Skip to main content

Advertisement

Log in

The Role of SGLT-2 Inhibitors as Part of Optimal Medical Therapy in Improving Cardiovascular Outcomes in Patients with Diabetes and Coronary Artery Disease

  • REVIEW ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

The optimal treatment approach to patients with coronary artery disease (CAD), including those with type 2 diabetes mellitus (T2DM), has been extensively evaluated. Several trials of stable ischemic heart disease including patients with T2DM have demonstrated that medical management is comparable to revascularization in terms of mortality and rates of major adverse cardiovascular events (MACE). There has been a growing appreciation for optimal medical therapy’s (OMT) role in improving clinical outcomes. It is vital to target T2DM patients to prevent or delay MACE events through advanced OMT, ultimately delaying if not avoiding the need for revascularization. There has been significant evolution in the development of pharmacologic management of T2DM patients. Sodium-glucose co-transporter-2 (SGLT2) inhibitors are a new pharmacologic therapy with tremendous potential to alter clinical practice and influence practice guidelines. SGLT2-inhibitors have great potential in reducing MACE in patients with T2DM and CAD. Empagliflozin should be considered as a part of OMT among these patients. If results similar to the EMPA-REG OUTCOMES trial are replicated in other trials, the use of these pharmacologic agents as a part of OMT may narrow the gap between revascularization and OMT alone in patients with T2DM and multi-vessel disease. Future studies on the role of SLGT-2 inhibitors with regard to heart failure outcomes are needed to elucidate the mechanisms and clinical effects in this vulnerable population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Nowbar AN, Howard JP, Finegold JA, Asaria P, Francis DP. 2014 global geographic analysis of mortality from ischaemic heart disease by country, age and income: statistics from World Health Organisation and United Nations. Int J Cardiol. 2014;174(2):293–8.

    Article  PubMed  PubMed Central  Google Scholar 

  2. National diabetes statistics report. 2014. www.cdc.gov/diabetes. Accessed Feb 6th, 2016.

  3. Frye RL, August P, Brooks MM, Hardison RM, Kelsey SF, MacGregor JM, et al. A randomized trial of therapies for type 2 diabetes and coronary artery disease. N Engl J Med. 2009;360(24):2503–15.

    Article  CAS  PubMed  Google Scholar 

  4. Boden WE, O’Rourke RA, Teo KK, Hartigan PM, Maron DJ, Kostuk WJ, et al. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med. 2007;356(15):1503–16.

    Article  CAS  PubMed  Google Scholar 

  5. Group BDS, Frye RL, August P, Brooks MM, Hardison RM, Kelsey SF, et al. A randomized trial of therapies for type 2 diabetes and coronary artery disease. N Engl J Med. 2009;360(24):2503–15.

    Article  Google Scholar 

  6. De Bruyne B, Pijls NH, Kalesan B, Barbato E, Tonino PA, Piroth Z, et al. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med. 2012;367(11):991–1001.

    Article  CAS  PubMed  Google Scholar 

  7. Boden WE. “routine invasive” versus “selective invasive” approaches to non-ST-segment elevation acute coronary syndromes management in the post-stent/platelet inhibition era. J Am Coll Cardiol. 2003;41(4 Suppl S):113S–22S.

    Article  PubMed  Google Scholar 

  8. Cannon CP, Weintraub WS, Demopoulos LA, Vicari R, Frey MJ, Lakkis N, et al. Comparison of early invasive and conservative strategies in patients with unstable coronary syndromes treated with the glycoprotein IIb/IIIa inhibitor tirofiban. N Engl J Med. 2001;344(25):1879–87.

    Article  CAS  PubMed  Google Scholar 

  9. Invasive compared with non-invasive treatment in unstable coronary-artery disease: FRISC II prospective randomised multicentre study. FRagmin and Fast Revascularisation during InStability in Coronary artery disease Investigators. Lancet. 1999;354(9180):708–15.

  10. ClinicalTrials.gov. International Study of Comparative Health Effectiveness With Medical and Invasive Approaches (ISCHEMIA) (ISCHEMIA). https://clinicaltrials.gov/ct2/show/NCT01471522. Accessed February 28, 2017 2017.

  11. Iqbal J, Zhang YJ, Holmes DR, Morice MC, Mack MJ, Kappetein AP, et al. Optimal medical therapy improves clinical outcomes in patients undergoing revascularization with percutaneous coronary intervention or coronary artery bypass grafting: insights from the synergy between percutaneous coronary intervention with TAXUS and cardiac surgery (SYNTAX) trial at the 5-year follow-up. Circulation. 2015;131(14):1269–77.

    Article  CAS  PubMed  Google Scholar 

  12. Lima EG, Hueb W, Garcia RM, Pereira AC, Soares PR, Favarato D, et al. Impact of diabetes on 10-year outcomes of patients with multivessel coronary artery disease in the medicine, angioplasty, or surgery study II (MASS II) trial. Am Heart J. 2013;166(2):250–7.

    Article  PubMed  Google Scholar 

  13. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jodar E, Leiter LA, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375(19):1834–44.

    Article  CAS  PubMed  Google Scholar 

  15. Abdul-Ghani MA, DeFronzo RA. Dapagliflozin for the treatment of type 2 diabetes. Expert Opin Pharmacother. 2013;14(12):1695–703.

    Article  CAS  PubMed  Google Scholar 

  16. Kalra S. Sodium glucose co-transporter-2 (SGLT2) inhibitors: a review of their basic and clinical pharmacology. Diabetes Ther. 2014;5(2):355–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Scheen AJ. Pharmacokinetic and pharmacodynamic profile of empagliflozin, a sodium glucose co-transporter 2 inhibitor. Clin Pharmacokinet. 2014;53(3):213–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Musso G, Gambino R, Cassader M, Pagano G. A novel approach to control hyperglycemia in type 2 diabetes: sodium glucose co-transport (SGLT) inhibitors: systematic review and meta-analysis of randomized trials. Ann Med. 2012;44(4):375–93.

    Article  CAS  PubMed  Google Scholar 

  19. Rosenstock J, Jelaska A, Zeller C, Kim G, Broedl UC, Woerle HJ. Impact of empagliflozin added on to basal insulin in type 2 diabetes inadequately controlled on basal insulin: a 78-week randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab. 2015;17(10):936–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vasilakou D, Karagiannis T, Athanasiadou E, Mainou M, Liakos A, Bekiari E, et al. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 2013;159(4):262–74.

    Article  PubMed  Google Scholar 

  21. Tikkanen I, Narko K, Zeller C, Green A, Salsali A, Broedl UC, et al. Empagliflozin reduces blood pressure in patients with type 2 diabetes and hypertension. Diabetes Care. 2015;38(3):420–8.

    Article  CAS  PubMed  Google Scholar 

  22. Lambers Heerspink HJ, de Zeeuw D, Wie L, Leslie B, List J. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab. 2013;15(9):853–62.

    Article  CAS  PubMed  Google Scholar 

  23. Sha S, Devineni D, Ghosh A, Polidori D, Hompesch M, Arnolds S, et al. Pharmacodynamic effects of canagliflozin, a sodium glucose co-transporter 2 inhibitor, from a randomized study in patients with type 2 diabetes. PLoS One. 2014;9(8):e105638.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Briand F, Mayoux E, Brousseau E, Burr N, Urbain I, Costard C, et al. Empagliflozin, via switching metabolism toward lipid utilization, moderately increases LDL cholesterol levels through reduced LDL catabolism. Diabetes. 2016;65(7):2032–8.

    Article  CAS  PubMed  Google Scholar 

  25. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.

    Article  CAS  PubMed  Google Scholar 

  26. Perkins BA, Udell JA, Cherney DZ. No need to sugarcoat the message: is cardiovascular risk reduction from SGLT2 inhibition related to Natriuresis? Am J Kidney Dis. 2016;68(3):349–52.

    Article  PubMed  Google Scholar 

  27. Lin B, Koibuchi N, Hasegawa Y, Sueta D, Toyama K, Uekawa K, et al. Glycemic control with empagliflozin, a novel selective SGLT2 inhibitor, ameliorates cardiovascular injury and cognitive dysfunction in obese and type 2 diabetic mice. Cardiovasc Diabetol. 2014;13:148.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rieg T, Masuda T, Gerasimova M, Mayoux E, Platt K, Powell DR, et al. Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia. Am J Physiol Renal Physiol. 2014;306(2):F188–93.

    Article  CAS  PubMed  Google Scholar 

  29. Taegtmeyer H, McNulty P, Young ME. Adaptation and maladaptation of the heart in diabetes: part I: general concepts. Circulation. 2002;105(14):1727–33.

    Article  CAS  PubMed  Google Scholar 

  30. Marx N, McGuire DK. Sodium-glucose cotransporter-2 inhibition for the reduction of cardiovascular events in high-risk patients with diabetes mellitus. Eur Heart J. 2016;37(42):3192–200.

    Article  PubMed  Google Scholar 

  31. Administration USFaD. FDA approves Jardiance to reduce cardiovascular death in adults with type 2 diabetes. 2016. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm531517.htm. Accessed 12.5.2016.

  32. Monami M, Dicembrini I, Mannucci E. Effects of SGLT-2 inhibitors on mortality and cardiovascular events: a comprehensive meta-analysis of randomized controlled trials. Acta Diabetol. 2017;54(1):19–36.

    Article  CAS  PubMed  Google Scholar 

  33. Farkouh ME, Domanski M, Sleeper LA, Siami FS, Dangas G, Mack M, et al. Strategies for multivessel revascularization in patients with diabetes. N Engl J Med. 2012;367(25):2375–84.

    Article  CAS  PubMed  Google Scholar 

  34. Farkouh ME, Boden WE, Bittner V, Muratov V, Hartigan P, Ogdie M, et al. Risk factor control for coronary artery disease secondary prevention in large randomized trials. J Am Coll Cardiol. 2013;61(15):1607–15.

    Article  PubMed  Google Scholar 

  35. Bittner V, Bertolet M, Barraza Felix R, Farkouh ME, Goldberg S, Ramanathan KB, et al. Comprehensive cardiovascular risk factor control improves survival: the BARI 2D trial. J Am Coll Cardiol. 2015;66(7):765–73.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Maron DJ, Boden WE. Why optimal medical therapy should be a universal standard of care. J Am Coll Cardiol. 2015;66(7):774–6.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Haring HU, Merker L, Seewaldt-Becker E, Weimer M, Meinicke T, Woerle HJ, et al. Empagliflozin as add-on to metformin plus sulfonylurea in patients with type 2 diabetes: a 24-week, randomized, double-blind, placebo-controlled trial. Diabetes Care. 2013;36(11):3396–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gall MA, Borch-Johnsen K, Hougaard P, Nielsen FS, Parving HH. Albuminuria and poor glycemic control predict mortality in NIDDM. Diabetes. 1995;44(11):1303–9.

    Article  CAS  PubMed  Google Scholar 

  39. Ruggenenti P, Porrini EL, Gaspari F, Motterlini N, Cannata A, Carrara F, et al. Glomerular hyperfiltration and renal disease progression in type 2 diabetes. Diabetes Care. 2012;35(10):2061–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cherney DZ, Perkins BA, Soleymanlou N, Maione M, Lai V, Lee A, et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation. 2014;129(5):587–97.

    Article  CAS  PubMed  Google Scholar 

  41. Muniyappa R, Montagnani M, Koh KK, Quon MJ. Cardiovascular actions of insulin. Endocr Rev. 2007;28(5):463–91.

    Article  CAS  PubMed  Google Scholar 

  42. Wang MY, Yu X, Lee Y, McCorkle SK, Clark GO, Strowig S, et al. Iatrogenic hyperinsulinemia in type 1 diabetes: its effect on atherogenic risk markers. J Diabetes Complicat. 2013;27(1):70–4.

    Article  CAS  PubMed  Google Scholar 

  43. Smooke S, Horwich TB, Fonarow GC. Insulin-treated diabetes is associated with a marked increase in mortality in patients with advanced heart failure. Am Heart J. 2005;149(1):168–74.

    Article  CAS  PubMed  Google Scholar 

  44. Chamberlain JJ, Rhinehart AS, Shaefer CF Jr, Neuman A. Diagnosis and Management of Diabetes: synopsis of the 2016 American Diabetes Association Standards of medical Care in Diabetes. Ann Intern Med. 2016;164(8):542–52.

    Article  PubMed  Google Scholar 

  45. Goring S, Hawkins N, Wygant G, Roudaut M, Townsend R, Wood I, et al. Dapagliflozin compared with other oral anti-diabetes treatments when added to metformin monotherapy: a systematic review and network meta-analysis. Diabetes Obes Metab. 2014;16(5):433–42.

    Article  CAS  PubMed  Google Scholar 

  46. Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, et al. Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of diabetes. Diabetes Care. 2015;38(1):140–9.

    Article  PubMed  Google Scholar 

  47. Garcia-Puig J, Ruilope LM, Luque M, Fernandez J, Ortega R, Dal-Re R. Glucose metabolism in patients with essential hypertension. Am J Med. 2006;119(4):318–26.

    Article  CAS  PubMed  Google Scholar 

  48. Shimizu I, Minamino T, Toko H, Okada S, Ikeda H, Yasuda N, et al. Excessive cardiac insulin signaling exacerbates systolic dysfunction induced by pressure overload in rodents. J Clin Invest. 2010;120(5):1506–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shiojima I, Sato K, Izumiya Y, Schiekofer S, Ito M, Liao R, et al. Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J Clin Invest. 2005;115(8):2108–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fang ZY, Prins JB, Marwick TH. Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev. 2004;25(4):543–67.

    Article  CAS  PubMed  Google Scholar 

  51. Sharma A, Brito FS, Sun J, Thomas L, Haffner S, Holman R, Lopes R. Noncardiovascular deaths are more common than cardiovascular deaths in patients with cardiovascular disease or cardiovascular risk factors and impaired glucose tolerance: insights from the Nateglinide and valsartan in impaired glucose tolerance outcomes research (NAVIGATOR) trial. Am Heart J. 2016;186:73–82.

    Article  PubMed  Google Scholar 

  52. Dangas GD, Farkouh ME, Sleeper LA, Yang M, Schoos MM, Macaya C, et al. Long-term outcome of PCI versus CABG in insulin and non-insulin-treated diabetic patients: results from the FREEDOM trial. J Am Coll Cardiol. 2014;64(12):1189–97.

    Article  CAS  PubMed  Google Scholar 

  53. Ingelsson E, Sundstrom J, Arnlov J, Zethelius B, Lind L. Insulin resistance and risk of congestive heart failure. JAMA. 2005;294(3):334–41.

    Article  CAS  PubMed  Google Scholar 

  54. Biondi-Zoccai GG, Abbate A, Liuzzo G, Biasucci LM. Atherothrombosis, inflammation, and diabetes. J Am Coll Cardiol. 2003;41(7):1071–7.

    Article  CAS  PubMed  Google Scholar 

  55. Investigators OT, Gerstein HC, Bosch J, Dagenais GR, Diaz R, Jung H, et al. Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med. 2012;367(4):319–28.

    Article  Google Scholar 

  56. Daly CA, De Stavola B, Sendon JL, Tavazzi L, Boersma E, Clemens F, et al. Predicting prognosis in stable angina--results from the euro heart survey of stable angina: prospective observational study. BMJ. 2006;332(7536):262–7.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sharma A, Bhatt DL, Calvo G, Brown NJ, Zannad F, Mentz RJ. Heart failure event definitions in drug trials in patients with type 2 diabetes. Lancet Diabetes Endocrinol. 2016;4(4):294–6.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Shaw LJ, Berman DS, Maron DJ, Mancini GB, Hayes SW, Hartigan PM, et al. Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the clinical outcomes Utilizing revascularization and aggressive drug Evaluation (COURAGE) trial nuclear substudy. Circulation. 2008;117(10):1283–91.

    Article  PubMed  Google Scholar 

  59. Shaw LJ, Cerqueira MD, Brooks MM, Althouse AD, Sansing VV, Beller GA, et al. Impact of left ventricular function and the extent of ischemia and scar by stress myocardial perfusion imaging on prognosis and therapeutic risk reduction in diabetic patients with coronary artery disease: results from the bypass angioplasty revascularization Investigation 2 diabetes (BARI 2D) trial. J Nucl Cardiol. 2012;19(4):658–69.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Mancini GB, Hartigan PM, Shaw LJ, Berman DS, Hayes SW, Bates ER, et al. Predicting outcome in the COURAGE trial (clinical outcomes Utilizing revascularization and aggressive drug Evaluation): coronary anatomy versus ischemia. JACC Cardiovasc Interv. 2014;7(2):195–201.

    Article  PubMed  Google Scholar 

  61. Mancini GB, Hartigan PM, Bates ER, Chaitman BR, Sedlis SP, Maron DJ, et al. Prognostic importance of coronary anatomy and left ventricular ejection fraction despite optimal therapy: assessment of residual risk in the clinical outcomes Utilizing revascularization and aggressive DruG Evaluation trial. Am Heart J. 2013;166(3):481–7.

    Article  PubMed  Google Scholar 

  62. Gibbons RJ, Miller DD, Liu P, Guo P, Brooks MM, Schwaiger M. Similarity of ventricular function in patients alive 5 years after randomization to surgery or angioplasty in the BARI trial. Circulation. 2001;103(8):1076–82.

    Article  CAS  PubMed  Google Scholar 

  63. Verma S, Garg A, Yan AT, Gupta AK, Al-Omran M, Sabongui A, et al. Effect of Empagliflozin on left ventricular mass and diastolic function in individuals with diabetes: an important clue to the EMPA-REG OUTCOME trial? Diabetes Care. 2016;39(12):e212–e3.

    Article  PubMed  Google Scholar 

  64. Singh JS, Fathi A, Vickneson K, Mordi I, Mohan M, Houston JG, et al. Research into the effect of SGLT2 inhibition on left ventricular remodelling in patients with heart failure and diabetes mellitus (REFORM) trial rationale and design. Cardiovasc Diabetol. 2016;15:97.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Farkouh.

Ethics declarations

Conflict of Interest

AS has received research grants from the Bayer-Vascular Canadian Cardiovascular Society research grant, the Alberta Innovates Health Solution Clinician Scientist fellowship, Takeda, and Roche Diagnostics. All other authors listed declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosleh, W., Sharma, A., Sidhu, M.S. et al. The Role of SGLT-2 Inhibitors as Part of Optimal Medical Therapy in Improving Cardiovascular Outcomes in Patients with Diabetes and Coronary Artery Disease. Cardiovasc Drugs Ther 31, 311–318 (2017). https://doi.org/10.1007/s10557-017-6729-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-017-6729-y

Keywords

Navigation