated cognitive decline are well established. However, the sensitivity of neuropsychological tests to detect early deficits in cognitively normal adults with T2DM is unknown. This review examined cognitive domains and specific neuropsychological tests that are impaired in T2DM, based on clinically significant differences (effect sizes >0.5) between T2DM and groups without T2DM. Nine cross-sectional studies were identified which reported means and standard deviations for individual tests. Tests of executive function, working memory and psychomotor and attentional functions were found to be impaired in T2DM. Impairments of executive function and choice reaction time may have consequences for everyday functioning, in particular the risk of falls in older adults. More research on cognitive deficits in dual-task situations and how they impact everyday functioning is needed; the Trail Making Task, Symbol Digit Modalities Test, Verbal Fluency Task and tests of reaction time and processing speed could be included as core components of test batteries in future intervention studies. They could also be assessed in newly diagnosed T2DM and used to monitor progressive deterioration of cognitive function and the efficacy of therapeutic interventions on cognitive function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Cukierman T, Gerstein HC, Williamson JD. Cognitive decline and dementia in diabetes—systematic overview of prospective observational studies. Diabetologia. 2005;48(12):2460–9.

    Article  CAS  PubMed  Google Scholar 

  2. Accardi G et al. Can Alzheimer disease be a form of type 3 diabetes? Rejuvenation Res. 2012;15(2):217–21. This review presents another hypothesis of the pathogenesis of Alzheimer’s disease in people with the metabolic syndrome and diabetes.

    Article  CAS  PubMed  Google Scholar 

  3. Biessels GJ et al. Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol. 2006;5(1):64–74.

    Article  PubMed  Google Scholar 

  4. Strachan MW et al. Is type II diabetes associated with an increased risk of cognitive dysfunction? A critical review of published studies. Diabetes Care. 1997;20(3):438–45.

    Article  CAS  PubMed  Google Scholar 

  5. Sinclair AJ, Girling AJ, Bayer AJ. Cognitive dysfunction in older subjects with diabetes mellitus: impact on diabetes self-management and use of care services. Diabetes Res Clin Pract. 2000;50(3):203–12.

    Article  CAS  PubMed  Google Scholar 

  6. Feil DG, Zhu CW, Sultzer DL. The relationship between cognitive impairment and diabetes self-management in a population-based community sample of older adults with type 2 diabetes. J Behav Med. 2012;35(2):190–9.

    Article  PubMed  Google Scholar 

  7. de Mettelinge TR et al. Understanding the relationship between type 2 diabetes mellitus and falls in older adults: a prospective cohort study. PloS ONE. 2013;8(6):e67055. This study found that diabetes is an independent risk factor for falls in older adults, mediated by impaired cognitive function, abnormal gait and greater number of medications.

    Article  Google Scholar 

  8. Mitchell AJ. A meta-analysis of the accuracy of the mini-mental state examination in the detection of dementia and mild cognitive impairment. J Psychiatr Res. 2009;43(4):411–31.

    Article  PubMed  Google Scholar 

  9. Cullen B et al. A review of screening tests for cognitive impairment. J Neurol Neurosurg Psychiatry. 2007;78(8):790–9.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Tombaugh TN, Mcintyre NJ. The mini-mental state examination—a comprehensive review. J Am Geriatr Soc. 1992;40(9):922–35.

    CAS  PubMed  Google Scholar 

  11. Proust-Lima C et al. Sensitivity of four psychometric tests to measure cognitive changes in brain aging-population-based studies. Am J Epidemiol. 2007;165(3):344–50.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004;256(3):183–94.

    Article  CAS  PubMed  Google Scholar 

  13. Portet F et al. Mild cognitive impairment (MCI) in medical practice: a critical review of the concept and new diagnostic procedure. Report of the MCI Working Group of the European Consortium on Alzheimer’s Disease. J Neurol Neurosurg Psychiatry. 2006;77(6):714–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Ritchie K, Touchon J. Mild cognitive impairment: conceptual basis and current nosological status. Lancet. 2000;355(9199):225–8.

    Article  CAS  PubMed  Google Scholar 

  15. McCrimmon RJ, Ryan CM, Frier BM. Diabetes and cognitive dysfunction. Lancet. 2012;379(9833):2291–9.

    Article  PubMed  Google Scholar 

  16. Norman GR, Sloan JA, Wyrwich KW. Interpretation of changes in health-related quality of life: the remarkable universality of half a standard deviation. Med Care. 2003;41(5):582–92.

    PubMed  Google Scholar 

  17. Mehrabian S et al. Cognitive dysfunction profile and arterial stiffness in type 2 diabetes. J Neurol Sci. 2012;322(1–2):152–6.

    Article  PubMed  Google Scholar 

  18. Takeuchi A et al. Characteristics of neuropsychological functions in inpatients with poorly-controlled type 2 diabetes mellitus. J Diabetes Investig. 2012;3(3):325–30.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Christman AL et al. Cranial volume, mild cognitive deficits, and functional limitations associated with diabetes in a community sample. Arch Clin Neuropsychol. 2010;25(1):49–59.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Zihl J, Schaaf L, Zillmer EA. The relationship between adult neuropsychological profiles and diabetic patients’ glycemic control. Appl Neuropsychol. 2010;17(1):44–51.

    Article  PubMed  Google Scholar 

  21. Yeung SE, Fischer AL, Dixon RA. Exploring effects of type 2 diabetes on cognitive functioning in older adults. Neuropsychology. 2009;23(1):1–9.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Brands AM et al. A detailed profile of cognitive dysfunction and its relation to psychological distress in patients with type 2 diabetes mellitus. J Int Neuropsychol Soc. 2007;13(2):288–97.

    Article  PubMed  Google Scholar 

  23. van Harten B et al. Cognitive impairment and MRI correlates in the elderly patients with type 2 diabetes mellitus. Age Ageing. 2007;36(2):164–70.

    Article  PubMed  Google Scholar 

  24. Asimakopoulou KG, Hampson SE, Morrish NJ. Neuropsychological functioning in older people with type 2 diabetes: the effect of controlling for confounding factors. Diabet Med. 2002;19(4):311–6.

    Article  CAS  PubMed  Google Scholar 

  25. Ryan CM, Geckle MO. Circumscribed cognitive dysfunction in middle-aged adults with type 2 diabetes. Diabetes Care. 2000;23(10):1486–93.

    Article  CAS  PubMed  Google Scholar 

  26. Strauss E. In: Sherman EMS, editor. A compendium of neuropsychological tests: administration, norms, and commentary. 3rd ed. Oxford: Oxford University Press; 2006.

    Google Scholar 

  27. Hojat M, Xu G. A visitor’s guide to effect sizes: statistical significance versus practical (clinical) importance of research findings. Adv Health Sci Educ Theory Pract. 2004;9(3):241–9.

    Article  PubMed  Google Scholar 

  28. Cohen J. A power primer. Psychol Bull. 1992;112(1):155–9.

    Article  CAS  PubMed  Google Scholar 

  29. Jurado MB, Rosselli M. The elusive nature of executive functions: a review of our current understanding. Neuropsychol Rev. 2007;17(3):213–33.

    Article  PubMed  Google Scholar 

  30. Brandt J et al. Selectivity of executive function deficits in mild cognitive impairment. Neuropsychology. 2009;23(5):607–18.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Tabert MH et al. Neuropsychological prediction of conversion to Alzheimer disease in patients with mild cognitive impairment. Arch Gen Psychiatry. 2006;63(8):916–24.

    Article  PubMed  Google Scholar 

  32. Rucker JL, McDowd JM, Kluding PM. Executive function and type 2 diabetes: putting the pieces together. Phys Ther. 2012;92(3):454–62. Useful review on the underlying pathophysiological mechanisms between mental and functional abilities in older adults with type 2 diabetes.

    Article  PubMed  Google Scholar 

  33. Salthouse TA. What cognitive abilities are involved in trail-making performance? Intelligence. 2011;39(4):222–32.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Arbuthnott K, Frank J. Trail making test, part B as a measure of executive control: validation using a set-switching paradigm. J Clin Exp Neuropsychol. 2000;22(4):518–28.

    Article  CAS  PubMed  Google Scholar 

  35. Goni J et al. The semantic organization of the animal category: evidence from semantic verbal fluency and network theory. Cogn Process. 2011;12(2):183–96.

    Article  PubMed  Google Scholar 

  36. Farias ST et al. The measurement of everyday cognition (ECog): scale development and psychometric properties. Neuropsychology. 2008;22(4):531–44.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Bier N, Macoir J. How to make a spaghetti sauce with a dozen small things I cannot name: a review of the impact of semantic-memory deficits on everyday actions. J Clin Exp Neuropsychol. 2010;32(2):201–11.

    Article  PubMed  Google Scholar 

  38. Crawford JR et al. The executive decline hypothesis of cognitive aging: do executive deficits qualify as differential deficits and do they mediate age-related memory decline? Aging Neuropsychol Cognit. 2000;7(1):9–31.

    Article  Google Scholar 

  39. Plumet J, Gil R, Gaonac'h D. Neuropsychological assessment of executive functions in women: effects of age and education. Neuropsychology. 2005;19(5):566–77.

    Article  PubMed  Google Scholar 

  40. Fischer AL et al. Short-term longitudinal trends in cognitive performance in older adults with type 2 diabetes. J Clin Exp Neuropsychol. 2009;31(7):809–22.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Persad CC et al. Executive function and gait in older adults with cognitive impairment. J Gerontol A: Biol Med Sci. 2008;63(12):1350–5.

    Article  Google Scholar 

  42. Xia WQ et al. Altered baseline brain activity in type 2 diabetes: a resting-state OARI study. Psychoneuroendocrinology. 2013;38(11):2493–501. Evidence of initial onset of brain and functional changes in type 2 diabetes prior to the presentation of impaired behaviour performance.

    Article  PubMed  Google Scholar 

  43. Bingham EM et al. The role of insulin in human brain glucose metabolism—an (18)fluoro-deoxyglucose positron emission tomography study. Diabetes. 2002;51(12):3384–90.

    Article  CAS  PubMed  Google Scholar 

  44. Hinton-Bayre A, Geffen G. Comparability, reliability, and practice effects on alternate forms of the Digit Symbol Substitution and Symbol Digit Modalities Tests. Psychol Assess. 2005;17(2):237–41.

    Article  PubMed  Google Scholar 

  45. Morgan SF, Wheelock J. Digit Symbol and Symbol Digit Modalities Tests: are they directly interchangeable? US: Educational Publishing Foundation; 1992. p. 327–30.

    Google Scholar 

  46. Bates ME, Lemay EP. The d2 test of attention: construct validity and extensions in scoring techniques. J Int Neuropsychol Soc. 2004;10(3):392–400.

    Article  PubMed  Google Scholar 

  47. Waldmann BW et al. The relationship between intellectual ability and adult performance on the Trail Making Test and the Symbol Digit Modalities Test. J Clin Psychol. 1992;48(3):360–3.

    Article  CAS  PubMed  Google Scholar 

  48. Bryden PJ, Roy EA. A new method of administering the grooved pegboard test: performance as a function of handedness and sex. Brain Cogn. 2005;58(3):258–68.

    Article  CAS  PubMed  Google Scholar 

  49. Partanen J et al. Natural history of peripheral neuropathy in patients with non-insulin-dependent diabetes mellitus. N Engl J Med. 1995;333(2):89–94.

    Article  CAS  PubMed  Google Scholar 

  50. Sanchez-Marin FJ, Padilla-Medina JA. Simple reaction times and performance in the detection of visual stimuli of patients with diabetes. Comput Biol Med. 2010;40(6):591–6.

    Article  PubMed  Google Scholar 

  51. Kennelly S, Collins O. Walking the cognitive “minefield” between high and low blood pressure. J Alzheimers Dis. 2012;32(3):609–21.

    PubMed  Google Scholar 

  52. Beydoun MA et al. Statins and serum cholesterol’s associations with incident dementia and mild cognitive impairment. J Epidemiol Community Health. 2011;65(11):949–57.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Moore EM et al. Increased risk of cognitive impairment in patients with diabetes is associated with metformin. Diabetes Care 2013;36:2981–2987. Diabetes Care. 2013;36(11):3850.

    Article  CAS  Google Scholar 

  54. Ott A et al. Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology. 1999;53(9):1937–42.

    Article  CAS  PubMed  Google Scholar 

  55. Espeland MA et al. Cognitive function and fine motor speed in older women with diabetes mellitus: results from the women’s health initiative study of cognitive aging. J Womens Health (Larchmt). 2011;20(10):1435–43.

    Article  Google Scholar 

  56. Meneilly GS et al. The effect of improved glycemic control on cognitive functions in the elderly patient with diabetes. J Gerontol. 1993;48(4):M117–21.

    Article  CAS  PubMed  Google Scholar 

  57. Austin M-P, Mitchell P, Goodwin GM. Cognitive deficits in depression: possible implications for functional neuropathology. Br J Psychiatry. 2001;178(3):200–6.

    Article  CAS  PubMed  Google Scholar 

  58. Jessen F et al. Prediction of dementia by subjective memory impairment effects of severity and temporal association with cognitive impairment. Arch Gen Psychiatry. 2010;67(4):414–22.

    Article  PubMed  Google Scholar 

  59. Kanarek RB, Swinney D. Effects of food snacks on cognitive performance in male college students. Appetite. 1990;14(1):15–27.

    Article  CAS  PubMed  Google Scholar 

  60. Smit HJ, Rogers PJ. Effects of low doses of caffeine on cognitive performance, mood and thirst in low and higher caffeine consumers. Psychopharmacology. 2000;152(2):167–73.

    Article  CAS  PubMed  Google Scholar 

  61. Warren RE, Frier BM. Hypoglycaemia and cognitive function. Diabetes Obes Metab. 2005;7(5):493–503.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Rachel Heloise Xiwen Wong, Andrew Scholey and Peter Ranald Charles Howe declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Ranald Charles Howe.

Additional information

This article is part of the Topical Collection on Psychosocial Aspects

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, R.H.X., Scholey, A. & Howe, P.R.C. Assessing Premorbid Cognitive Ability in Adults With Type 2 Diabetes Mellitus—a Review With Implications for Future Intervention Studies. Curr Diab Rep 14, 547 (2014). https://doi.org/10.1007/s11892-014-0547-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-014-0547-4

Keywords

Navigation