Skip to main content
Log in

Metabolic Surgery and Diabesity: a Systematic Review

  • Review Article
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Bariatric surgery is used to induce weight loss (baros = weight). Evidence has shown that bariatric surgery improves the comorbid conditions associated with obesity such as hypertension, hyperlipidemia, and type 2 diabetes mellitus T2DM. Hence, shifting towards using metabolic surgery instead of bariatric surgery is currently more appropriate in certain subset of patients. Endocrine changes resulting from operative manipulation of the gastrointestinal tract after metabolic surgery translate into metabolic benefits with respect to the comorbid conditions. Other changes include bacterial flora rearrangement, bile acids secretion, and adipose tissue effect. The aim of this systematic review is to examine clinical trials regarding long-term effects of bariatric and metabolic surgery on patients with T2DM and to evaluate the potential mechanisms leading to the improvement in the glycaemic control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hossain P, Kawar B, El Nahas MN. Obesity and diabetes in the developing world—a growing challenge.Engl. J Med. 2007;356(3):213–5.

    CAS  Google Scholar 

  2. Rubino F, Gagner M. Potential of surgery for curing type 2 diabetes mellitus. Ann Surg. 2002;236(5):554–9.

    PubMed  PubMed Central  Google Scholar 

  3. Lee WJ, Huang MT, Wang W, et al. Bariatric surgery: Asia-Pacific perspective. ObesSurg. 2005;15:751–7.

    Google Scholar 

  4. Angrisani L, Santonicola A, Iovino P, et al. Bariatric surgery worldwide 2013. ObesSurg. 2015;25:1822–32.

    CAS  Google Scholar 

  5. Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001 Dec 13;414(6865):782–7.

    CAS  PubMed  Google Scholar 

  6. Bays HE, González-Campoy JM, Bray GA, et al. Pathogenic potential of adipose tissue and metabolic consequences of adipocyte hypertrophy and increased visceral adiposity. Expert Rev Cardiovasc Ther. 2008;6(3):343–68.

    CAS  PubMed  Google Scholar 

  7. Kindel TL, Yoder SM, Seeley RJ, et al. Duodenal-jejunal exclusion improves glucose tolerance in the diabetic, Goto-Kakizaki rat by a GLP-1 receptor-mediated mechanism. J Gastrointest Surg. 2009;13(10):1762–72.

    PubMed  Google Scholar 

  8. Cohen R, Caravatto PP, Correa JL, et al. Glycemic control after stomach-sparing duodenal-jejunal bypass surgery in diabetic patients with low body mass index. Surg Obes Relat Dis. 2012;8(4):375–80.

    PubMed  Google Scholar 

  9. Tatemoto K, Carlquist M, Mutt V. Neuropeptide Y—a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature. 1982;296(5858):659–60.

    CAS  PubMed  Google Scholar 

  10. Kalra SP, Kalra PS. Neuropeptide Y: a physiological orexigen modulated by the feedback action of ghrelin and leptin. Endocrine. 2003;22(1):49–56.

    CAS  PubMed  Google Scholar 

  11. Sindelar DK, Ste Marie L, Miura GI, et al. Neuropeptide Y is required for hyperphagic feeding in response to neuroglucopenia. Endocrinology. 2004 Jul;145(7):3363–8.

    CAS  PubMed  Google Scholar 

  12. He B, White BD, Edwards GL, et al. Neuropeptide Y antibody attenuates 2-deoxy-D-glucose induced feeding in rats. Brain Res. 1998;781(1–2):348–50.

    CAS  PubMed  Google Scholar 

  13. Beck B. Neuropeptide Y in normal eating and in genetic and dietary-induced obesity. Philos Trans R SocLond B Biol Sci. 2006;361(1471):1159–85. Published online 2006 Jun 19. https://doi.org/10.1098/rstb.2006.1855.

    Article  CAS  Google Scholar 

  14. Bullen Jr JW, Ziotopoulou M, Ungsunan L, et al. Short-term resistance to diet-induced obesity in A/J mice is not associated with regulation of hypothalamic neuropeptides. Am J Physiol Endocrinol Metab. 2004;287(4):E662–70.

    CAS  PubMed  Google Scholar 

  15. Su T, Wu J, Liu W, Duan C, Zhang S, Tang C, Luo F. Zhong Nan Da Xue Xue Bao Yi Xue Ban. Expression change of SH2B1, SOCS3, PTP1B and NPY in mice hypothalamus and its relation with obesity. 2014 Jan;39(1):43–8. https://doi.org/10.11817/j.issn.1672-7347.2014.01.008.

  16. Bugajski AJ, Gil K, Ziomber A, et al. Effect of long-term vagal stimulation on food intake and body weight during diet induced obesity in rats. J Physiol Pharmacol. 2007;58(Suppl 1):5–12.

  17. Sarr MG, Billington CJ, Brancatisano R, Brancatisano A, Toouli J, Kow L, Nguyen NT, Blackstone R, Maher JW, Shikora S, Reeds DN, Eagon JC, Wolfe BM, O'Rourke RW, Fujioka K, Takata M, Swain JM, Morton JM, Ikramuddin S, Schweitzer M, Chand B, Rosenthal R. EMPOWER Study Group. The EMPOWER study: randomized, prospective, double-blind, multicenter trial of vagal blockade to induce weight loss in morbid obesity. Obes Surg 2012;22(11):1771–1782. https://doi.org/10.1007/s11695-012-0751-8.

  18. Kentish S, Li H, Philp LK, et al. Diet-induced adaptation of vagal afferent function. JPhysiol. 2012;590:209–21.

    CAS  Google Scholar 

  19. Frezza E. Are we closer to finding the treatment for type 2 diabetes mellitus in morbid obesity? Are the incretins the key to success? ObesSurg. 2004;14:999–1005.

    Google Scholar 

  20. Ashrafian H, le Roux CW. Metabolic surgery and gut hormones—a review of bariatric entero-humoral modulation. PhysiolBehav. 2009;97:620–31.

    CAS  Google Scholar 

  21. Mingrone G. Role of the incretin system in the remission of type 2 diabetes following bariatric surgery. NutrMetabCardiovasc Dis. 2008;18:574–9.

    CAS  Google Scholar 

  22. Rubino F, Amiel SA. Is the gut the “sweet spot” for the treatment of diabetes? Diabetes. 2014;63:2225–8.

    PubMed  Google Scholar 

  23. Rubino F, Forgione A, Cummings DE, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg. 2006;244(5):741–9.

    PubMed  PubMed Central  Google Scholar 

  24. Pories WJ, Albrecht RJ. Etiology of type II diabetes mellitus: role of the foregut. World J Surg. 2001;25:527–31.

    CAS  PubMed  Google Scholar 

  25. Madsbad S, Dirksen C, Holst JJ. Mechanisms of changes in glucose metabolism and bodyweight after bariatric surgery. Lancet Diabetes Endocrinol. 2014;2:152–64.

    CAS  PubMed  Google Scholar 

  26. Cummings DE, Overduin J, Foster-Schubert KE, et al. Role of the bypassed proximal intestine in the anti-diabetic effects of bariatric surgery. Surg Obes Relat Dis. 2007:109–15.

  27. Thaler JP, Cummings DE. Minireview: hormonal and metabolic mechanisms of diabetes remission after gastrointestinal surgery. Endocrinology. 2009;150:2518–25.

    CAS  PubMed  Google Scholar 

  28. Shah M, Law JH, Micheletto F, et al. Contribution of endogenous glucagon-like peptide 1 to glucose metabolism after Roux-en-Y gastric bypass. Diabetes. 2014;63:483–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Briatore L, Salani B, Andraghetti G, et al. Restoration of acute insulin response in T2DM subjects 1 month after biliopancreatic diversion. Obesity (Silver Spring, Md). 2008;16:77–81.

    Google Scholar 

  30. Cummings DE, Shannon MH. Roles for ghrelin in the regulation of appetite and body weight. Arch Surg. 2003 Apr;138(4):389–96.

    CAS  PubMed  Google Scholar 

  31. Geloneze B, Tambascia MA, Pilla VF, et al. Ghrelin: a gut-brain hormone: effect of gastric bypass surgery. Obes Surg. 2003 Feb;13(1):17–22.

    PubMed  Google Scholar 

  32. Tymitz K, Engel A, McDonough S, et al. Changes in ghrelin levels following bariatric surgery: review of the literature. Obes Surg. 2011;21(1):125–30.

    PubMed  Google Scholar 

  33. Ma H, Patti ME. Bile acids, obesity, and the metabolic syndrome. Best Pract Res ClinGastroenterol. 2014;28:573–83.

    CAS  Google Scholar 

  34. Han SI, Studer E, Gupta S, et al. Bile acids enhance the activity of the insulin receptor and glycogen synthase in primary rodent hepatocytes. Hepatology. 2004;39:456–63.

    CAS  PubMed  Google Scholar 

  35. Thomas C, Pellicciari R, Pruzanski M, et al. Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov. 2008;7:678–93.

    CAS  PubMed  Google Scholar 

  36. Pols TW, Noriega LG, Nomura M, et al. The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. J Hepatol. 2011;54:1263–72.

    CAS  PubMed  Google Scholar 

  37. Penney NC, Kinross JM, Newton RC, et al. The role of bile acids in reducing the metabolic complications of obesity after bariatric surgery: a systematic review. Int J Obes. 2015;39:1565–74. https://doi.org/10.1038/ijo.2015.115.

    Article  CAS  Google Scholar 

  38. Steinert RE, Peterli R, Keller S, et al. Bile acids and gut peptide secretion after bariatric surgery: a 1-year prospective randomized pilot trial. Obesity (Silver Spring). 2013;21:E660–8.

    CAS  Google Scholar 

  39. Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101:15718–23.

    PubMed  PubMed Central  Google Scholar 

  40. Ley RE, Ckhed B¨, F, Turnbaugh P, et al. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102:11070–5.

  41. Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143:913–6.

    CAS  PubMed  Google Scholar 

  42. Zhang H, DiBaise JK, Zuccolo A, et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci USA. 2009;106(7):2365–70.

    CAS  PubMed  Google Scholar 

  43. Ley RE, Turnbaugh PJ, Klein S, et al. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444:1022–3.

    CAS  PubMed  Google Scholar 

  44. Osto M, Abegg K, Bueter M, et al. Roux-en-Y gastric bypass surgery in rats alters gut microbiota profile along the intestine. Physiol Behav. 2013;119:92–6.

    CAS  PubMed  Google Scholar 

  45. Kootte RS, Vrieze A, Holleman F, et al. The therapeutic potential of manipulating gut microbiota in obesity and type 2 diabetes mellitus. Diabetes Obes Metab. 2012;14:112–20.

    CAS  PubMed  Google Scholar 

  46. Tolhurst G, Heffron H, Lam YS, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes. 2012;61:364–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim M, Son YG, Kang YN, et al. Changes in glucose transporters, gluconeogenesis, and circadian clock after duodenal-jejunal bypass surgery. Obes Surg. 2015;25(4):635–41.

    PubMed  Google Scholar 

  48. Sun D, Wang K, Yan Z, et al. Duodenal-jejunal bypass surgery up-regulates the expression of the hepatic insulin signaling proteins and the key regulatory enzymes of intestinal gluconeogenesis in diabetic Goto-Kakizaki rats. Obes Surg. 2013;23(11):1734–42.

    PubMed  Google Scholar 

  49. Mithieux G, Misery P, Magnan C, et al. ZitounCPortal sensing of intestinal gluconeogenesis is a mechanistic link in the diminution of food intake induced by diet protein. Cell Metab. 2005 Nov;2(5):321–9.

    CAS  PubMed  Google Scholar 

  50. Breen DM, Rasmussen BA, Kokorovic A, et al. Jejunal nutrient sensing is required for duodenal–jejunal bypass surgery to rapidly lower glucose concentrations in uncontrolled diabetes. Nat Med. 2012;18(6):950–5.

    CAS  PubMed  Google Scholar 

  51. Troy S, Soty M, Ribeiro L, et al. Intestinal gluconeogenesis is a key factor for early metabolic changes after gastric bypass but not after gastric lap-band in mice. CellMetab. 2008;8(3):2001–211.

    Google Scholar 

  52. Danaei G, Finucane MM, Lu Y, et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet. 2011;378:31–40.

    CAS  PubMed  Google Scholar 

  53. Wild S, Roglic G, Green A, et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. King HDiabetes Care. 2004 May;27(5):1047–53.

    Google Scholar 

  54. Rubino F. Is type 2 diabetes an operable intestinal disease? A provocative yet reasonable hypothesis. Diabetes Care. 2008;31(Suppl 2):290–6.

    Google Scholar 

  55. Gloy VL, Briel M, Bhatt DL, et al. Bariatric surgery versus non-surgical treatment for obesity: a systematic review and meta-analysis of randomised controlled trials. BMJ. 2013;347:f5934.

    PubMed  PubMed Central  Google Scholar 

  56. Peterli R, Wölnerhanssen B, Peters T, et al. Improvement in glucose metabolism after bariatric surgery: comparison of laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy: a prospective randomized trial. Ann Surg. 2009;250(2):234–41.

    PubMed  Google Scholar 

  57. Karamanakos SN, Vagenas K, Kalfarentzos F, et al. Weight loss, appetite suppression, and changes in fasting and postprandial ghrelin and peptide-YY levels after Roux-en-Y gastric bypass and sleeve gastrectomy: a prospective, double blind study. Ann Surg. 2008;247(3):401–7.

    PubMed  Google Scholar 

  58. Melissas J, Daskalakis M, Koukouraki S, et al. Sleeve gastrectomy-a “food limiting” operation. ObesSurg. 2008;18(10):1251–6.

    Google Scholar 

  59. Langer FB, Reza Hoda MA, Bohdjalian A, et al. Sleeve gastrectomy and gastric banding: effects on plasma ghrelin levels. Obes Surg. 2005;15(7):1024–9.

    CAS  PubMed  Google Scholar 

  60. Ryan KK, Tremaroli V, Clemmensen C, et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature. 2014 May 8;509(7499):183–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Unger RH, Eisentraut AM. Entero-insular axis. Arch Intern Med. 1969;123:261–6.

    CAS  PubMed  Google Scholar 

  62. Chambers AP, Stefater MA, Wilson-P’erez HE, et al. Similar effects of Roux-en-Y gastric bypass and vertical sleeve gastrectomy on glucose regulation in rats. Physiol Behav. 2011;105:120–3.

    CAS  PubMed  Google Scholar 

  63. Chambers AP, Jessen L, Ryan KK, et al. Weight-independent changes in blood glucose homeostasis after gastric bypass or vertical sleeve gastrectomy in rats. Gastroenterology. 2011;141:950–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Bojsen-Møller KN, Dirksen C, J ¨ o NB, et al. Increased hepatic insulin clearance after Roux-en-Y gastric bypass. J Clin Endocrinol Metab. 2013;98:E1066–71.

    PubMed  Google Scholar 

  65. Arterburn DE, Bogart A, Sherwood NE, et al. A multisite study of long-term remission and relapse of type 2 diabetes mellitus following gastric bypass. ObesSurg. 2013;23:93–102.

    Google Scholar 

  66. Cohen RV, Pinheiro JC, Schiavon CA, et al. Effects of gastric bypass surgery in patients with type 2 diabetes and only mild obesity. Diabetes Care. 2012;35:1420–8.

    PubMed  PubMed Central  Google Scholar 

  67. Hsu CC, Almulaifi A, Chen JC, et al. Effect of bariatric surgery vs medical treatment on type 2 diabetes in patients with body mass index lower than 35: five-year outcomes. JAMA Surg. 2015;150:1117–24.

    PubMed  Google Scholar 

  68. Müller-Stich BP, Senft JD, Warschkow R, et al. Surgical versus medical treatment of type 2 diabetes mellitus in nonseverely obese patients: a systematic review and meta-analysis. Ann Surg. 2015;261:421–9.

    PubMed  Google Scholar 

  69. Mingrone G, Panunzi S, De Gaetano A, et al. Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-centre, randomised controlled trial. Lancet. 2015;386(9997):964–73.

    PubMed  Google Scholar 

  70. Ribaric G, Buchwald JN, McGlennon TW. Diabetes and weight in comparative studies of bariatric surgery vs conventional medical therapy: a systematic review and meta-analysis. Obes Surg. 2014;24(3):437–55.

    CAS  PubMed  Google Scholar 

  71. Buchwald H, Estok R, Fahrbach K, et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med. 2009;122(3):248–256.e5.

    PubMed  Google Scholar 

  72. Benaiges D, Goday A, Ramon JM, et al. Laparoscopic sleeve gastrectomy and laparoscopic gastric bypass are equally effective for reduction of cardiovascular risk in severely obese patients at one year of follow-up. Surg Obes Relat Dis. 2011;7(5):575–80.

    PubMed  Google Scholar 

  73. Hall TC, Pellen MG, Sedman PC, et al. Preoperative factors predicting remission of type 2 diabetes mellitus after Roux-en-Y gastric bypass surgery for obesity. Obes Surg. 2010;20(9):1245–50.

    PubMed  Google Scholar 

  74. Adams TD, Davidson LE, Litwin SE, et al. Health benefits of gastric bypass surgery after 6 years. JAMA. 2012;308:1122–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Sjostrom L, Lindroos AK, Peltonen M, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351:2683–93.

    PubMed  Google Scholar 

  76. Brethauer SA, Aminian A, Romero-Talamás H, et al. Can diabetes be surgically cured? Long-term metabolic effects of bariatric surgery in obese patients with type 2 diabetes mellitus. Ann Surg. 2013;258(4):628–36. discussion 636–7

    PubMed  PubMed Central  Google Scholar 

  77. Lakdawala M, Shaikh S, Bandukwala S, et al. Roux-en-Y gastric bypass stands the test of time: 5-year results in low body mass index (30–35 kg/m2) Indian patients with type 2 diabetes mellitus. Surg Obes Relat Dis. 2013;9:370–8.

    PubMed  Google Scholar 

  78. Heneghan HM, Cetin D, Navaneethan SD, et al. Effects of bariatric surgery on diabetic nephropathy after 5 years of follow-up. Surg Obes Relat Dis. 2013;9:7–14.

    PubMed  Google Scholar 

  79. Sultan S, Gupta D, Parikh M, et al. Five-year outcomes of patients with type 2 diabetes who underwent laparoscopic adjustable gastric banding. Surg Obes Relat Dis. 2010;6:373–6.

    PubMed  Google Scholar 

  80. Cummings DE, Arterburn DE, Westbrook EO, et al. Gastric bypass surgery vs intensive lifestyle and medical intervention for type 2 diabetes: the CROSSROADS randomised controlled trial. Diabetologia. 2016;59:945–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Schauer PR, Bhatt DL, Kirwan JP, et al. Bariatric surgery versus intensive medical therapy for diabetes: 3-year outcomes. N Engl J Med. 2014;370:2002–13.

    PubMed  PubMed Central  Google Scholar 

  82. Ikramuddin S, Korner J, Lee WJ, et al. Durability of addition of Roux-en-Y gastric bypass to lifestyle intervention and medical management in achieving primary treatment goals for uncontrolled type 2 diabetes in mild to moderate obesity: a randomized control trial. Diabetes Care. 2016;39:1510–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Scopinaro N, Adami GF, Papadia FS, et al. Effects of biliopanceratic diversion on type 2 diabetes in patients with BMI 25 to 35. Ann Surg. 2011;253:699–703.

    PubMed  Google Scholar 

  84. Maggard-Gibbons M, Maglione M, Livhits M. Bariatric surgery for weight loss and glycemic control in nonmorbidly obese adults with diabetes. A systematic review. JAMA. 2013;309:2250–61.

    CAS  PubMed  Google Scholar 

  85. Li Q, Chen L, Yang Z, et al. Metabolic effects of bariatric surgery in type 2 diabetic patients with BMI <35 kg/m2. Diabetes ObesMetab. 2011;14(3):262–70.

    Google Scholar 

  86. Panunzi S, De Gaetano A, Carnicelli A, et al. Predictors of remission of diabetes mellitus in severely obese individuals undergoing bariatric surgery: do BMI or procedure choice matter? A meta-analysis. Ann Surg. 2015;261:459–67.

    PubMed  Google Scholar 

  87. Jurowich C, Thalheimer A, Hartmann D, et al. Improvement of type 2 diabetes mellitus (T2DM) after bariatric surgery—who fails in the early postoperative course? Obes Surg. 2012;22(10):1521–6.

    CAS  PubMed  Google Scholar 

  88. Lee WJ, Hur KY, Lakadawala M, et al. Predicting success of metabolic surgery: age, body mass index, C-peptide, and duration score. Surg Obes Relat Dis. 2013 May-Jun;9(3):379–84.

    PubMed  Google Scholar 

  89. Wood GC, Mirshahi T, Still CD, et al. Association of DiaRem score with cure of type 2 diabetes following bariatric surgery. JAMA Surg. 2016;151(8):779–81. https://doi.org/10.1001/jamasurg.2016.0251.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Lee WJ, Lee KT, Kasama K, et al. Laparoscopic single-anastomosis duodenal-jejunal bypass with sleeve gastrectomy (SADJB-SG): short-term result and comparison with gastric bypass. Obes Surg. 2014 Jan;24(1):109–13.

    PubMed  Google Scholar 

  91. Cohen R, Caravatto PP, Correa JL, et al. SchiavonCA .Glycemic control after stomach-sparing duodenal-jejunal bypass surgery in diabetic patients with low body mass index. Surg Obes Relat Dis. 2012;8(4):375–80.

    PubMed  Google Scholar 

  92. Patel SR, Hakim D, Mason J, et al. The duodenal-jejunal bypass sleeve (EndoBarrier Gastrointestinal Liner) for weight loss and treatment of type 2 diabetes. Surg Obes Relat Dis. 2013;9(3):482–4.

    PubMed  Google Scholar 

  93. Santoro SMD, Castro LC, Velhote MCP, et al. Sleeve gastrectomy with transit bipartition: a potent intervention for metabolic syndrome and obesity. Ann Surg. 2012;256(1):104–10. https://doi.org/10.1097/SLA.0b013e31825370c0.

    Article  PubMed  Google Scholar 

  94. Heneghan HM, Cetin D, Navaneethan SD, et al. Effects of bariatric surgery on diabetic nephropathy after 5 years of follow-up. Surg Obes Relat Dis. 2013 Jan-Feb;9(1):7–14.

    PubMed  Google Scholar 

  95. Cummings DE, Rubino F. Metabolic surgery for the treatment of type 2 diabetes in obese individuals. Diabetologia. 2018 Feb;61(2):257–64.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radwan Kassir.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Statement of Informed Consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Khoury, L., Chouillard, E., Chahine, E. et al. Metabolic Surgery and Diabesity: a Systematic Review. OBES SURG 28, 2069–2077 (2018). https://doi.org/10.1007/s11695-018-3252-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-018-3252-6

Keywords

Navigation