Skip to main content
Log in

Amelioration of Glycemic Control by Sleeve Gastrectomy and Gastric Bypass in a Lean Animal Model of Type 2 Diabetes: Restoration of Gut Hormone Profile

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

In obese diabetic patients, bariatric surgery has been shown to induce remission of type 2 diabetes. Along with weight loss itself, changes in gut hormone profiles after surgery play an important role in the amelioration of glycemic control. However, the potential of gastrointestinal surgery regarding diabetes remission in non-severely obese diabetic patients has yet to be defined. In the present experimental study, we explored the effect of established bariatric procedures with and without duodenal exclusion on glycemic control and gut hormone profile in a lean animal model of type 2 diabetes.

Methods

Forty 12- to 14-week-old non-obese diabetic Goto-Kakizaki (GK) rats were randomly assigned to four groups: control group (GKC), sham surgery (GKSS), sleeve gastrectomy (GKSG), and gastric bypass (GKGB). Age-matched Wistar rats served as a non-diabetic control group (WIC). Glycemic control and plasma lipids were assessed at the beginning of the observation period and 4 weeks after surgery. Fasting and mixed meal-induced plasma levels of ghrelin, glucagon-like peptide-17-36 (GLP-1), and peptide tyrosine-tyrosine (PYY) were measured.

Results

In GK rats, glycemic control improved after sleeve gastrectomy (SG) and gastric bypass (GB). Mixed meal-induced gut hormone profiles in Wistar rats (WIC) were significantly different from those of sham-operated or control group GK rats. After SG and GB, GK rats showed a similar postprandial decrease in ghrelin as observed in non-diabetic WIC. Following both surgical procedures, a significant meal-induced increase in PYY and GLP-1 could be demonstrated.

Conclusions

SG and GB induce a similar improvement in overall glycemic control in lean diabetic rodents. Meal-induced profiles of ghrelin, GLP-1, and PYY in GK rats are significantly modified by SG and GB and become similar to those of non-diabetic Wistar rats. Our data do not support the hypothesis that duodenal exclusion and early contact of food with the ileal mucosa alone explain changes in gut hormone profile in GK rats after gastrointestinal surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. WHO. WHO | Diabetes. Factsheet no. 312. World Health Organization; 2012;

  2. Unick JL, Beavers D, Jakicic JM, Kitabchi AE, Knowler WC, Wadden TA, et al. Effectiveness of lifestyle interventions for individuals with severe obesity and type 2 diabetes: results from the Look AHEAD trial. Diabetes Care. 2011;34:2152–7.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Sjöström L, Lindroos A-K, Peltonen M, Torgerson J, Bouchard C, Carlsson B, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351:2683–93.

    Article  PubMed  Google Scholar 

  4. Sjöström L. Bariatric surgery and reduction in morbidity and mortality: experiences from the SOS study. Int J Obes (Lond). 2008;32 Suppl 7:S93–7.

    Article  Google Scholar 

  5. Pories WJ, Caro JF, Flickinger EG, Meelheim HD, Swanson MS. The control of diabetes mellitus (NIDDM) in the morbidly obese with the Greenville gastric bypass. Ann Surg. 1987;206:316–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Pories WJ, MacDonald K, Morgan EJ, Sinha MK, Dohm GL, Swanson MS, et al. Surgical treatment of obesity and its effect on diabetes: 10-y follow-up. Am J Clin Nutr Am Soc Nutr. 1992;55:582S–5S.

    CAS  Google Scholar 

  7. Buchwald H, Avidor Y, Braunwald E, Jensen MD, Pories W, Fahrbach K, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292:1724–37.

    Article  CAS  PubMed  Google Scholar 

  8. Smith S, Edwards C, Goodman G. Changes in diabetic management after Roux-en-Y gastric bypass. Obes Surg. 1996;6:345–8.

    Article  PubMed  Google Scholar 

  9. Scopinaro N, Adami GF, Marinari GM, Gianetta E, Traverso E, Friedman D, et al. Biliopancreatic diversion. World J Surg. 1998;22:936–46.

    Article  CAS  PubMed  Google Scholar 

  10. Marinari GM, Papadia FS, Briatore L, Adami G, Scopinaro N. Type 2 diabetes and weight loss following biliopancreatic diversion for obesity. Obes Surg. 2006;16:1440–4.

    Article  PubMed  Google Scholar 

  11. Scopinaro N, Adami GF, Papadia FS, Camerini G, Carlini F, Briatore L, et al. The effects of biliopancreatic diversion on type 2 diabetes mellitus in patients with mild obesity (BMI 30-35 kg/m2) and simple overweight (BMI 25-30 kg/m2): a prospective controlled study. Obes Surg. 2011;21:880–8.

    Article  PubMed  Google Scholar 

  12. Pontiroli AE, Pizzocri P, Librenti MC, Vedani P, Marchi M, Cucchi E, et al. Laparoscopic adjustable gastric banding for the treatment of morbid (grade 3) obesity and its metabolic complications: a three-year study. J Clin Endocrinol Metab. 2002;87:3555–61.

    Article  PubMed  Google Scholar 

  13. Silecchia G, Boru C, Pecchia A, Rizzello M, Casella G, Leonetti F, et al. Effectiveness of laparoscopic sleeve gastrectomy (first stage of biliopancreatic diversion with duodenal switch) on co-morbidities in super-obese high-risk patients. Obes Surg. 2006;16:1138–44.

    Article  PubMed  Google Scholar 

  14. Nocca D, Guillaume F, Noel P, Picot MC, Aggarwal R, El Kamel M, et al. Impact of laparoscopic sleeve gastrectomy and laparoscopic gastric bypass on HbA1c blood level and pharmacological treatment of type 2 diabetes mellitus in severe or morbidly obese patients. Results of a multicenter prospective study at 1 year. Obes Surg. 2011;21:738–43.

    Article  PubMed  Google Scholar 

  15. De Gordejuela AGR, Pujol Gebelli J, García NVNV, Alsina EFF, Medayo LS, Masdevall Noguera C. Is sleeve gastrectomy as effective as gastric bypass for remission of type 2 diabetes in morbidly obese patients? Surg Obes Relat Dis Elsevier Inc. 2011;7:506–9.

    Article  Google Scholar 

  16. Cutolo PP, Nosso G, Vitolo G, Brancato V, Capaldo B, Angrisani L. Clinical efficacy of laparoscopic sleeve gastrectomy vs laparoscopic gastric bypass in obese type 2 diabetic patients: a retrospective comparison. Obes Surg. 2012;22:1535–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Abbatini F, Capoccia D, Casella G, Coccia F, Leonetti F, Basso N. Type 2 diabetes in obese patients with body mass index of 30-35 kg/m2: sleeve gastrectomy versus medical treatment. Surg Obes Relat Dis Elsevier Inc. 2012;8:20–4.

    Article  Google Scholar 

  18. Boza C, Muñoz R, Salinas J, Gamboa C, Klaassen J, Escalona A, et al. Safety and efficacy of Roux-en-Y gastric bypass to treat type 2 diabetes mellitus in non-severely obese patients. Obes Surg. 2011;21:1330–6.

    Article  PubMed  Google Scholar 

  19. Lanzarini E, Csendes A, Gutierrez L, Cuevas P, Lembach H, Molina JC, et al. Type 2 diabetes mellitus in patients with mild obesity: preliminary results of surgical treatment. Obes Surg. 2013;23:234–40.

    Article  PubMed  Google Scholar 

  20. Samols E, Marri G, Marks V. Promotion of insulin secretion by glucagon. Lancet. 1965;2:415–6.

    Article  CAS  PubMed  Google Scholar 

  21. Samols E, Tyler J, Marri G, Marks V. Stimulation of glucagon secretion by oral glucose. Lancet. 1965;2:1257–9.

    Article  CAS  PubMed  Google Scholar 

  22. Mojsov S, Weir GC, Habener JF. Insulinotropin: glucagon-like peptide I (7-37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J Clin Invest. 1987;79:616–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Kreymann B, Williams G, Ghatei MA, Bloom SR. Glucagon-like peptide-1 7-36: a physiological incretin in man. Lancet. 1987;2:1300–4.

    Article  CAS  PubMed  Google Scholar 

  24. Gutzwiller JP, Drewe J, Göke B, Schmidt H, Rohrer B, Lareida J, et al. Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus type 2. Am J Physiol. 1999;276:R1541–4.

    CAS  PubMed  Google Scholar 

  25. Verdich C, Toubro S, Buemann B, Lysgård Madsen J, Juul Holst J. Astrup a. The role of postprandial releases of insulin and incretin hormones in meal-induced satiety—effect of obesity and weight reduction. Int J Obes Relat Metab Disord. 2001;25:1206–14.

    Article  CAS  PubMed  Google Scholar 

  26. Borg CM, le Roux CW, Ghatei MA, Bloom SR, Patel AG, Aylwin SJB. Progressive rise in gut hormone levels after Roux-en-Y gastric bypass suggests gut adaptation and explains altered satiety. Br J Surg. 2006;93:210–5.

    Article  CAS  PubMed  Google Scholar 

  27. Le Roux CW, Aylwin SJB, Batterham RL, Borg CM, Coyle F, Prasad V, et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg. 2006;243:108–14.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402:656–60.

    Article  CAS  PubMed  Google Scholar 

  29. Cummings DE, Weigle DS, Frayo RS, Breen PA, Ma MK, Dellinger EP, et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med. 2002;346:1623–30.

    Article  PubMed  Google Scholar 

  30. Leonetti F, Silecchia G, Iacobellis G, Ribaudo MC, Zappaterreno A, Tiberti C, et al. Different plasma ghrelin levels after laparoscopic gastric bypass and adjustable gastric banding in morbid obese subjects. J Clin Endocrinol Metab. 2003;88:4227–31.

  31. Tschöp M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature. 2000;407:908–13.

    Article  PubMed  Google Scholar 

  32. Wren AM, Seal LJ, Cohen MA, Brynes AE, Frost GS, Murphy KG, et al. Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab. 2001;86:5992–5.

    Article  CAS  PubMed  Google Scholar 

  33. Broglio F, Arvat E, Benso A, Gottero C, Muccioli G, Papotti M, et al. Ghrelin, a natural GH secretagogue produced by the stomach, induces hyperglycemia and reduces insulin secretion in humans. J Clin Endocrinol Metab. 2001;86:5083–6.

    Article  CAS  PubMed  Google Scholar 

  34. Tatemoto K. Isolation and characterization of peptide YY (PYY), a candidate gut hormone that inhibits pancreatic exocrine secretion. Proc Natl Acad Sci U S A. 1982;79:2514–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA, Dakin CL, et al. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature. 2002;418:650–4.

    Article  CAS  PubMed  Google Scholar 

  36. Seiça RM, Martins MJ, Pessa PB, Santos RM, Rosário LM. do, Suzuki KI, et al. Morphological changes of islet of Langerhans in an animal model of type 2 diabetes. Acta Med Port. 2003;16:381–8.

    PubMed  Google Scholar 

  37. Portha B, Lacraz G, Kergoat M, Homo-Delarche F, Giroix M-H, Bailbé D, et al. The GK rat beta-cell: a prototype for the diseased human beta-cell in type 2 diabetes? Mol Cell Endocrinol. 2009;297:73–85.

    Article  CAS  PubMed  Google Scholar 

  38. Rubino F, Marescaux J. Effect of duodenal-jejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease. Ann Surg. 2004;239:1–11.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Pacheco D, de Luis DA, Romero A, González Sagrado M, Conde R, Izaola O, et al. The effects of duodenal-jejunal exclusion on hormonal regulation of glucose metabolism in Goto-Kakizaki rats. Am J Surg. 2007;194:221–4.

    Article  CAS  PubMed  Google Scholar 

  40. Rubino F, Forgione A, Cummings DE, Vix M, Gnuli D, Mingrone G, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg. 2006;244:741–9.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Patriti A, Aisa MC, Annetti C, Sidoni A, Galli F, Ferri I, et al. How the hindgut can cure type 2 diabetes. Ileal transposition improves glucose metabolism and beta-cell function in Goto-Kakizaki rats through an enhanced Proglucagon gene expression and L-cell number. Surgery. 2007;142:74–85.

    Article  PubMed  Google Scholar 

  42. De Bona Castelan J, Bettiol J, D'Acampora AJ, Castelan JVE, de Souza JC, Bressiani V, et al. Sleeve gastrectomy model in Wistar rats. Obes Surg. 2007;17:957–61.

    Article  PubMed  Google Scholar 

  43. Meguid MM, Ramos EJB, Suzuki S, Xu Y, George ZM, Das UN, et al. A surgical rat model of human Roux-en-Y gastric bypass. J Gastrointest Surg. 2004;8:621–30.

    Article  PubMed  Google Scholar 

  44. Liu Y, Zhou Y, Wang Y, Geng D, Liu J. Roux-en-Y gastric bypass-induced improvement of glucose tolerance and insulin resistance in type 2 diabetic rats are mediated by glucagon-like peptide-1. Obes Surg. 2011;21:1424–31.

    Article  PubMed  Google Scholar 

  45. Donglei Z, Liesheng L, Xun J, Chenzhu Z, Weixing D. Effects and mechanism of duodenal-jejunal bypass and sleeve gastrectomy on GLUT2 and glucokinase in diabetic Goto-Kakizaki rats. Eur J Med Res. 2012;17:15.

    Article  PubMed Central  PubMed  Google Scholar 

  46. De Luis D, Domingo M, Romero A, Gonzalez Sagrado M, Pacheco D, Primo D, et al. Effects of duodenal-jejunal exclusion on beta cell function and hormonal regulation in Goto-Kakizaki rats. Am J Surg Elsevier Inc. 2012;204:242–7.

    Article  Google Scholar 

  47. Kindel TL, Yoder SM, Seeley RJ, D’Alessio DA, Tso P. Duodenal-jejunal exclusion improves glucose tolerance in the diabetic, Goto-Kakizaki rat by a GLP-1 receptor-mediated mechanism. J Gastrointest Surg. 2009;13:1762–72.

    Article  PubMed  Google Scholar 

  48. Frühbeck G, Rotellar F, Hernández-Lizoain JL, Gil MJ, Gómez-Ambrosi J, Salvador J, et al. Fasting plasma ghrelin concentrations 6 months after gastric bypass are not determined by weight loss or changes in insulinemia. Obes Surg. 2004;14:1208–15.

    Article  PubMed  Google Scholar 

  49. Faraj M, Havel PJ, Phélis S, Blank D, Sniderman AD, Cianflone K. Plasma acylation-stimulating protein, adiponectin, leptin, and ghrelin before and after weight loss induced by gastric bypass surgery in morbidly obese subjects. J Clin Endocrinol Metab. 2003;88:1594–602.

    Article  CAS  PubMed  Google Scholar 

  50. Holdstock C, Engström BE, Ohrvall M, Lind L, Sundbom M, Karlsson FA. Ghrelin and adipose tissue regulatory peptides: effect of gastric bypass surgery in obese humans. J Clin Endocrinol Metab. 2003;88:3177–83.

    Article  CAS  PubMed  Google Scholar 

  51. Sun D, Liu S, Zhang G, Chen W, Yan Z, Hu S. Type 2 Diabetes Control in a nonobese rat model using sleeve gastrectomy with duodenal-jejunal bypass (SGDJB). Obes Surg. 2012;22:1865–73.

    Article  PubMed  Google Scholar 

  52. Trung VN, Yamamoto H, Yamaguchi T, Murata S, Akabori H, Ugi S, et al. Effect of sleeve gastrectomy on body weight, food intake, glucose tolerance, and metabolic hormone level in two different rat models: Goto-Kakizaki and diet-induced obese rat. J Surg Res Elsevier Ltd. 2013;185:159–65.

    Article  CAS  Google Scholar 

  53. Shin AC, Zheng H, Townsend RL, Sigalet DL, Berthoud H-R. Meal-induced hormone responses in a rat model of Roux-en-Y gastric bypass surgery. Endocrinology. 2010;151:1588–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Cummings BP, Strader AD, Stanhope KL, Graham JL, Lee J, Raybould HE, et al. Ileal interposition surgery improves glucose and lipid metabolism and delays diabetes onset in the UCD-T2DM rat. Gastroenterology. 2010;138:2437–46. 2446.e1.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. DePaula AL, Macedo ALV, Schraibman V, Mota BR, Vencio S, Ludovico A, et al. Hormonal evaluation following laparoscopic treatment of type 2 diabetes mellitus patients with BMI 20-34. Surg Endosc. 2009;23:1724–32.

    Article  PubMed  Google Scholar 

  56. Peterli R, Steinert RE, Woelnerhanssen B, Peters T, Christoffel-Courtin C, Gass M, et al. Metabolic and hormonal changes after laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy: a randomized, prospective trial. Obes Surg. 2012;22:740–8.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Tsoli M, Chronaiou A, Kehagias I, Kalfarentzos F, Alexandrides TK. Hormone changes and diabetes resolution after biliopancreatic diversion and laparoscopic sleeve gastrectomy: a comparative prospective study. Surg Obes Relat Dis. 2013;9:667–77.

  58. Beglinger S, Drewe J, Schirra J, Göke B, D’Amato M, Beglinger C. Role of fat hydrolysis in regulating glucagon-like peptide-1 secretion. J Clin Endocrinol Metab. 2010;95:879–86.

    Article  CAS  PubMed  Google Scholar 

  59. Shrestha YB, Wickwire K, Giraudo SQ. Direct effects of nutrients, acetylcholine, CCK, and insulin on ghrelin release from the isolated stomachs of rats. Peptides. 2009;30:1187–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Broglio F, Gottero C, Van Koetsveld P, Prodam F, Destefanis S, Benso A, et al. Acetylcholine regulates ghrelin secretion in humans. J Clin Endocrinol Metab. 2004;89:2429–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

Hans Eickhoff, Teresa Louro, Paulo Matafome, Filipa Vasconcelos, Raquel Seiça, and Francisco Castro e Sousa have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Eickhoff.

Additional information

All research was done at the Laboratory for Experimental Research, the Institute of Physiology, and the Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eickhoff, H., Louro, T.M., Matafome, P.N. et al. Amelioration of Glycemic Control by Sleeve Gastrectomy and Gastric Bypass in a Lean Animal Model of Type 2 Diabetes: Restoration of Gut Hormone Profile. OBES SURG 25, 7–18 (2015). https://doi.org/10.1007/s11695-014-1309-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-014-1309-8

Keywords

Navigation