Skip to main content
Log in

Use of Mobile Health Technology in the Prevention and Management of Diabetes Mellitus

  • Diabetes and Cardiovascular Disease (S Malik, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Cardiovascular disease is the leading cause of morbidity and mortality globally, with diabetes being an independent risk factor. Adequate diabetes management has proven to be resource-intensive, requiring frequent lab work, primary care and specialist visits, and time-consuming record-keeping by the patient and care team. New mobile health (mHealth) technologies have enhanced how diabetes is managed and care is delivered. While more recent work has investigated mHealth devices as complementary tools in behavioral interventions for diabetes prevention and management, little is still known about the effectiveness of mHealth technology as stand-alone intervention tools for reducing diabetes risk. In addition, more work is needed to identify the role of mHealth technology in treating vulnerable populations to ameliorate cardiovascular health disparities. With advances in mobile health technology development for diabetes prevention and management, these modalities will likely play an increasingly prominent role in reducing cardiometabolic risk for the US population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Mendis S. Global status report on noncommunicable diseases 2014. Switzerland: World Health Organization; 2014.

    Google Scholar 

  2. Zhuo X, Zhang P, Barker L, et al. The lifetime cost of diabetes and its implications for diabetes prevention. Diabetes Care. 2014;37(9):2557–64.

    Article  PubMed  Google Scholar 

  3. Wagner EH. The role of patient care teams in chronic disease management. Br Med J. 2000;320(7234):569.

    Article  CAS  Google Scholar 

  4. Bodenheimer T, Lorig K, Holman H, et al. Patient self-management of chronic disease in primary care. JAMA. 2002;288(19):2469–75.

    Article  PubMed  Google Scholar 

  5. Zgibor JC, Songer TJ. External barriers to diabetes care: addressing personal and health systems issues. Diabetes Spectr. 2001;14(1):23–8.

    Article  Google Scholar 

  6. Fjeldsoe BS, Alison L, et al. Behavior change interventions delivered by mobile telephone short-message service. Am J Prev Med. 2009;36(2):165–73.

    Article  PubMed  Google Scholar 

  7. Ramadas A, Quek KF, Chan C, et al. Web-based interventions for the management of type 2 diabetes mellitus: a systematic review of recent evidence. Int J Med Inform. 2011;80(6):389–405.

    Article  CAS  PubMed  Google Scholar 

  8. Burke LE, Ma J, Azar KM, et al. Current science on consumer use of mobile health for cardiovascular disease prevention a scientific statement from the American Heart Association. Circulation. 2015;132(12):1157–213.

    Article  PubMed  Google Scholar 

  9. Lyons EJ, Lewis ZH, Mayrsohn BG, et al. Behavior change techniques implemented in electronic lifestyle activity monitors: a systematic content analysis. J Med Int Res. 2014;16(8):e192.

    Google Scholar 

  10. Pellegrini CA, Verba SD, Otto AD, et al. The comparison of a technology‐based system and an in‐person behavioral weight loss intervention. Obesity. 2012;20(2):356–63.

    Article  PubMed  Google Scholar 

  11. Lewis ZH, Lyons EJ, Jarvis JM, et al. Using an electronic activity monitor system as an intervention modality: a systematic review. BMC Public Health. 2015;15:585. doi:10.1186/s12889-015-1947-3.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rastogi R, Rajaraman SA, Dehennis A. A wearable continuous glucose monitoring system with built-in activity tracking. Diabetes Technol Ther. 2014;16:A65.

    Google Scholar 

  13. Finkelstein J, Bedra M, Li X, et al. Mobile app to reduce inactivity in sedentary overweight women. Stud Health Technol Inform. 2015;216:89–92.

    PubMed  Google Scholar 

  14. •Barwais FA, Cuddihy TF, Tomson LM. Physical activity, sedentary behavior and total wellness changes among sedentary adults: a 4-week randomized controlled trial. Health Qual Life Outcomes. 2013;11:183. doi:10.1186/1477-7525-11-183. This study demonstrated the use of an activity monitor to decrease sedentary time in obese populations at risk for diabetes.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yingling LR, Brooks AT, Wallen GR, et al. Community engagement to optimize the use of web-based and wearable technology in a cardiovascular health and needs assessment study: a mixed methods approach. JMIR Mhealth Uhealth. 2016;4(2):e38. doi:10.2196/mhealth.4489.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mercer K, Li M, Giangregorio L, et al. Behavior change techniques present in wearable activity trackers: a critical analysis. JMIR Mhealth Uhealth. 2016;4(2):e40.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Arsand E, Muzny M, Bradway M, et al. Performance of the first combined smartwatch and smartphone diabetes diary application study. J Diabetes Sci Technol. 2015;9(3):556–63. doi:10.1177/1932296814567708.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pew Research Center. The smartphone difference. 2015. Available at: http://www.pewinternet.org/2015/04/01/us-smartphone-use-in-2015/.

  19. Bandura A. Health promotion from the perspective of social cognitive theory. Psychol Health. 1998;13:623–49.

    Article  Google Scholar 

  20. Fox S, Duggan M. Tracking for health. Pew Research Center’s Internet & American Life Project. 2013.

    Google Scholar 

  21. Siopis G, Chey T, Allman-Farinelli M. A systematic review and meta-analysis of interventions for weight management using text messaging. J Hum Nutr Diet. 2015;28:1–15. doi:10.1111/jhn.12207.

    Article  PubMed  Google Scholar 

  22. Knowler WC, Barrett-Connor E, Fowler SE, et al. Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.

    Article  CAS  PubMed  Google Scholar 

  23. Wadden TA, Webb VL, Moran CH, et al. Lifestyle modification for obesity new developments in diet, physical activity, and behavior therapy. Circulation. 2012;125(9):1157–70.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jensen MD, Ryan DH, Apovian CM, et al. 2013 AHA/ACC/TOS Guideline for the management of overweight and obesity in adults. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. J Am Coll Cardiol. 2014;63(25_PA):2985–3023. doi:10.1016/j.jacc.2013.11.004.

    Article  PubMed  Google Scholar 

  25. Khaylis A, Yiaslas T, Bergstrom J, et al. A review of efficacious technology-based weight-loss interventions: five key components. Telemedicine J e-Health. 2010;16(9):931–8. doi:10.1089/tmj.2010.0065.

    Article  Google Scholar 

  26. Pagoto S, Schneider K, Jojic M, et al. Evidence-based strategies in weight-loss mobile apps. Am J Prev Med. 2013;45(5):576–82.

    Article  PubMed  Google Scholar 

  27. •Fukuoka Y, Gay CL, Joiner KL, et al. A novel diabetes prevention intervention using a mobile app: A randomized controlled trial with overweight adults at risk. Am J Prev Med. 2015;49(2):223–37. doi:10.1016/j.amepre.2015.01.003. Overweight and obese older adults at risk for diabetes had significant decreases in weight, demonstrating the successful use of mHealth technologies in this population.

    Article  PubMed  PubMed Central  Google Scholar 

  28. •Block G, Azar KM, Romanelli RJ, et al. Diabetes prevention and weight loss with a fully automated behavioral intervention by email, web, and mobile phone: a randomized controlled trial among persons with prediabetes. J Med Int Res. 2015;17(10):e240. doi:10.2196/jmir.4897. This study demonstrated the importance of including several mHealth technologies to induce weight loss, but was unable to demonstrate long-term effects compared to control groups.

    Google Scholar 

  29. •Svetkey LP, Batch BC, Lin PH, et al. Cell phone intervention for you (CITY): a randomized, controlled trial of behavioral weight loss intervention for young adults using mobile technology. Obesity. 2015;23(11):2133–41. doi:10.1002/oby.21226. This study showed that despite high study retention, a mobile health technology-delivered intervention did not lead to weight loss.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lowe J, Linjawi S, Mensch M, et al. Flexible eating and flexible insulin dosing in patients with diabetes: results of an intensive self-management course. Diabetes Res Clin Pract. 2008;80(3):439–43. doi:10.1016/j.diabres.2008.02.003.

    Article  CAS  PubMed  Google Scholar 

  31. Samann A, Muhlhauser I, Bender R, et al. Glycaemic control and severe hypoglycaemia following training in flexible, intensive insulin therapy to enable dietary freedom in people with type 1 diabetes: a prospective implementation study. Diabetologia. 2005;48(10):1965–70. doi:10.1007/s00125-005-1905-1.

    Article  CAS  PubMed  Google Scholar 

  32. Kósa I, Vassányi I, Pintér B, et al. Clinical experiences with a mobile diet logging application. Eur J Prev Cardiol. 2014;21(2):41.

    Google Scholar 

  33. Waki K, Fujita H, Uchimura Y, et al. Dialbetics: smartphone-based self-management for patients with type 2 diabetes. J Diabetes Sci Technol. 2012;6(2):A187.

    Google Scholar 

  34. Waki K, Fujita H, Uchimura Y, et al. DialBetics: a novel smartphone-based self-management support system for type 2 diabetes patients. J Diabetes Sci Technol. 2014;8(2):209–15. doi:10.1177/1932296814526495.

    Article  PubMed  PubMed Central  Google Scholar 

  35. ••Waki K, Fujita H, Uchimura Y, et al. Diabetics: smart phone-based self-management for type 2 diabetes patients. J Diabetes Sci Technol. 2013;7(1):A151. This study demonstrated that a smartphone app with glucose tracking and provider feedback could be used to significantly decrease HbA1c.

    Google Scholar 

  36. Waki K, Aizawa K, Kato S, et al. DialBetics with a multimedia food recording tool, Foodlog: smartphone-based self-management for type 2 diabetes. J Diabetes Sci Technol. 2015;9(3):534–40. doi:10.1177/1932296815579690.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rhyner D, Loher H, Dehais J, et al. Carbohydrate estimation by a mobile phone-based system versus self-estimations of individuals with type 1 diabetes mellitus: a comparative study. J Med Internet Res. 2016;18(5):e101. doi:10.2196/jmir.5567.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Aizawa K, Maeda K, Ogawa M, et al. Comparative study of the routine daily usability of Foodlog: a smartphone-based food recording tool assisted by image retrieval. J Diabetes Sci Technol. 2014;8(2):203–8. doi:10.1177/1932296814522745.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Froisland DH, Arsand E. Integrating visual dietary documentation in mobile-phone-based self-management application for adolescents with type 1 diabetes. J Diabetes Sci Technol. 2015;9(3):541–8. doi:10.1177/1932296815576956.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hales S, Dunn C, Wilcox S, et al. Is a picture worth a thousand words? Few evidence-based features of dietary interventions included in photo diet tracking mobile apps for weight loss. J Diabetes Sci Technol. 2016. doi:10.1177/1932296816651451.

  41. Bort-Roig J, Gilson ND, Puig-Ribera A, et al. Measuring and influencing physical activity with smartphone technology: a systematic review. Sports Med. 2014;44(5):671–86. doi:10.1007/s40279-014-0142-5.

    Article  PubMed  Google Scholar 

  42. McMillan KA, Kirk A, Hewitt A, et al. A systematic and integrated review of mobile-based technology to promote active lifestyles in people with type 2 diabetes. J Diabetes SciTechnol. 2016. doi:10.1177/1932296816656018.

  43. Conroy DE, Yang CH, Maher JP. Behavior change techniques in top-ranked mobile apps for physical activity. Am J Prev Med. 2014;46(6):649–52. doi:10.1016/j.amepre.2014.01.010.

    Article  PubMed  Google Scholar 

  44. Puig-Ribera A, Bort-Roig J, Gonzalez-Suarez AM, et al. Patterns of impact resulting from a ‘sit less, move more’ web-based program in sedentary office employees. PLoS ONE. 2015;10(4):e0122474. doi:10.1371/journal.pone.0122474.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Polonsky WH, Fisher L, Schikman CH, et al. Structured self-monitoring of blood glucose significantly reduces A1C levels in poorly controlled, noninsulin-treated type 2 diabetes: results from the Structured Testing Program study. Diabetes Care. 2011;34(2):262–7. doi:10.2337/dc10-1732.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Vashist SK. Non-invasive glucose monitoring technology in diabetes management: a review. Anal Chim Acta. 2012;750:16–27. doi:10.1016/j.aca.2012.03.043.

    Article  CAS  PubMed  Google Scholar 

  47. Bandodkar AJ, Wang J. Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol. 2014;32(7):363–71. doi:10.1016/j.tibtech.2014.04.005.

    Article  CAS  PubMed  Google Scholar 

  48. Deiss D, Bolinder J, Riveline JP, et al. Improved glycemic control in poorly controlled patients with type 1 diabetes using real-time continuous glucose monitoring. Diabetes Care. 2006;29(12):2730–2.

    Article  PubMed  Google Scholar 

  49. Bailey TS, Zisser HC, Garg SK. Reduction in hemoglobin A1C with real-time continuous glucose monitoring: results from a 12-week observational study. Diabetes Technol Ther. 2007;9(3):203–10.

    Article  CAS  PubMed  Google Scholar 

  50. Garg S, Zisser H, Schwartz S, et al. Improvement in glycemic excursions with a transcutaneous, real-time continuous glucose sensor: a randomized controlled trial. Diabetes Care. 2006;29(1):44–50.

    Article  CAS  PubMed  Google Scholar 

  51. Tamborlane WV, Beck RW, Bode BW, et al. Continuous glucose monitoring and intensive treatment of type 1 diabetes. N Engl J Med. 2008;359(14):1464–76.

    Article  PubMed  Google Scholar 

  52. Schütz-Fuhrmann I, Cvach S, Stadler M, et al. Role of continuous glucose monitoring (CGM) with IPRO2 in the routine management of diabetes. Diabetes Technol Ther. 2013;15:A72–3.

    Google Scholar 

  53. Mdingi C, Rastogi R, Dehennis. Clinical benefit in glycemic control using a long-term, implantable, continuous glucose monitoring system in a 90-day feasibility study. Diabetes. 2014;63:A213–4.

    Google Scholar 

  54. Yoo HJ, Ang HG, Park SY, et al. Use of a real time continuous glucose monitoring system as a motivational device for poorly controlled type 2 diabetes. Diabetes Res Clin Pract. 2008;82(1):73–9.

    Article  CAS  PubMed  Google Scholar 

  55. Kim HS, Shin JA, Chang JS, et al. Continuous glucose monitoring: current clinical use. Diabetes Metab Res Rev. 2012;28 Suppl 2:73–8. doi:10.1002/dmrr.2346.

    Article  PubMed  Google Scholar 

  56. Shrivastava SR, Shrivastava PS, Ramasamy J. Role of self-care in management of diabetes mellitus. J Diabetes Metabol Disord. 2013;12(1):1.

    Article  Google Scholar 

  57. Issom DZ, Woldaregay AZ, Chomutare T, et al. Mobile applications for people with diabetes published between 2010 and 2015. Diabetes Manage. 2015;5(6):539–50.

    Article  CAS  Google Scholar 

  58. Tanenbaum ML, Bhatt HB, Thomas VA, Wing RR. Use of self-monitoring tools in a clinic sample of adults with type 2 diabetes. Translational Behavioral Medicine. 2016. doi:10.1007/s13142-016-0418-4.

  59. Arnhold M, Quade M, Kirch W. Mobile applications for diabetics: a systematic review and expert-based usability evaluation considering the special requirements of diabetes patients age 50 years or older. Ed. Gunther Eysenbach. J Med Int Res. 2014;16:e104.

    Google Scholar 

  60. Kirwan M, Vandelanotte C, Fenning A, et al. Diabetes self-management smartphone application for adults with type 1 diabetes: randomized controlled trial. J Med Internet Res. 2013;15(11):e235. doi:10.2196/jmir.2588.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kim HS, Choi W, Baek EK, et al. Efficacy of the smartphone-based glucose management application stratified by user satisfaction. Diabetes Metab J. 2014;38(3):204–10. doi:10.4093/dmj.2014.38.3.204.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Rao A, Hou P, Golnik T, et al. Evolution of data management tools for managing self-monitoring of blood glucose results: a survey of iPhone applications. J Diabetes Sci Technol. 2010;4(4):949–57.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Harris LT, Tufano J, Le T, et al. Designing mobile support for glycemic control in patients with diabetes. J Biomed Inform. 2010;43(5 Suppl):S37–40. doi:10.1016/j.jbi.2010.05.004.

    Article  PubMed  Google Scholar 

  64. Becker S, Brandl C, Meister S, et al. Demographic and health related data of users of a mobile application to support drug adherence is associated with usage duration and intensity. PLoS ONE. 2015;10(1):e0116980. doi:10.1371/journal.pone.0116980.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Borrero AF, Vasques J, Vargas R. Implementation of a mobile application to promote self-care in elder diabetic patients. VI Latin American Congress on Biomedical Engineering CLAIB 2014, Paraná, Argentina 29, 30 & 31 October 2014; 2015: Springer International Publishing. Available at: http://link.springer.com/chapter/10.1007%2F978-3-319-13117-7_203.

  66. Hawkes CP, Hindmarsh PC, McCarthy M. Structured feedback in the development of the first educational smartphone application (Pumps4Kids) for Insulin Pump Starts. Diabetes. 2013: American Diabetes Association Available at: http://diabetes.diabetesjournals.org/content/diabetes/62/Supplement_1/A621.full.pdf.

  67. Chomutare T, Fernandez-Luque L, Arsand E, et al. Features of mobile diabetes applications: review of the literature and analysis of current applications compared against evidence-based guidelines. J Med Internet Res. 2011;13(3):e65. doi:10.2196/jmir.1874.

    Article  PubMed  PubMed Central  Google Scholar 

  68. American Diabetes Association. Standards of Medical Care in Diabetes 2016. Diabetes Care. 2016;39 Suppl 1:S1–112. doi:10.2337/dc16-S003.

    Google Scholar 

  69. Shah VN, Garg SK. Managing diabetes in the digital age. Clin Diabetes Endocrinol. 2015;1(1):1–7. doi:10.1186/s40842-015-0016-2.

    Article  Google Scholar 

  70. ••Quinn CC, Shardell MD, Terrin ML, et al. Cluster-randomized trial of a mobile phone personalized behavioral intervention for blood glucose control. Diabetes Care. 2011;34(9):1934–42. doi:10.2337/dc11-0366. A mobile phone application that communicated with the provider demonstrated the potential for patient-provider communication in mobile applications.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Park HS, Cho H, Kim HS. Development of cell phone application for blood glucose self-monitoring based on ISO/IEEE 11073 and HL7 CCD. Healthc Inform Res. 2015;21:83–94.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Frazetta D, Willet K, Fairchild R. A systematic review of smartphone application use for type 2 diabetic patients. Online Journal of Nursing Informatics (OJNI). 2012;16(3). Available at: http://ojni.org/issues/?p=2041.

  73. Fox S, Duggan M. Mobile health 2012. Washington: Pew Internet & American Life Project; 2012.

    Google Scholar 

  74. Blondon KS, Hebert PL, Ralston JD. An exploration of the potential reach of smartphones in diabetes. In AMIA Annual Symposium Proceedings (Vol. 2014, p. 289). American Medical Informatics Association. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4419894.

  75. Vaala SE, Hood KK, Laffel L, et al. Use of commonly available technologies for diabetes information and self-management among adolescents with type 1 diabetes and their parents: a web-based survey study. Interac J Med Res. 2015;4(4):e24.

    Article  Google Scholar 

  76. Frøisland DH, Årsand E, Skårderud F. Improving diabetes care for young people with type 1 diabetes through visual learning on mobile phones: mixed-methods study. J Med Int Res. 2012;14(4):e111.

    Google Scholar 

  77. Swartwout E, El-Zein A, Deyo P, et al. Use of gaming in self-management of diabetes in teens. Curr Diabetes Rep. 2016;16(7):1–13.

    Article  Google Scholar 

  78. Rothenberg R, Zetelski M, Sivitz J, et al. Use of smartphone, a cellular glucometer and social media app in the management of type 1 DM in the adolescent population: the future of diabetes care. Horm Res Paediatr. 2015;84:374–5.

    Google Scholar 

  79. Cafazzo JA, Casselman M, Hamming N, et al. Design of an mHealth app for the self-management of adolescent type 1 diabetes: a pilot study. J Med Internet Res. 2012;14(3):e70.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Cafazzo JA, Casselman M, Katzman DK, et al. Bant: an mHealth App for adolescent type I diabetes—a pilot study. J Adolesc Health. 2012;50(2):S77–8.

    Article  Google Scholar 

  81. Muzny M, Chomutare T, Johansen SG, et al. Ambient light as an information mediator for parents to children with diabetes. Diab Technol Ther. 2015;17:A128.

    Article  Google Scholar 

  82. Carroll AE, DiMeglio LA, Stein S, et al. Contracting and monitoring relationships for adolescents with type 1 diabetes: a pilot study. Diabetes Technol Ther. 2011;13(5):543–9.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Ayanian JZ, Landon BE, Newhouse JP, et al. Racial and ethnic disparities among enrollees in Medicare Advantage plans. N Engl J Med. 2014;371(24):2288–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Parrinello CM, Rastegar I, Godino JG, et al. Prevalence of and racial disparities in risk factor control in older adults with diabetes: the Atherosclerosis Risk in Communities Study. Diabetes Care. 2015;38(7):1290–8.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kumanyika SK, Whitt-Glover MC, Haire-Joshu D. What works for obesity prevention and treatment in Black Americans? Research directions. Obes Rev. 2014;15 Suppl 4:204–12. doi:10.1111/obr.12213.

    Article  PubMed  Google Scholar 

  86. St. George SM et al. Access to and interest in using smartphone technology for the management of type 1 diabetes in ethnic minority adolescents and their parents. Diabetes Technol Ther. 2016;18:104–9.

    Article  PubMed  Google Scholar 

  87. Mayer L, Fei K, Buquez B, et al. Mobile technology access, usage, and attitudes among low-income, minority individuals in East Harlem, NY Victoria. J Gen Intern Med. 2015;30:S210.

    Google Scholar 

  88. Payne BD, Oster R, Shelley JP, et al. Association between diabetes self-care and perceived support in a sample of low-income African Americans. J Gen Intern Med. 2015;30:S103.

    Google Scholar 

  89. Dang S, Oropesa L, Byrne MM, et al. Race/ethnic disparities in weight and glycemia in older adults receiving lifestyle interventions via peer-leaders with or without mobile enhancement for diabetes prevention and management. J Am Geriatr Soc. 2014;62:S216.

    Google Scholar 

  90. Coughlin SS, Smith SA. A review of community-based participatory research studies to promote physical activity among African Americans. J Ga Public Health Assoc. 2016;5(3):220–7.

    PubMed  PubMed Central  Google Scholar 

  91. Yang CC, Hsu YL. A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors. 2010;10:7772–88.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute; the National Institutes of Health; or the U.S. Department of Health and Human Services. Funding for TP-W and LY is provided through the Division of Intramural Research of the National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health (NIH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiffany M. Powell-Wiley.

Ethics declarations

Conflict of Interest

Jacob Hartz, Leah Yingling, and Tiffany M. Powell-Wiley declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

Ethical approval: All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

This article is part of the Topical Collection on Diabetes and Cardiovascular Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartz, J., Yingling, L. & Powell-Wiley, T.M. Use of Mobile Health Technology in the Prevention and Management of Diabetes Mellitus. Curr Cardiol Rep 18, 130 (2016). https://doi.org/10.1007/s11886-016-0796-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-016-0796-8

Keywords

Navigation