Skip to main content

Advertisement

Log in

Quality assurance of imaging techniques used in the clinical management of osteoporosis

Controllo di qualità delle tecniche di imaging nella gestione clinica dell’osteoporosi

  • Musculoskeletal Radiology / Radiologia Muscolo-Scheletrica
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Recent advances in the densitometric and imaging techniques involved in the management of osteoporosis are associated with increasing accuracy and precision as well as with higher exposure to ionising radiation. Therefore, special attention to quality assurance (QA) procedures is needed in this field. The development of effective and efficient QA programmes is mandatory to guarantee optimal image quality while reducing radiation exposure levels to the ALARA principle (as low as reasonably achievable). In this review article, the basic QA procedures are discussed for the techniques applied to everyday clinical practice.

Riassunto

I recenti progressi nelle tecniche di densitometria e di imaging nella diagnosi dell’osteoporosi sono associati ad una crescente accuratezza e precisione cosÌ come ad una maggiore esposizione a radiazioni ionizzanti. In questo campo è pertanto richiesta una particolare attenzione alle procedure di controllo di qualità (Quality Assurance, QA). Lo sviluppo di programmi di QA efficaci ed efficienti è necessario al fine di garantire una qualità dell’immagine ottimale e al contempo di ridurre i livelli di esposizione alle radiazioni secondo il principio ALARA (cioè al livello più basso ragionevolmente ottenibile). In questa review sono trattate le procedure base di QA per le metodiche di imaging adoperate nella pratica clinica quotidiana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References/Bibliografia

  1. World Health Organization (2009) Ageing and life course

  2. Kanis JA (2002) Diagnosis of osteoporosis and assessment of fracture risk. Lancet 359:1929–1936

    Article  PubMed  Google Scholar 

  3. Dontas IA, Yiannakopoulos CK (2007) Risk factors and prevention of osteoporosis-related fractures. J Musculoskelet Neuronal Interact 7:268–272

    PubMed  CAS  Google Scholar 

  4. Banse X, Devogelaer JP, Grynpas M (2002) Patient-specific microarchitecture of vertebral cancellous bone: a peripheral quantitative computed tomographic and histological study. Bone 30:829–835

    Article  PubMed  CAS  Google Scholar 

  5. Eastell R, Cedel SL, Wahner HW et al (1991) Classification of vertebral fractures. J Bone Miner Res 6:207–215

    Article  PubMed  CAS  Google Scholar 

  6. Davies KM, Stegman MR, Heaney RP, Recker RR (1996) Prevalence and severity of vertebral fracture: the Saunders County Bone Quality Study. Osteoporos Int 6:160–165

    Article  PubMed  CAS  Google Scholar 

  7. Burge R, Dawson-Hughes B, Solomon DH et al (2007) Incidence and economic burden of osteoporosisrelated fractures in the United States, 2005–2025. J Bone Miner Res 22:465–475

    Article  PubMed  Google Scholar 

  8. Kanis JA, Johnell O (2005) Requirements for DXA for the management of osteoporosis in Europe. Osteoporos Int 16:229–238

    Article  PubMed  CAS  Google Scholar 

  9. Damilakis J, Adams JE, Guglielmi G, Link TM (2010) Radiation exposure in X-ray-based imaging techniques used in osteoporosis. Eur Radiol 20:2707–2714

    Article  PubMed  Google Scholar 

  10. Blake GM, Fogelman I (2007) The role of DXA bone density scans in the diagnosis and treatment of osteoporosis. Postgrad Med J 83:509–517

    Article  PubMed  Google Scholar 

  11. Diessel E, Fuerst T, Njeh CF et al (2000) Evaluation of a new body composition phantom for quality control and cross-calibration of DXA devices. J Appl Physiol 89:599–605

    PubMed  CAS  Google Scholar 

  12. Kanis JA, Melton LJ 3rd, Christiansen C et al (1994) The diagnosis of osteoporosis. J Bone Miner Res 9:1137–1141

    Article  PubMed  CAS  Google Scholar 

  13. Adams J (2008) Dual-energy X-ray absorptiometry. In: Grampp S (ed) Radiology of osteoporosis. 2nd revised edition. Springer, Heidelberg, New York, pp 105–124

    Chapter  Google Scholar 

  14. Blake GM, Fogelman I (2009) The clinical role of dual energy X-ray absorptiometry. Eur J Radiol 71:406–414

    Article  PubMed  Google Scholar 

  15. Steiger P (1995) Standardization of measurements for assessing BMD by DXA. Calcif Tissue Int 57:469

    Article  PubMed  CAS  Google Scholar 

  16. Hanson J (1997) Standardization of femur BMD. J Bone Miner Res 12:1316–1317

    Article  PubMed  CAS  Google Scholar 

  17. Lang TF (2010) Quantitative computed tomography. Radiol Clin North Am 48:589–600

    Article  PubMed  Google Scholar 

  18. Faulkner KG, Gluer CC, Grampp S, Genant HK (1993) Cross-calibration of liquid and solid QCT calibration standards: corrections to the UCSF normative data. Osteoporos Int 3:36–42

    Article  PubMed  CAS  Google Scholar 

  19. Thijssen JM, Weijers G, de Korte CL (2007) Objective performance testing and quality assurance of medical ultrasound equipment. Ultrasound Med Biol 33:460–471

    Article  PubMed  Google Scholar 

  20. Guglielmi G, de Terlizzi F (2009) Quantitative ultrasound in the assessment of osteoporosis. Eur J Radiol 71:425–431

    Article  PubMed  Google Scholar 

  21. Guglielmi G, Scalzo G, de Terlizzi F, Peh WC (2010) Quantitative ultrasound in osteoporosis and bone metabolism pathologies. Radiol Clin North Am 48:577–588

    Article  PubMed  Google Scholar 

  22. (2007) The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP 37:1–332

  23. Valentin J (2007) Managing patient dose in multi-detector computed tomography (MDCT). ICRP Publication 102. Ann ICRP 37:1–79, iii

    CAS  Google Scholar 

  24. Bezakova E, Collins PJ, Beddoe AH (1997) Absorbed dose measurements in dual energy X-ray absorptiometry (DXA). Br J Radiol 70:172–179

    PubMed  CAS  Google Scholar 

  25. Kalender WA (1992) Effective dose values in bone mineral measurements by photon absorptiometry and computed tomography. Osteoporos Int 2:82–87

    Article  PubMed  CAS  Google Scholar 

  26. Blake GM, Naeem M, Boutros M (2006) Comparison of effective dose to children and adults from dual X-ray absorptiometry examinations. Bone 38:935–942

    Article  PubMed  Google Scholar 

  27. Larkin A, Sheahan N, O’Connor U et al (2008) QA/acceptance testing of DEXA X-ray systems used in bone mineral densitometry. Radiat Prot Dosimetry 129:279–283

    Article  PubMed  CAS  Google Scholar 

  28. Thomas SR, Kalkwarf HJ, Buckley DD, Heubi JE (2005) Effective dose of dual-energy X-ray absorptiometry scans in children as a function of age. J Clin Densitom 8:415–422

    Article  PubMed  Google Scholar 

  29. Boudousq V, Kotzki PO, Dinten JM et al (2003) Total dose incurred by patients and staff from BMD measurement using a new 2D digital bone densitometer. Osteoporos Int 14:263–269

    PubMed  CAS  Google Scholar 

  30. Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357:2277–2284

    Article  PubMed  CAS  Google Scholar 

  31. Mettler FA Jr, Huda W, Yoshizumi TT, Mahesh M (2008) Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology 248:254–263

    Article  PubMed  Google Scholar 

  32. Damilakis J, Perisinakis K, Vrahoriti H et al (2002) Embryo/fetus radiation dose and risk from dual X-ray absorptiometry examinations. Osteoporos Int 13:716–722

    Article  PubMed  CAS  Google Scholar 

  33. Cawte SA, Pearson D, Green DJ et al (1999) Cross-calibration, precision and patient dose measurements in preparation for clinical trials using dual energy X-ray absorptiometry of the lumbar spine. Br J Radiol 72:354–362

    PubMed  CAS  Google Scholar 

  34. Engelke K, Adams JE, Armbrecht G et al (2008) Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD Official Positions. J Clin Densitom 11:123–162

    Article  PubMed  Google Scholar 

  35. Khoo BC, Brown K, Cann C et al (2009) Comparison of QCT-derived and DXA-derived areal bone mineral density and T scores. Osteoporos Int 20:1539–1545

    Article  PubMed  CAS  Google Scholar 

  36. Issever AS, Link TM, Kentenich M et al (2010) Assessment of trabecular bone structure using MDCT: comparison of 64- and 320-slice CT using HR-pQCT as the reference standard. Eur Radiol 20:458–468

    Article  PubMed  Google Scholar 

  37. Krebs A, Graeff C, Frieling I et al (2009) High resolution computed tomography of the vertebrae yields accurate information on trabecular distances if processed by 3D fuzzy segmentation approaches. Bone 44:145–152

    Article  PubMed  Google Scholar 

  38. Ito M, Ikeda K, Nishiguchi M et al (2005) Multi-detector row CT imaging of vertebral microstructure for evaluation of fracture risk. J Bone Miner Res 20:1828–1836

    Article  PubMed  Google Scholar 

  39. Deak PD, Langner O, Lell M, Kalender WA (2009) Effects of adaptive section collimation on patient radiation dose in multisection spiral CT. Radiology 252:140–147

    Article  PubMed  Google Scholar 

  40. Theocharopoulos N, Damilakis J, Perisinakis K, Gourtsoyiannis N (2007) Energy imparted-based estimates of the effect of z overscanning on adult and pediatric patient effective doses from multi-slice computed tomography. Med Phys 34:1139–1152

    Article  PubMed  Google Scholar 

  41. Catuzzo P, Aimonetto S, Fanelli G et al (2010) Dose reduction in multislice CT by means of bismuth shields: results of in vivo measurements and computed evaluation. Radiol Med 115:152–169

    Article  PubMed  CAS  Google Scholar 

  42. Myronakis M, Perisinakis K, Tzedakis A et al (2009) Evaluation of a patientspecific Monte Carlo software for CT dosimetry. Radiat Prot Dosimetry 133:248–255

    Article  PubMed  CAS  Google Scholar 

  43. Bauer JS, Link TM (2009) Advances in osteoporosis imaging. Eur J Radiol 71:440–449

    Article  PubMed  Google Scholar 

  44. Ministry of Health Services, Radiation Protection Branch (2001) A study on the radiological safety of dual energy X-ray absorptiometry bone mineral densitometry equipment. British Columbia.

  45. Difede G, Scalzo G, Bucchieri S et al (2010) Underreported vertebral fractures in an Italian population: comparison of plain radiographs vs quantitative measurements. Radiol Med 115:1101–1110

    Article  PubMed  CAS  Google Scholar 

  46. (2008) American College of Radiology. Practice guidelines for the performance of dual-energy X-ray absorptiometry (DXA) In: Practice guidelines and technical standards. American College of Radiology, Reston (VA), pp 1–10

  47. (2009) American Society of Radiologic Technologists. Bone densitometry curriculum. American Society of Radiologic Technologists. Albuquerque (NM)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Guglielmi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guglielmi, G., Damilakis, J., Solomou, G. et al. Quality assurance of imaging techniques used in the clinical management of osteoporosis. Radiol med 117, 1347–1354 (2012). https://doi.org/10.1007/s11547-012-0881-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-012-0881-z

Keywords

Parole chiave

Navigation