Skip to main content

Advertisement

Log in

Age-related cardiovascular disease and the beneficial effects of calorie restriction

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Aging is a well-recognized risk factor in the development of cardiovascular disease, which is the primary cause of death and disability in the elderly population. The normal process of aging is associated with progressive deterioration in structure and function of the heart and vasculature. These age-related changes likely act as both a catalyst and accelerator in the development of cardiovascular disease. Since the aging population is one of the fastest growing segments of the population, it is of vital importance that we have a thorough understanding of the physiological changes that occur with aging that contribute to the high incidence of cardiovascular disease in this population. This insight will allow for the development of more targeted therapies that can prevent and treat these conditions. One such anti-aging strategy that has received considerable attention as of late is calorie restriction. Calorie restriction has emerged as one of the most effective and reproducible interventions for extending lifespan, as well as protecting against obesity, metabolic disorders, and cardiovascular disease. Herein, we review the multiple beneficial effects that calorie restriction and resveratrol exert on the cardiovascular system with a particular focus on aging. Although calorie restriction and resveratrol have proven to be very effective in preventing and treating the development of cardiovascular disease in animal models, studies continue as to whether these profound beneficial effects can translate to humans to improve cardiovascular health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Centers for Disease Control and Prevention (2003) Trends in aging—United States and worldwide. MMWR Morb Mortal Wkly Rep 52:101–104, 106

  2. Centers for Disease Control and Prevention and The Merck Company Foundation. The State of Aging and Health in America (2007) The Merck Company Foundation: Whitehouse Station, NJ

  3. Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, Carnethon MR, Dai S, de Simone G, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Greenlund KJ, Hailpern SM, Heit JA, Ho PM, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Makuc DM, Marcus GM, Marelli A, Matchar DB, McDermott MM, Meigs JB, Moy CS, Mozaffarian D, Mussolino ME, Nichol G, Paynter NP, Rosamond WD, Sorlie PD, Stafford RS, Turan TN, Turner MB, Wong ND, Wylie-Rosett J (2011) Heart disease and stroke statistics—2011 update: a report from the American Heart Association. Circulation 123:e18–e209

    Google Scholar 

  4. O’Rourke MF, Hashimoto J (2007) Mechanical factors in arterial aging: a clinical perspective. J Am Coll Cardiol 50:1–13

    PubMed  Google Scholar 

  5. Lakatta EG, Levy D (2003) Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part II: the aging heart in health: links to heart disease. Circulation 107:346–354

    PubMed  Google Scholar 

  6. Lakatta EG, Levy D (2003) Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part I: aging arteries: a “set up” for vascular disease. Circulation 107:139–146

    PubMed  Google Scholar 

  7. Shih H, Lee B, Lee RJ, Boyle AJ (2011) The aging heart and post-infarction left ventricular remodeling. J Am Coll Cardiol 57:9–17

    PubMed  Google Scholar 

  8. Ezekowitz JA, Kaul P, Bakal JA, Armstrong PW, Welsh RC, McAlister FA (2009) Declining in-hospital mortality and increasing heart failure incidence in elderly patients with first myocardial infarction. J Am Coll Cardiol 53:13–20

    PubMed  Google Scholar 

  9. Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX, Eckel RH (2006) Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 113:898–918

    PubMed  Google Scholar 

  10. Global Strategy on Diet; Available from: http://www.who.int/dietphysicalactivity/publications/facts/obesity/en/

  11. Eckel RH, York DA, Rossner S, Hubbard V, Caterson I, St Jeor ST, Hayman LL, Mullis RM, Blair SN (2004) Prevention conference VII: obesity, a worldwide epidemic related to heart disease and stroke: executive summary. Circulation 110:2968–2975

    PubMed  Google Scholar 

  12. Hubert HB, Feinleib M, McNamara PM, Castelli WP (1983) Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation 67:968–977

    PubMed  CAS  Google Scholar 

  13. Kenchaiah S, Evans JC, Levy D, Wilson PW, Benjamin EJ, Larson MG, Kannel WB, Vasan RS (2002) Obesity and the risk of heart failure. N Engl J Med 347:305–313

    PubMed  Google Scholar 

  14. Wilson PW, D’Agostino RB, Sullivan L, Parise H, Kannel WB (2002) Overweight and obesity as determinants of cardiovascular risk: the Framingham experience. Arch Intern Med 162:1867–1872

    PubMed  Google Scholar 

  15. Jonsson S, Hedblad B, Engstrom G, Nilsson P, Berglund G, Janzon L (2002) Influence of obesity on cardiovascular risk. Twenty-three-year follow-up of 22, 025 men from an urban Swedish population. Int J Obes Relat Metab Disord 26:1046–1053

    PubMed  CAS  Google Scholar 

  16. Mensah GA, Mokdad AH, Ford E, Narayan KM, Giles WH, Vinicor F, Deedwania PC (2004) Obesity, metabolic syndrome, and type 2 diabetes: emerging epidemics and their cardiovascular implications. Cardiol Clin 22:485–504

    PubMed  Google Scholar 

  17. Haslam DW, James WP (2005) Obesity. Lancet 366:1197–1209

    PubMed  Google Scholar 

  18. Eckel RH, Grundy SM, Zimmet PZ (2005) The metabolic syndrome. Lancet 365:1415–1428

    PubMed  CAS  Google Scholar 

  19. Masoro EJ (2005) Overview of caloric restriction and ageing. Mech Ageing Dev 126:913–922

    PubMed  CAS  Google Scholar 

  20. Han X, Ren J (2010) Caloric restriction and heart function: is there a sensible link? Acta Pharmacol Sin 31:1111–1117

    PubMed  CAS  Google Scholar 

  21. Omodei D, Fontana L (2011) Calorie restriction and prevention of age-associated chronic disease. FEBS Lett 585:1537–1542

    PubMed  CAS  Google Scholar 

  22. Benjamin EJ, Levy D, Anderson KM, Wolf PA, Plehn JF, Evans JC, Comai K, Fuller DL, Sutton MS (1992) Determinants of Doppler indexes of left ventricular diastolic function in normal subjects (the Framingham Heart Study). Am J Cardiol 70:508–515

    PubMed  CAS  Google Scholar 

  23. Dzau VJ, Antman EM, Black HR, Hayes DL, Manson JE, Plutzky J, Popma JJ, Stevenson W (2006) The cardiovascular disease continuum validated: clinical evidence of improved patient outcomes: part I: pathophysiology and clinical trial evidence (risk factors through stable coronary artery disease). Circulation 114:2850–2870

    PubMed  Google Scholar 

  24. Susic D, Frohlich ED (2008) The aging hypertensive heart: a brief update. Nat Clin Pract Cardiovasc Med 5:104–110

    PubMed  Google Scholar 

  25. Karavidas A, Lazaros G, Tsiachris D, Pyrgakis V (2010) Aging and the cardiovascular system. Hellenic J Cardiol 51:421–427

    PubMed  Google Scholar 

  26. Fleg JL, Strait J (2011) Age-associated changes in cardiovascular structure and function: a fertile milieu for future disease. Heart Fail Rev. doi:10.1007/s10741-011-9270-2

  27. Barton M (2010) Obesity and aging: determinants of endothelial cell dysfunction and atherosclerosis. Pflugers Arch 460:825–837

    PubMed  CAS  Google Scholar 

  28. Lakatta EG (2003) Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part III: cellular and molecular clues to heart and arterial aging. Circulation 107:490–497

    PubMed  Google Scholar 

  29. Li Z, Froehlich J, Galis ZS, Lakatta EG (1999) Increased expression of matrix metalloproteinase-2 in the thickened intima of aged rats. Hypertension 33:116–123

    PubMed  CAS  Google Scholar 

  30. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, Pannier B, Vlachopoulos C, Wilkinson I, Struijker-Boudier H (2006) Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J 27:2588–2605

    PubMed  Google Scholar 

  31. Masoro EJ (2009) Caloric restriction-induced life extension of rats and mice: a critique of proposed mechanisms. Biochim Biophys Acta 1790:1040–1048

    PubMed  CAS  Google Scholar 

  32. Dolinsky VW, Dyck JR (2011) Calorie restriction and resveratrol in cardiovascular health and disease. Biochim Biophys Acta 1812:1477–1489

    PubMed  CAS  Google Scholar 

  33. Longo VD, Fontana L (2010) Calorie restriction and cancer prevention: metabolic and molecular mechanisms. Trends Pharmacol Sci 31:89–98

    PubMed  CAS  Google Scholar 

  34. Contestabile A (2009) Benefits of caloric restriction on brain aging and related pathological States: understanding mechanisms to devise novel therapies. Curr Med Chem 16:350–361

    PubMed  CAS  Google Scholar 

  35. Qin W, Yang T, Ho L, Zhao Z, Wang J, Chen L, Zhao W, Thiyagarajan M, MacGrogan D, Rodgers JT, Puigserver P, Sadoshima J, Deng H, Pedrini S, Gandy S, Sauve AA, Pasinetti GM (2006) Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem 281:21745–21754

    PubMed  CAS  Google Scholar 

  36. Das M, Gabriely I, Barzilai N (2004) Caloric restriction, body fat and ageing in experimental models. Obes Rev 5:13–19

    PubMed  CAS  Google Scholar 

  37. Sinclair DA (2005) Toward a unified theory of caloric restriction and longevity regulation. Mech Ageing Dev 126:987–1002

    PubMed  CAS  Google Scholar 

  38. Lee CK, Klopp RG, Weindruch R, Prolla TA (1999) Gene expression profile of aging and its retardation by caloric restriction. Science 285:1390–1393

    PubMed  CAS  Google Scholar 

  39. Lee CK, Allison DB, Brand J, Weindruch R, Prolla TA (2002) Transcriptional profiles associated with aging and middle age-onset caloric restriction in mouse hearts. Proc Natl Acad Sci USA 99:14988–14993

    PubMed  CAS  Google Scholar 

  40. Bordone L, Guarente L (2005) Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol 6:298–305

    PubMed  CAS  Google Scholar 

  41. Salminen A, Kaarniranta K (2009) Regulation of the aging process by autophagy. Trends Mol Med 15:217–224

    PubMed  CAS  Google Scholar 

  42. Rubinsztein DC, Marino G, Kroemer G (2011) Autophagy and aging. Cell 146:682–695

    PubMed  CAS  Google Scholar 

  43. Cuervo AM, Dice JF (2000) Age-related decline in chaperone-mediated autophagy. J Biol Chem 275:31505–31513

    PubMed  CAS  Google Scholar 

  44. Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, Tsokos M, Alt FW, Finkel T (2008) A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA 105:3374–3379

    PubMed  CAS  Google Scholar 

  45. Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325:201–204

    PubMed  CAS  Google Scholar 

  46. Lane MA, Black A, Handy A, Tilmont EM, Ingram DK, Roth GS (2001) Caloric restriction in primates. Ann NY Acad Sci 928:287–295

    PubMed  CAS  Google Scholar 

  47. Rodriguez NA, Garcia KD, Fortman JD, Hewett TA, Bunte RM, Bennett BT (2002) Clinical and histopathological evaluation of 13 cases of adenocarcinoma in aged rhesus macaques (Macaca mulatta). J Med Primatol 31:74–83

    PubMed  CAS  Google Scholar 

  48. Ramsey JJ, Colman RJ, Binkley NC, Christensen JD, Gresl TA, Kemnitz JW, Weindruch R (2000) Dietary restriction and aging in rhesus monkeys: the University of Wisconsin study. Exp Gerontol 35:1131–1149

    PubMed  CAS  Google Scholar 

  49. Gresl TA, Colman RJ, Roecker EB, Havighurst TC, Huang Z, Allison DB, Bergman RN, Kemnitz JW (2001) Dietary restriction and glucose regulation in aging rhesus monkeys: a follow-up report at 8.5 yr. Am J Physiol Endocrinol Metab 281:E757–E765

    PubMed  CAS  Google Scholar 

  50. Colman RJ, Beasley TM, Allison DB, Weindruch R (2008) Attenuation of sarcopenia by dietary restriction in rhesus monkeys. J Gerontol A Biol Sci Med Sci 63:556–559

    PubMed  Google Scholar 

  51. Willcox BJ, Willcox DC, Todoriki H, Fujiyoshi A, Yano K, He Q, Curb JD, Suzuki M (2007) Caloric restriction, the traditional Okinawan diet, and healthy aging: the diet of the world’s longest-lived people and its potential impact on morbidity and life span. Ann NY Acad Sci 1114:434–455

    PubMed  CAS  Google Scholar 

  52. Willcox DC, Willcox BJ, Todoriki H, Curb JD, Suzuki M (2006) Caloric restriction and human longevity: what can we learn from the Okinawans? Biogerontology 7:173–177

    PubMed  Google Scholar 

  53. Fontana L (2008) Calorie restriction and cardiometabolic health. Eur J Cardiovasc Prev Rehabil 15:3–9

    PubMed  Google Scholar 

  54. Seymour EM, Parikh RV, Singer AA, Bolling SF (2006) Moderate calorie restriction improves cardiac remodeling and diastolic dysfunction in the Dahl-SS rat. J Mol Cell Cardiol 41:661–668

    PubMed  CAS  Google Scholar 

  55. Dolinsky VW, Morton JS, Oka T, Robillard-Frayne I, Bagdan M, Lopaschuk GD, Des Rosiers C, Walsh K, Davidge ST, Dyck JR (2010) Calorie restriction prevents hypertension and cardiac hypertrophy in the spontaneously hypertensive rat. Hypertension 56:412–421

    PubMed  CAS  Google Scholar 

  56. Young JB, Mullen D, Landsberg L (1978) Caloric restriction lowers blood pressure in the spontaneously hypertensive rat. Metabolism 27:1711–1714

    PubMed  CAS  Google Scholar 

  57. Swoap SJ, Boddell P, Baldwin KM (1995) Interaction of hypertension and caloric restriction on cardiac mass and isomyosin expression. Am J Physiol 268:R33–R39

    PubMed  CAS  Google Scholar 

  58. Rippe C, Lesniewski L, Connell M, LaRocca T, Donato A, Seals D (2010) Short-term calorie restriction reverses vascular endothelial dysfunction in old mice by increasing nitric oxide and reducing oxidative stress. Aging Cell 9:304–312

    PubMed  CAS  Google Scholar 

  59. Mattagajasingh I, Kim CS, Naqvi A, Yamamori T, Hoffman TA, Jung SB, DeRicco J, Kasuno K, Irani K (2007) SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci USA 104:14855–14860

    PubMed  CAS  Google Scholar 

  60. Zanetti M, Barazzoni R, Vadori M, Stebel M, Biolo G, Guarnieri G (2004) Lack of direct effect of moderate hyperleptinemia to improve endothelial function in lean rat aorta: role of calorie restriction. Atherosclerosis 175:253–259

    PubMed  CAS  Google Scholar 

  61. Sharifi AM, Mohseni S, Nekoparvar S, Larijani B, Fakhrzadeh H, Oryan S (2008) Effect of caloric restriction on nitric oxide production, ACE activity, and blood pressure regulation in rats. Acta Physiol Hung 95:55–63

    PubMed  CAS  Google Scholar 

  62. Chatterjee A, Black SM, Catravas JD (2008) Endothelial nitric oxide (NO) and its pathophysiologic regulation. Vascul Pharmacol 49:134–140

    PubMed  CAS  Google Scholar 

  63. Miyazaki R, Ichiki T, Hashimoto T, Inanaga K, Imayama I, Sadoshima J, Sunagawa K (2008) SIRT1, a longevity gene, downregulates angiotensin II type 1 receptor expression in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 28:1263–1269

    PubMed  CAS  Google Scholar 

  64. Basso N, Cini R, Pietrelli A, Ferder L, Terragno NA, Inserra F (2007) Protective effect of long-term angiotensin II inhibition. Am J Physiol Heart Circ Physiol 293:H1351–H1358

    PubMed  CAS  Google Scholar 

  65. Stegbauer J, Coffman TM (2011) New insights into angiotensin receptor actions: from blood pressure to aging. Curr Opin Nephrol Hypertens 20:84–88

    PubMed  CAS  Google Scholar 

  66. Benigni A, Corna D, Zoja C, Sonzogni A, Latini R, Salio M, Conti S, Rottoli D, Longaretti L, Cassis P, Morigi M, Coffman TM, Remuzzi G (2009) Disruption of the Ang II type 1 receptor promotes longevity in mice. J Clin Invest 119:524–530

    PubMed  CAS  Google Scholar 

  67. Lekli I, Szabo G, Juhasz B, Das S, Das M, Varga E, Szendrei L, Gesztelyi R, Varadi J, Bak I, Das DK, Tosaki A (2008) Protective mechanisms of resveratrol against ischemia-reperfusion-induced damage in hearts obtained from Zucker obese rats: the role of GLUT-4 and endothelin. Am J Physiol Heart Circ Physiol 294:H859–H866

    PubMed  CAS  Google Scholar 

  68. Liu Z, Song Y, Zhang X, Zhang W, Mao W, Wang W, Cui W, Jia X, Li N, Han C, Liu C (2005) Effects of trans-resveratrol on hypertension-induced cardiac hypertrophy using the partially nephrectomized rat model. Clin Exp Pharmacol Physiol 32:1049–1054

    PubMed  Google Scholar 

  69. Overton JM, VanNess JM, Casto RM (1997) Food restriction reduces sympathetic support of blood pressure in spontaneously hypertensive rats. J Nutr 127:655–660

    PubMed  CAS  Google Scholar 

  70. Young JB, Landsberg L (1977) Suppression of sympathetic nervous system during fasting. Science 196:1473–1475

    PubMed  CAS  Google Scholar 

  71. Guo Z, Mitchell-Raymundo F, Yang H, Ikeno Y, Nelson J, Diaz V, Richardson A, Reddick R (2002) Dietary restriction reduces atherosclerosis and oxidative stress in the aorta of apolipoprotein E-deficient mice. Mech Ageing Dev 123:1121–1131

    PubMed  CAS  Google Scholar 

  72. Libby P, Ridker PM, Hansson GK (2011) Progress and challenges in translating the biology of atherosclerosis. Nature 473:317–325

    PubMed  CAS  Google Scholar 

  73. Fontana L, Meyer TE, Klein S, Holloszy JO (2004) Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci USA 101:6659–6663

    PubMed  CAS  Google Scholar 

  74. Spaulding CC, Walford RL, Effros RB (1997) Calorie restriction inhibits the age-related dysregulation of the cytokines TNF-alpha and IL-6 in C3B10RF1 mice. Mech Ageing Dev 93:87–94

    PubMed  CAS  Google Scholar 

  75. Matsuzaki J, Kuwamura M, Yamaji R, Inui H, Nakano Y (2001) Inflammatory responses to lipopolysaccharide are suppressed in 40% energy-restricted mice. J Nutr 131:2139–2144

    PubMed  CAS  Google Scholar 

  76. Shinmura K, Tamaki K, Bolli R (2005) Short-term caloric restriction improves ischemic tolerance independent of opening of ATP-sensitive K+ channels in both young and aged hearts. J Mol Cell Cardiol 39:285–296

    PubMed  CAS  Google Scholar 

  77. Walford RL, Harris SB, Gunion MW (1992) The calorically restricted low-fat nutrient-dense diet in Biosphere 2 significantly lowers blood glucose, total leukocyte count, cholesterol, and blood pressure in humans. Proc Natl Acad Sci USA 89:11533–11537

    PubMed  CAS  Google Scholar 

  78. Lefevre M, Redman LM, Heilbronn LK, Smith JV, Martin CK, Rood JC, Greenway FL, Williamson DA, Smith SR, Ravussin E (2009) Caloric restriction alone and with exercise improves CVD risk in healthy non-obese individuals. Atherosclerosis 203:206–213

    PubMed  CAS  Google Scholar 

  79. Assmann G, Gotto Jr AM (2004) HDL cholesterol and protective factors in atherosclerosis. Circulation 109:III8–III14

    Google Scholar 

  80. McCurdy CE, Cartee GD (2005) Akt2 is essential for the full effect of calorie restriction on insulin-stimulated glucose uptake in skeletal muscle. Diabetes 54:1349–1356

    PubMed  CAS  Google Scholar 

  81. Sakamoto S, Minami K, Niwa Y, Ohnaka M, Nakaya Y, Mizuno A, Kuwajima M, Shima K (1998) Effect of exercise training and food restriction on endothelium-dependent relaxation in the Otsuka Long-Evans Tokushima Fatty rat, a model of spontaneous NIDDM. Diabetes 47:82–86

    PubMed  CAS  Google Scholar 

  82. Okauchi N, Mizuno A, Yoshimoto S, Zhu M, Sano T, Shima K (1995) Is caloric restriction effective in preventing diabetes mellitus in the Otsuka Long Evans Tokushima fatty rat, a model of spontaneous non-insulin-dependent diabetes mellitus? Diabetes Res Clin Pract 27:97–106

    PubMed  CAS  Google Scholar 

  83. Zheng Y, Zhang W, Pendleton E, Leng S, Wu J, Chen R, Sun XJ (2009) Improved insulin sensitivity by calorie restriction is associated with reduction of ERK and p70S6 K activities in the liver of obese Zucker rats. J Endocrinol 203:337–347

    PubMed  CAS  Google Scholar 

  84. Hammer S, Snel M, Lamb HJ, Jazet IM, van der Meer RW, Pijl H, Meinders EA, Romijn JA, de Roos A, Smit JW (2008) Prolonged caloric restriction in obese patients with type 2 diabetes mellitus decreases myocardial triglyceride content and improves myocardial function. J Am Coll Cardiol 52:1006–1012

    PubMed  CAS  Google Scholar 

  85. Cruzen C, Colman RJ (2009) Effects of caloric restriction on cardiovascular aging in non-human primates and humans. Clin Geriatr Med 25:733–743, ix–x

    Google Scholar 

  86. Redman LM, Heilbronn LK, Martin CK, Alfonso A, Smith SR, Ravussin E (2007) Effect of calorie restriction with or without exercise on body composition and fat distribution. J Clin Endocrinol Metab 92:865–872

    PubMed  CAS  Google Scholar 

  87. Heilbronn LK, de Jonge L, Frisard MI, DeLany JP, Larson-Meyer DE, Rood J, Nguyen T, Martin CK, Volaufova J, Most MM, Greenway FL, Smith SR, Deutsch WA, Williamson DA, Ravussin E (2006) Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial. JAMA 295:1539–1548

    PubMed  CAS  Google Scholar 

  88. Rochon J, Bales CW, Ravussin E, Redman LM, Holloszy JO, Racette SB, Roberts SB, Das SK, Romashkan S, Galan KM, Hadley EC, Kraus WE (2011) Design and conduct of the CALERIE study: comprehensive assessment of the long-term effects of reducing intake of energy. J Gerontol A Biol Sci Med Sci 66:97–108

    PubMed  Google Scholar 

  89. Shinmura K (2011) Cardiovascular protection afforded by caloric restriction: essential role of nitric oxide synthase. Geriatr Gerontol Int 11:143–156

    PubMed  Google Scholar 

  90. Sung MM, Soltys CL, Masson G, Boisvenue JJ, Dyck JR (2011) Improved cardiac metabolism and activation of the RISK pathway contributes to improved post-ischemic recovery in calorie restricted mice. J Mol Med 89:291–302

    PubMed  CAS  Google Scholar 

  91. Shinmura K, Tamaki K, Saito K, Nakano Y, Tobe T, Bolli R (2007) Cardioprotective effects of short-term caloric restriction are mediated by adiponectin via activation of AMP-activated protein kinase. Circulation 116:2809–2817

    PubMed  CAS  Google Scholar 

  92. Liu Q, Docherty JC, Rendell JC, Clanachan AS, Lopaschuk GD (2002) High levels of fatty acids delay the recovery of intracellular pH and cardiac efficiency in post-ischemic hearts by inhibiting glucose oxidation. J Am Coll Cardiol 39:718–725

    PubMed  CAS  Google Scholar 

  93. Dyck JR, Cheng JF, Stanley WC, Barr R, Chandler MP, Brown S, Wallace D, Arrhenius T, Harmon C, Yang G, Nadzan AM, Lopaschuk GD (2004) Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation. Circ Res 94:e78–e84

    PubMed  CAS  Google Scholar 

  94. Stanley WC, Lopaschuk GD, Hall JL, McCormack JG (1997) Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions. Potential for pharmacological interventions. Cardiovasc Res 33:243–257

    PubMed  CAS  Google Scholar 

  95. Hue L, Taegtmeyer H (2009) The Randle cycle revisited: a new head for an old hat. Am J Physiol Endocrinol Metab 297:E578–E591

    PubMed  CAS  Google Scholar 

  96. Liu B, Clanachan AS, Schulz R, Lopaschuk GD (1996) Cardiac efficiency is improved after ischemia by altering both the source and fate of protons. Circ Res 79:940–948

    PubMed  CAS  Google Scholar 

  97. Liu B, el Alaoui-Talibi Z, Clanachan AS, Schulz R, Lopaschuk GD (1996) Uncoupling of contractile function from mitochondrial TCA cycle activity and MVO2 during reperfusion of ischemic hearts. Am J Physiol 270:H72–H80

    PubMed  CAS  Google Scholar 

  98. Dolinsky VW, Dyck JR (2006) Role of AMP-activated protein kinase in healthy and diseased hearts. Am J Physiol Heart Circ Physiol 291:H2557–H2569

    PubMed  CAS  Google Scholar 

  99. Dyck JR, Lopaschuk GD (2006) AMPK alterations in cardiac physiology and pathology: enemy or ally? J Physiol 574:95–112

    PubMed  CAS  Google Scholar 

  100. Bertomeu-Gonzalez V, Bouzas-Mosquera A, Kaski JC (2006) Role of trimetazidine in management of ischemic cardiomyopathy. Am J Cardiol 98:19J–24J

    PubMed  CAS  Google Scholar 

  101. Lopaschuk GD, Barr R, Thomas PD, Dyck JR (2003) Beneficial effects of trimetazidine in ex vivo working ischemic hearts are due to a stimulation of glucose oxidation secondary to inhibition of long-chain 3-ketoacyl coenzyme a thiolase. Circ Res 93:e33–e37

    PubMed  CAS  Google Scholar 

  102. Boengler K, Schulz R, Heusch G (2009) Loss of cardioprotection with ageing. Cardiovasc Res 83:247–261

    PubMed  CAS  Google Scholar 

  103. Abete P, Cioppa A, Calabrese C, Pascucci I, Cacciatore F, Napoli C, Carnovale V, Ferrara N, Rengo F (1999) Ischemic threshold and myocardial stunning in the aging heart. Exp Gerontol 34:875–884

    PubMed  CAS  Google Scholar 

  104. Willems L, Zatta A, Holmgren K, Ashton KJ, Headrick JP (2005) Age-related changes in ischemic tolerance in male and female mouse hearts. J Mol Cell Cardiol 38:245–256

    PubMed  CAS  Google Scholar 

  105. Lesnefsky EJ, Gallo DS, Ye J, Whittingham TS, Lust WD (1994) Aging increases ischemia-reperfusion injury in the isolated, buffer-perfused heart. J Lab Clin Med 124:843–851

    PubMed  CAS  Google Scholar 

  106. Tani M, Suganuma Y, Hasegawa H, Shinmura K, Ebihara Y, Hayashi Y, Guo X, Takayama M (1997) Decrease in ischemic tolerance with aging in isolated perfused Fischer 344 rat hearts: relation to increases in intracellular Na+ after ischemia. J Mol Cell Cardiol 29:3081–3089

    PubMed  CAS  Google Scholar 

  107. Fenton RA, Dickson EW, Meyer TE, Dobson JG Jr (2000) Aging reduces the cardioprotective effect of ischemic preconditioning in the rat heart. J Mol Cell Cardiol 32:1371–1375

    PubMed  CAS  Google Scholar 

  108. Abete P, Ferrara N, Cioppa A, Ferrara P, Bianco S, Calabrese C, Cacciatore F, Longobardi G, Rengo F (1996) Preconditioning does not prevent postischemic dysfunction in aging heart. J Am Coll Cardiol 27:1777–1786

    PubMed  CAS  Google Scholar 

  109. Lee TM, Su SF, Chou TF, Lee YT, Tsai CH (2002) Loss of preconditioning by attenuated activation of myocardial ATP-sensitive potassium channels in elderly patients undergoing coronary angioplasty. Circulation 105:334–340

    PubMed  CAS  Google Scholar 

  110. Shinmura K, Tamaki K, Bolli R (2008) Impact of 6-mo caloric restriction on myocardial ischemic tolerance: possible involvement of nitric oxide-dependent increase in nuclear Sirt1. Am J Physiol Heart Circ Physiol 295:H2348–H2355

    PubMed  CAS  Google Scholar 

  111. Long P, Nguyen Q, Thurow C, Broderick TL (2002) Caloric restriction restores the cardioprotective effect of preconditioning in the rat heart. Mech Ageing Dev 123:1411–1413

    PubMed  Google Scholar 

  112. Abete P, Testa G, Ferrara N, De Santis D, Capaccio P, Viati L, Calabrese C, Cacciatore F, Longobardi G, Condorelli M, Napoli C, Rengo F (2002) Cardioprotective effect of ischemic preconditioning is preserved in food-restricted senescent rats. Am J Physiol Heart Circ Physiol 282:H1978–H1987

    PubMed  CAS  Google Scholar 

  113. Hausenloy DJ, Tsang A, Mocanu MM, Yellon DM (2005) Ischemic preconditioning protects by activating prosurvival kinases at reperfusion. Am J Physiol Heart Circ Physiol 288:H971–H976

    PubMed  CAS  Google Scholar 

  114. Gredilla R, Sanz A, Lopez-Torres M, Barja G (2001) Caloric restriction decreases mitochondrial free radical generation at complex I and lowers oxidative damage to mitochondrial DNA in the rat heart. FASEB J 15:1589–1591

    PubMed  CAS  Google Scholar 

  115. Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, Tedesco L, Falcone S, Valerio A, Cantoni O, Clementi E, Moncada S, Carruba MO (2005) Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310:314–317

    PubMed  CAS  Google Scholar 

  116. Tanno M, Kuno A, Yano T, Miura T, Hisahara S, Ishikawa S, Shimamoto K, Horio Y (2010) Induction of manganese superoxide dismutase by nuclear translocation and activation of SIRT1 promotes cell survival in chronic heart failure. J Biol Chem 285:8375–8382

    PubMed  CAS  Google Scholar 

  117. Shinmura K, Tamaki K, Sano M, Nakashima-Kamimura N, Wolf AM, Amo T, Ohta S, Katsumata Y, Fukuda K, Ishiwata K, Suematsu M, Adachi T (2011) Caloric restriction primes mitochondria for ischemic stress by deacetylating specific mitochondrial proteins of the electron transport chain. Circ Res 109:396–406

    PubMed  CAS  Google Scholar 

  118. Matsui Y, Kyoi S, Takagi H, Hsu CP, Hariharan N, Ago T, Vatner SF, Sadoshima J (2008) Molecular mechanisms and physiological significance of autophagy during myocardial ischemia and reperfusion. Autophagy 4:409–415

    PubMed  CAS  Google Scholar 

  119. Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, Levine B, Sadoshima J (2007) Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res 100:914–922

    PubMed  CAS  Google Scholar 

  120. Gustafsson AB, Gottlieb RA (2008) Recycle or die: the role of autophagy in cardioprotection. J Mol Cell Cardiol 44:654–661

    PubMed  CAS  Google Scholar 

  121. Zhu M, Miura J, Lu LX, Bernier M, DeCabo R, Lane MA, Roth GS, Ingram DK (2004) Circulating adiponectin levels increase in rats on caloric restriction: the potential for insulin sensitization. Exp Gerontol 39:1049–1059

    PubMed  CAS  Google Scholar 

  122. Kondo M, Shibata R, Miura R, Shimano M, Kondo K, Li P, Ohashi T, Kihara S, Maeda N, Walsh K, Ouchi N, Murohara T (2009) Caloric restriction stimulates revascularization in response to ischemia via adiponectin-mediated activation of endothelial nitric-oxide synthase. J Biol Chem 284:1718–1724

    PubMed  CAS  Google Scholar 

  123. Ouchi N, Kobayashi H, Kihara S, Kumada M, Sato K, Inoue T, Funahashi T, Walsh K (2004) Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells. J Biol Chem 279:1304–1309

    PubMed  CAS  Google Scholar 

  124. Shibata R, Ouchi N, Kihara S, Sato K, Funahashi T, Walsh K (2004) Adiponectin stimulates angiogenesis in response to tissue ischemia through stimulation of amp-activated protein kinase signaling. J Biol Chem 279:28670–28674

    PubMed  CAS  Google Scholar 

  125. Shimano M, Ouchi N, Shibata R, Ohashi K, Pimentel DR, Murohara T, Walsh K (2010) Adiponectin deficiency exacerbates cardiac dysfunction following pressure overload through disruption of an AMPK-dependent angiogenic response. J Mol Cell Cardiol 49:210–220

    PubMed  CAS  Google Scholar 

  126. Taffet GE, Pham TT, Hartley CJ (1997) The age-associated alterations in late diastolic function in mice are improved by caloric restriction. J Gerontol A Biol Sci Med Sci 52:B285–B290

    PubMed  CAS  Google Scholar 

  127. Shinmura K, Tamaki K, Sano M, Murata M, Yamakawa H, Ishida H, Fukuda K (2011) Impact of long-term caloric restriction on cardiac senescence: caloric restriction ameliorates cardiac diastolic dysfunction associated with aging. J Mol Cell Cardiol 50:117–127

    PubMed  CAS  Google Scholar 

  128. Kemi M, Keenan KP, McCoy C, Hoe CM, Soper KA, Ballam GC, van Zwieten MJ (2000) The relative protective effects of moderate dietary restriction versus dietary modification on spontaneous cardiomyopathy in male Sprague-Dawley rats. Toxicol Pathol 28:285–296

    PubMed  CAS  Google Scholar 

  129. Dhahbi JM, Tsuchiya T, Kim HJ, Mote PL, Spindler SR (2006) Gene expression and physiologic responses of the heart to the initiation and withdrawal of caloric restriction. J Gerontol A Biol Sci Med Sci 61:218–231

    PubMed  Google Scholar 

  130. Meyer TE, Kovacs SJ, Ehsani AA, Klein S, Holloszy JO, Fontana L (2006) Long-term caloric restriction ameliorates the decline in diastolic function in humans. J Am Coll Cardiol 47:398–402

    PubMed  CAS  Google Scholar 

  131. Riordan MM, Weiss EP, Meyer TE, Ehsani AA, Racette SB, Villareal DT, Fontana L, Holloszy JO, Kovacs SJ (2008) The effects of caloric restriction- and exercise-induced weight loss on left ventricular diastolic function. Am J Physiol Heart Circ Physiol 294:H1174–H1182

    PubMed  CAS  Google Scholar 

  132. Wang H, Yang YJ, Qian HY, Zhang Q, Xu H, Li JJ (2011) Resveratrol in cardiovascular disease: what is known from current research? Heart Fail Rev. doi:10.1007/s10741-011-9260-4

  133. Barger JL, Kayo T, Vann JM, Arias EB, Wang J, Hacker TA, Wang Y, Raederstorff D, Morrow JD, Leeuwenburgh C, Allison DB, Saupe KW, Cartee GD, Weindruch R, Prolla TA (2008) A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS One 3:e2264

    PubMed  Google Scholar 

  134. Tatlidede E, Sehirli O, Velioglu-Ogunc A, Cetinel S, Yegen BC, Yarat A, Suleymanoglu S, Sener G (2009) Resveratrol treatment protects against doxorubicin-induced cardiotoxicity by alleviating oxidative damage. Free Radic Res 43:195–205

    PubMed  CAS  Google Scholar 

  135. Flegal KM, Carroll MD, Ogden CL, Curtin LR (2010) Prevalence and trends in obesity among US adults, 1999–2008. JAMA 303:235–241

    PubMed  CAS  Google Scholar 

  136. Wende AR, Abel ED (2010) Lipotoxicity in the heart. Biochim Biophys Acta 1801:311–319

    PubMed  CAS  Google Scholar 

  137. Abel ED, Litwin SE, Sweeney G (2008) Cardiac remodeling in obesity. Physiol Rev 88:389–419

    PubMed  CAS  Google Scholar 

  138. Oreopoulos A, Padwal R, Kalantar-Zadeh K, Fonarow GC, Norris CM, McAlister FA (2008) Body mass index and mortality in heart failure: a meta-analysis. Am Heart J 156:13–22

    PubMed  Google Scholar 

  139. Elia M (2001) Obesity in the elderly. Obes Res 9(Suppl 4):244S–248S

    Google Scholar 

  140. Kuk JL, Saunders TJ, Davidson LE, Ross R (2009) Age-related changes in total and regional fat distribution. Ageing Res Rev 8:339–348

    PubMed  Google Scholar 

  141. Zamboni M, Armellini F, Harris T, Turcato E, Micciolo R, Bergamo-Andreis IA, Bosello O (1997) Effects of age on body fat distribution and cardiovascular risk factors in women. Am J Clin Nutr 66:111–115

    PubMed  CAS  Google Scholar 

  142. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Canadian Institutes of Health Research (CIHR), the Heart and Stroke Foundation of Canada, and the Canadian Diabetes Association. Dr. Dyck is an AHFMR Senior Scholar.

Conflict of interest

Dr. Sung and Dr. Dyck have no conflicts of interest or financial ties to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason R. B. Dyck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sung, M.M.Y., Dyck, J.R.B. Age-related cardiovascular disease and the beneficial effects of calorie restriction. Heart Fail Rev 17, 707–719 (2012). https://doi.org/10.1007/s10741-011-9293-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-011-9293-8

Keywords

Navigation