Skip to main content

Advertisement

Log in

The effect of gestational diabetes on proliferation capacity and viability of human umbilical cord-derived stromal cells

  • Original Paper
  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Stomal cells derived from Wharton’s jelly of human umbilical cord (WJMSCs) are considered as the potential therapeutic agents for regeneration and are getting famous for stem cell banking. Our study aims to evaluate the effects of gestational diabetes on proliferation capacity and viability of WJMSCs. Mesenchymal stromal cells were isolated from Wharton’s jelly of human umbilical cords from normal and gestational diabetic (DWJMSCs) mothers. Growth patterns of both types of cells were analyzed through MTT assay and population doubling time. Cell survival, cell death and glucose utilization were estimated through trypan blue exclusion assay, LDH assay and glucose detection assay respectively. Angiogenic ability was evaluated by immunocytochemistry and ELISA for VEGF A. Anti-cancerous potential was analyzed on HeLa cells. DWJMSCs exhibited low proliferative rate, increased population doubling time, reduced cell viability and increased cell death. Interestingly, DWJMSCs were found to have a reduced glucose utilization and anti-cancerous ability while enhanced angiogenic ability. Gestational diabetes induces adverse effects on growth, angiogenic and anti-cancerous potential of WJMSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Berridge MV, Herst PM, Tan AS (2005) Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev 11:127–152

    Article  CAS  PubMed  Google Scholar 

  • Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888

    CAS  PubMed  Google Scholar 

  • Chan FK, Moriwaki K, De Rosa MJ (2013) Detection of necrosis by release of lactate dehydrogenase activity. Methods Mol Biol 979:65–70

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choudhery MS, Khan M, Mahmood R, Mehmood A, Khan SN, Riazuddin S (2012) Bone marrow derived mesenchymal stem cells from aged mice have reduced wound healing, angiogenesis, proliferation and anti-apoptosis capabilities. Cell Biol Int 36(8):747–753

    Article  CAS  PubMed  Google Scholar 

  • Fong CY, Chak LL, Biswas A, Tan JH, Gauthaman K, Chan WK, Bongso A (2011) Human Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Rev 7(1):1–16

    Article  CAS  PubMed  Google Scholar 

  • Grover HS, Luthra S (2013) Molecular mechanisms involved in the bidirectional relationship between diabetes mellitus and periodontal disease. J Indian Soc Periodontol 17(3):292–301

    Article  PubMed Central  PubMed  Google Scholar 

  • Imam K (2012) Gestational diabetes mellitus. Adv Exp Med Biol 771:24–34

    PubMed  Google Scholar 

  • Kakkar P, Das B, Viswanathan PN (1984) A modified spectrophotometeric assay of superoxide dismutase. Ind Biochem Biophys 21:130–132

    CAS  Google Scholar 

  • Khan M, Akhtar S, Mohsin S, Khan N, Riazuddin S (2011) Growth factor preconditioning increases the function of diabetes-impaired mesenchymal stem cells. Stem Cells Dev 20(1):67–75

    Article  CAS  PubMed  Google Scholar 

  • Khan M, Ali F, Mohsin S, Akhtar S, Mehmood A, Choudhery MS, Khan SN, Riazuddin S (2013) Preconditioning diabetic mesenchymal stem cells with myogenic medium increases their ability to repair diabetic heart. Stem Cell Res Ther 4(3):58

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kurepa D, Pramanik AK, Kakkilaya V, Caldito G, Groome LJ, Bocchini JA, Jain SK (2012) Elevated acetoacetate and monocyte chemotactic protein-1 levels in cord blood of infants of diabetic mothers. Neonatology 102(3):163–168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lappas M, Hiden U, Desoye G, Froehlich J, Hauguel-de Mouzon S, Jawerbaum A (2011) The role of oxidative stress in the pathophysiology of gestational diabetes mellitus. Antioxid Redox Signal 15(12):3061–3100

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Zhou Z, Zhang D, Yang S, Wang J, Xue F, Yang Y, Yang R (2012) Immunosuppressive function of mesenchymal stem cells from human umbilical cord matrix in immune thrombocytopenia patients. Thromb Haemost 107(5):937–950

    Article  CAS  PubMed  Google Scholar 

  • Majumdar D, Bhonde R, Datta I (2013) Influence of ischemic microenvironment on human Wharton’s Jelly mesenchymal stromal cells. Placenta 34(8):642–649

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto T, Bohman S, Dixelius J, Berge T, Dimberg A, Magnusson P, Wang L, Wikner C, Qi JH, Wernstedt C, Wu J, Bruheim S, Mugishima H, Mukhopadhyay D, Spurkland A, Claesson-Welsh L (2005) VEGF receptor-2 Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis. EMBO J 24(13):2342–2353

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  • Rochette L, Zeller M, Cottin Y, Vergely C (2014) Diabetes, oxidative stress and therapeutic strategies. Biochim Biophys Acta 1840(9):2709–2729

    Article  CAS  PubMed  Google Scholar 

  • Singh CK, Kumar A, Lavoie HA, Dipette DJ, Singh US (2013) Diabetic complications in pregnancy: is resveratrol a solution? Exp Biol Med (Maywood) 238(5):482–490

    Article  Google Scholar 

  • Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47:38994

    Article  Google Scholar 

  • Tang RF, Wang SX, Zhang FR, Peng L, Wang SX, Xiao Y, Zhang M (2005) Interleukin-1alpha, 6 regulate the secretion of vascular endothelial growth factor A, C in pancreatic cancer. Hepatobiliary Pancreat Dis Int 4(3):460–463

  • Troyer DL, Weiss ML (2008) Concise review: wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells 26(3):591–599

    Article  PubMed Central  PubMed  Google Scholar 

  • Valcheva-Kuzmanova SV, Beronova AB, Momekov GT (2013) Protective effect of Aronia melanocarpa fruit juice in a model of cisplatin-induced cytotoxicity in vitro. Folia Med (Plovdiv) 55(3–4):76–79

    CAS  Google Scholar 

  • Vrachnis N, Antonakopoulos N, Iliodromiti Z, Dafopoulos K, Siristatidis C, Pappa KI, Deligeoroglou E, Vitoratos N (2012) Impact of maternal diabetes on epigenetic modifications leading to diseases in the offspring. Exp Diabetes Res. doi:10.1155/2012/538474

    PubMed Central  PubMed  Google Scholar 

  • Wang R, Lv L, Zhao Y, Yang N (2014) Okadaic acid inhibits cell multiplication and induces apoptosis in a549 cells, a human lung adenocarcinoma cell line. Int J Clin Exp Med 7(8):2025–2030

    PubMed Central  PubMed  Google Scholar 

  • Yan HT, Su GF (2014) Expression and significance of HIF-1 α and VEGF in rats with diabetic retinopathy. Asian Pac J Trop Med 7(3):237–240

    Article  CAS  PubMed  Google Scholar 

  • Zeng Z, Zhu BH (2014) Arnebin-1 promotes the angiogenesis of human umbilical vein endothelial cells and accelerates the wound healing process in diabetic rats. J Ethnopharmacol 154(3):653–662

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants from The University of Lahore, Lahore, Pakistan.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Wajid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wajid, N., Naseem, R., Anwar, S.S. et al. The effect of gestational diabetes on proliferation capacity and viability of human umbilical cord-derived stromal cells. Cell Tissue Bank 16, 389–397 (2015). https://doi.org/10.1007/s10561-014-9483-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-014-9483-4

Keywords

Navigation