Skip to main content
Log in

GLP-1 Receptor Agonists and Cardiovascular Disease: a Meta-Analysis of Recent Cardiac Outcome Trials

  • ORIGINAL ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study is to examine the cardioprotective properties of Glucagon-like peptide-1 receptor agonist, a class of antihyperglycemic therapy, via meta-analysis of four recently published cardiovascular outcomes trials.

Methods

Meta-analysis was performed pooling data from the ELIXA, LEADER, SUSTAIN-6 and EXSCEL trials. A random effects model was used to generate risk ratio with 95% confidence interval for cardiovascular and safety outcomes.

Results

A total of 33,457 patients were included in the meta-analysis. Based on the study, GLP-1R agonists significantly reduced all-cause mortality (RR 0.89; 95% CI 0.82 to 0.96) and cardiovascular mortality (RR 0.88; 95% CI 0.80 to 0.97) when compared to placebo. When long-acting agents were analyzed alone, reduction in major adverse cardiac events (RR 0.88; 95% CI 0.81 to 0.97) and non-fatal strokes (RR 0.87; 95% CI 0.76 to 0.99) also showed significance.

Conclusion

Overall, GLP-1R agonists appear to have cardioprotective properties likely via modification of metabolic parameters such as glycemic control, weight loss, and improvement in blood pressure. Additional studies are warranted to compare cardiovascular outcomes among the different agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Scheen AJ, Esser N, Paquot N. Antidiabetic agents: potential anti-inflammatory activity beyond glucose control. Diabetes Metab. 2015;41(3):183–94.

    Article  CAS  PubMed  Google Scholar 

  2. Kothari V, Galdo JA, Mathews ST. Hypoglycemic agents and potential anti-inflammatory activity. J Inflamm Res. 2016;9:27–38.

    PubMed  PubMed Central  Google Scholar 

  3. Buldak L, Machnik G, Buldak RJ, Labuzek K, Boldys A, Belowski D, et al. Exenatide (a GLP-1 agonist) expresses anti-inflammatory properties in cultured human monocytes/macrophages in a protein kinase a and B/Akt manner. Pharmacol Rep. 2016;68(2):329–37.

    Article  CAS  PubMed  Google Scholar 

  4. Nagayama K, Kyotani Y, Zhao J, Ito S, Ozawa K, Bolstad FA, et al. Exendin-4 prevents vascular smooth muscle cell proliferation and migration by angiotensin II via the inhibition of ERK1/2 and JNK signaling pathways. PLoS One. 2015;10(9):e0137960.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dai Y, Dai D, Wang X, Ding Z, Li C, Mehta JL. GLP-1 agonists inhibit ox-LDL uptake in macrophages by activating protein kinase A. J Cardiovasc Pharmacol. 2014;64(1):47–52.

    Article  CAS  PubMed  Google Scholar 

  6. Gaspari T, Welungoda I, Widdop RE, Simpson RW, Dear AE. The GLP-1 receptor agonist liraglutide inhibits progression of vascular disease via effects on atherogenesis, plaque stability and endothelial function in an ApoE(−/−) mouse model. Diab Vasc Dis Res. 2013;10(4):353–60.

    Article  PubMed  Google Scholar 

  7. Birnbaum Y, Ye Y, Bajaj M. Myocardial protection against ischemia-reperfusion injury by GLP-1: molecular mechanisms. Metab Syndr Relat Disord. 2012;10(6):387–90.

    Article  CAS  PubMed  Google Scholar 

  8. Yoon AH, Ye Y, Birnbaum Y. Dipeptidyl peptidase IV inhibitors and ischemic myocardial injury. J Cardiovasc Pharmacol Ther. 2014;19(5):417–25.

    Article  CAS  PubMed  Google Scholar 

  9. Younce CW, Burmeister MA, Ayala JE. Exendin-4 attenuates high glucose-induced cardiomyocyte apoptosis via inhibition of endoplasmic reticulum stress and activation of SERCA2a. Am J Physiol Cell Physiol. 2013;304(6):C508–18.

    Article  CAS  PubMed  Google Scholar 

  10. Zhou Y, He X, Chen Y, Huang Y, Wu L, He J. Exendin-4 attenuates cardiac hypertrophy via AMPK/mTOR signaling pathway activation. Biochem Biophys Res Commun. 2015;468(1–2):394–9.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang LH, Pang XF, Bai F, Wang NP, Shah AI, McKallip RJ, et al. Preservation of glucagon-like peptide-1 level attenuates angiotensin II-induced tissue fibrosis by altering AT1/AT 2 receptor expression and angiotensin-converting enzyme 2 activity in rat heart. Cardiovasc Drugs Ther. 2015;29(3):243–55.

    Article  CAS  PubMed  Google Scholar 

  12. Munaf M, Pellicori P, Allgar V, Wong K. A meta-analysis of the therapeutic effects of glucagon-like peptide-1 agonist in heart failure. Int J Pept. 2012;2012(249827):1–7.

    Article  Google Scholar 

  13. Vyas AK, Yang KC, Woo D, Tzekov A, Kovacs A, Jay PY, et al. Exenatide improves glucose homeostasis and prolongs survival in a murine model of dilated cardiomyopathy. PLoS One. 2011;6(2):e17178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Potts JE, Gray LJ, Brady EM, Khunti K, Davies MJ, Bodicoat DH. The effect of glucagon-like peptide 1 receptor agonists on weight loss in type 2 diabetes: a systematic review and mixed treatment comparison meta-analysis. PLoS One. 2015;10(6):e0126769.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Vilsboll T, Christensen M, Junker AE, Knop FK, Gluud LL. Effects of glucagon-like peptide-1 receptor agonists on weight loss: systematic review and meta-analyses of randomised controlled trials. BMJ. 2012;344(jan10 2):d7771.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang B, Zhong J, Lin H, Zhao Z, Yan Z, He H, et al. Blood pressure-lowering effects of GLP-1 receptor agonists exenatide and liraglutide: a meta-analysis of clinical trials. Diabetes Obes Metab. 2013;15(8):737–49.

    Article  CAS  PubMed  Google Scholar 

  17. Monami M, Dicembrini I, Nardini C, Fiordelli I, Mannucci E. Effects of glucagon-like peptide-1 receptor agonists on cardiovascular risk: a meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2014;16(1):38–47.

    Article  CAS  PubMed  Google Scholar 

  18. Pfeffer MA, Claggett B, Diaz R, Dickstein K, Gerstein HC, Kober LV, et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med. 2015;373(23):2247–57.

    Article  CAS  PubMed  Google Scholar 

  19. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2016;375(4):311–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jodar E, Leiter LA, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 2016;375(19):1834–44.

    Article  CAS  PubMed  Google Scholar 

  21. Holman RR, Bethel MA, Mentz RJ, Thompson VP, Lokhnygina Y, Buse JB, et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2017;377(13):1228–39.

    Article  CAS  PubMed  Google Scholar 

  22. Lonborg J, Vejlstrup N, Kelbaek H, Botker HE, Kim WY, Mathiasen AB, et al. Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. Eur Heart J. 2012;33(12):1491–9.

    Article  CAS  PubMed  Google Scholar 

  23. Lonborg J, Kelbaek H, Vejlstrup N, Botker HE, Kim WY, Holmvang L, et al. Exenatide reduces final infarct size in patients with ST-segment-elevation myocardial infarction and short-duration of ischemia. Circ Cardiovasc Interv. 2012;5(2):288–95.

    Article  PubMed  Google Scholar 

  24. Bernink FJ, Timmers L, Diamant M, Scholte M, Beek AM, Kamp O, et al. Effect of additional treatment with EXenatide in patients with an acute myocardial infarction: the EXAMI study. Int J Cardiol. 2013;167(1):289–90.

    Article  PubMed  Google Scholar 

  25. Poornima I, Brown SB, Bhashyam S, Parikh P, Bolukoglu H, Shannon RP. Chronic glucagon-like peptide-1 infusion sustains left ventricular systolic function and prolongs survival in the spontaneously hypertensive, heart failure-prone rat. Circ Heart Fail. 2008;1(3):153–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hausenloy DJ, Yellon DM. GLP-1 therapy: beyond glucose control. Circ Heart Fail. 2008;1(3):147–9.

    Article  PubMed  Google Scholar 

  27. Margulies KB, Hernandez AF, Redfield MM, Givertz MM, Oliveira GH, Cole R, et al. Effects of liraglutide on clinical stability among patients with advanced heart failure and reduced ejection fraction: a randomized clinical trial. JAMA. 2016;316(5):500–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hendarto H, Inoguchi T, Maeda Y, Ikeda N, Zheng J, Takei R, et al. GLP-1 analog liraglutide protects against oxidative stress and albuminuria in streptozotocin-induced diabetic rats via protein kinase A-mediated inhibition of renal NAD(P)H oxidases. Metabolism. 2012;61(10):1422–34.

    Article  CAS  PubMed  Google Scholar 

  29. Ishibashi Y, Matsui T, Ojima A, Nishino Y, Nakashima S, Maeda S, et al. Glucagon-like peptide-1 inhibits angiotensin II-induced mesangial cell damage via protein kinase A. Microvasc Res. 2012;84(3):395–8.

    Article  CAS  PubMed  Google Scholar 

  30. Ishibashi Y, Nishino Y, Matsui T, Takeuchi M, Yamagishi S. Glucagon-like peptide-1 suppresses advanced glycation end product-induced monocyte chemoattractant protein-1 expression in mesangial cells by reducing advanced glycation end product receptor level. Metabolism. 2011;60(9):1271–7.

    Article  CAS  PubMed  Google Scholar 

  31. Kodera R, Shikata K, Kataoka HU, Takatsuka T, Miyamoto S, Sasaki M, et al. Glucagon-like peptide-1 receptor agonist ameliorates renal injury through its anti-inflammatory action without lowering blood glucose level in a rat model of type 1 diabetes. Diabetologia. 2011;54(4):965–78.

    Article  CAS  PubMed  Google Scholar 

  32. Ojima A, Ishibashi Y, Matsui T, Maeda S, Nishino Y, Takeuchi M, et al. Glucagon-like peptide-1 receptor agonist inhibits asymmetric dimethylarginine generation in the kidney of streptozotocin-induced diabetic rats by blocking advanced glycation end product-induced protein arginine methyltranferase-1 expression. Am J Pathol. 2013;182(1):132–41.

    Article  CAS  PubMed  Google Scholar 

  33. Park CW, Kim HW, Ko SH, Lim JH, Ryu GR, Chung HW, et al. Long-term treatment of glucagon-like peptide-1 analog exendin-4 ameliorates diabetic nephropathy through improving metabolic anomalies in db/db mice. J Am Soc Nephrol. 2007;18(4):1227–38.

    Article  CAS  PubMed  Google Scholar 

  34. Liu H, Dear AE, Knudsen LB, Simpson RW. A long-acting glucagon-like peptide-1 analogue attenuates induction of plasminogen activator inhibitor type-1 and vascular adhesion molecules. J Endocrinol. 2009;201(1):59–66.

    Article  CAS  PubMed  Google Scholar 

  35. Mima A, Hiraoka-Yamomoto J, Li Q, Kitada M, Li C, Geraldes P, et al. Protective effects of GLP-1 on glomerular endothelium and its inhibition by PKCbeta activation in diabetes. Diabetes. 2012;61(11):2967–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Meier JJ. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat Rev Endocrinol. 2012;8(12):728–42.

    Article  CAS  PubMed  Google Scholar 

  37. Adlyxin - FDA 2016 [Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/208471Orig1s000lbl.pdf.

  38. Victoza (liraglutide [rDNA origin] injection - FDA 2010 [Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/022341lbl.pdf.

  39. Fineman M, Flanagan S, Taylor K, Aisporna M, Shen LZ, Mace KF, et al. Pharmacokinetics and pharmacodynamics of exenatide extended-release after single and multiple dosing. Clin Pharmacokinet. 2011;50(1):65–74.

    Article  CAS  PubMed  Google Scholar 

  40. Blevins T, Pullman J, Malloy J, Yan P, Taylor K, Schulteis C, et al. DURATION-5: exenatide once weekly resulted in greater improvements in glycemic control compared with exenatide twice daily in patients with type 2 diabetes. J Clin Endocrinol Metab. 2011;96(5):1301–10.

    Article  CAS  PubMed  Google Scholar 

  41. Htike ZZ, Zaccardi F, Papamargaritis D, Webb DR, Khunti K, Davies MJ. Efficacy and safety of glucagon-like peptide-1 receptor agonists in type 2 diabetes: a systematic review and mixed-treatment comparison analysis. Diabetes Obes Metab. 2017;19(4):524–36.

    Article  CAS  PubMed  Google Scholar 

  42. Buse JB, Nauck M, Forst T, Sheu WH, Shenouda SK, Heilmann CR, et al. Exenatide once weekly versus liraglutide once daily in patients with type 2 diabetes (DURATION-6): a randomised, open-label study. Lancet. 2013;381(9861):117–24.

    Article  CAS  PubMed  Google Scholar 

  43. Uccellatore A, Genovese S, Dicembrini I, Mannucci E, Ceriello A. Comparison review of short-acting and long-acting glucagon-like peptide-1 receptor agonists. Diabetes Ther. 2015;6(3):239–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Werner U. Effects of the GLP-1 receptor agonist lixisenatide on postprandial glucose and gastric emptying—preclinical evidence. J Diabetes Complicat. 2014;28(1):110–4.

    Article  PubMed  Google Scholar 

  45. Pabreja K, Mohd MA, Koole C, Wootten D, Furness SG. Molecular mechanisms underlying physiological and receptor pleiotropic effects mediated by GLP-1R activation. Br J Pharmacol. 2014;171(5):1114–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Herzlinger S, Horton ES. Extraglycemic effects of glp-1-based therapeutics: addressing metabolic and cardiovascular risks associated with type 2 diabetes. Diabetes Res Clin Pract. 2013;100(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  47. Birnbaum Y, Ye Y, Bajaj M. Type 2 diabetes and cardiovascular disease: a metabolic overview of recent clinical trials. J Diabetes Complicat. 2017;31(2):291–4.

    Article  PubMed  Google Scholar 

  48. Ratner RE, Rosenstock J, Boka G, Investigators DRIS. Dose-dependent effects of the once-daily GLP-1 receptor agonist lixisenatide in patients with type 2 diabetes inadequately controlled with metformin: a randomized, double-blind, placebo-controlled trial. Diabet Med. 2010;27(9):1024–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Buse JB, Garber A, Rosenstock J, Schmidt WE, Brett JH, Videbaek N, et al. Liraglutide treatment is associated with a low frequency and magnitude of antibody formation with no apparent impact on glycemic response or increased frequency of adverse events: results from the liraglutide effect and action in diabetes (LEAD) trials. J Clin Endocrinol Metab. 2011;96(6):1695–702.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Jia.

Ethics declarations

Conflict of Interest

Yochai Birnbaum has received research grants from AstraZeneca, Boehringer Ingelheim. He has received lecture fees from Daiichi Sankyo and AstraZeneca. Yumei Ye has received research grants from AstraZeneca, Boehringer Ingelheim. Author Mandeep Bajaj has received research grants from Amylin, AstraZeneca, Boehringer Ingelheim, Eli-Lilly, Sanofi Aventis, and Novo Nordisk. Xiaoming Jia declares he has no conflicts of interest. Mahboob Alam declares he no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 338 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, X., Alam, M., Ye, Y. et al. GLP-1 Receptor Agonists and Cardiovascular Disease: a Meta-Analysis of Recent Cardiac Outcome Trials. Cardiovasc Drugs Ther 32, 65–72 (2018). https://doi.org/10.1007/s10557-018-6773-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-018-6773-2

Keywords

Navigation