Skip to main content
Log in

METformin in DIastolic Dysfunction of MEtabolic Syndrome (MET-DIME) Trial: Rationale and Study Design

MET-DIME Trial

  • ORIGINAL ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Purpose

Insulin resistance plays a central role in the pathophysiology of metabolic syndrome (MS). Its cardiac deleterious effects are characterized by an increase in fibrous tissue that increases myocardial stiffness and contributes to subclinical left ventricular diastolic dysfunction (LVDD) and heart failure with preserved ejection fraction in patients with MS. In addition to lifestyle counseling (LC), metformin treatment may attenuate or even reverse diastolic dysfunction in these patients. This trial aims to evaluate if treating non-diabetic patients with MS and LVDD with metformin in addition to LC improves diastolic function and assess its impact in functional capacity and health-related quality of life (HRQoL).

Design

MET-DIME is a phase II prospective, randomized, open-label, blinded-endpoint trial with a scheduled follow-up of 24 months. Fifty-four patients (adults 40–65 years old with AHA/NHLBI criteria of MS and rest LVDD) will be randomized by minimization to LC only or LC plus metformin (target dose of 1,000 mg twice daily). The primary endpoint will be change in mean of early diastolic mitral annular velocity, an echocardiographic parameter highly correlated with myocardial fibrosis (serial measurements will be performed at 6, 12 and 24 months). The secondary endpoints will include change in diastolic parameters at rest; metabolic, inflammatory and remodeling biomarkers; functional capacity; adipose tissue volumes and HRQoL.

Conclusion

MET-DIME is a pragmatic trial designed to evaluate if adding metformin to the standard treatment of patients with MS improves diastolic dysfunction, assessing its impact in metabolic homeostasis, proinflammatory state, functional capacity and HRQoL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2005;365(9468):1415–28.

    Article  CAS  PubMed  Google Scholar 

  2. Santos AC, Barros H. Impact of metabolic syndrome definitions on prevalence estimates: a study in a Portuguese community. Diab Vasc Dis Res. 2007;4(4):320–7.

    Article  PubMed  Google Scholar 

  3. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005;112(17):2735–52.

    Article  PubMed  Google Scholar 

  4. Cortez-Dias N, Martins S, Belo A, Fiuza M. Comparison of definitions of metabolic syndrome in relation to risk for coronary artery disease and stroke. Revista portuguesa de cardiologia : orgao oficial da Sociedade Portuguesa de Cardiologia = Portuguese journal of cardiology : an official journal of the Portuguese Society of. Cardiology. 2011;30(2):139–69.

    Google Scholar 

  5. Wong CY, O’Moore-Sullivan T, Fang ZY, Haluska B, Leano R, Marwick TH. Myocardial and vascular dysfunction and exercise capacity in the metabolic syndrome. Am J Cardiol. 2005;96:1686–91.

    Article  PubMed  Google Scholar 

  6. Farooqui AA, Farooqui T, Panza F, Frisardi V. Metabolic syndrome as a risk factor for neurological disorders. Cell Mol Life Sci. 2012;69(5):741–62.

    Article  CAS  PubMed  Google Scholar 

  7. Grundy SM. Pre-diabetes, metabolic syndrome, and cardiovascular risk. J Am Coll Cardiol. 2012;59(7):635–43.

    Article  CAS  PubMed  Google Scholar 

  8. Matsuzawa Y, Funahashi T, Nakamura T. The concept of metabolic syndrome: contribution of visceral fat accumulation and its molecular mechanism. J Atheroscler Thromb. 2011;18(8):629–39.

    Article  CAS  PubMed  Google Scholar 

  9. Bettencourt N, Toschke AM, Leite D, Rocha J, Carvalho M, Sampaio F, et al. Epicardial adipose tissue is an independent predictor of coronary atherosclerotic burden. Int J Cardiol. 2012;158(1):26–32.

    Article  CAS  PubMed  Google Scholar 

  10. Jellis C, Martin J, Narula J, Marwick TH. Assessment of nonischemic myocardial fibrosis. J Am Coll Cardiol. 2010;56(2):89–97.

    Article  CAS  PubMed  Google Scholar 

  11. Kosmala W, Przewlocka-Kosmala M, Wojnalowicz A, Mysiak A, Marwick TH. Integrated backscatter as a fibrosis marker in the metabolic syndrome: association with biochemical evidence of fibrosis and left ventricular dysfunction. Eur Heart J Cardiovasc Imaging. 2012;13(6):459–67.

    Article  PubMed  Google Scholar 

  12. Barmeyer A, Müllerleile K, Mortensen K, Meinertz T. Diastolic dysfunction in exercise and its role for exercise capacity. Heart Fail Rev. 2009;14(2):125–34.

    Article  CAS  PubMed  Google Scholar 

  13. Penjasković D, Sakac D, Dejanović J, Zec R, Zec-Petković N, Stojsić-Milosavljević A. Left ventricular diastolic dysfunction in patients with metabolic syndrome. Med Pregl. 2012;65(1–2):18–22.

    Article  PubMed  Google Scholar 

  14. Seo JM, Park TH, Lee DY, Cho YR, Baek HK, Park JS, et al. Subclinical myocardial dysfunction in metabolic syndrome patients without hypertension. J Cardiovasc Ultrasound. 2011;19(3):134–9.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Fontes-Carvalho R, Leite-Moreira A. Heart failure with preserved ejection fraction: fighting misconceptions for a new approach. Arq Bras Cardiol. 2011;96(6):504–14.

    Article  PubMed  Google Scholar 

  16. Zile MR, Baicu CF, Gaasch WH. Diastolic heart failure–abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med. 2004;350(19):1953–9.

    Article  CAS  PubMed  Google Scholar 

  17. Steinberg BA, Zhao X, Heidenreich PA, Peterson ED, Bhatt DL, Cannon CP, et al. Trends in patients hospitalized with heart failure and preserved left ventricular ejection fraction: prevalence, therapies, and outcomes. Circulation. 2012;126(1):65–75.

    Article  PubMed  Google Scholar 

  18. Ladeiras-Lopes R, Ferreira-Martins J, Leite-Moreira AF. Acute neurohumoral modulation of diastolic function. Peptides. 2009;30(2):419–25.

    Article  CAS  PubMed  Google Scholar 

  19. Burlá AK, Lobato NS, Fortes ZB, Oigman W, Neves MF. Cardiac fibrosis and vascular remodeling are attenuated by metformin in obese rats. Int J Cardiol. 2013;165(3):483–7.

    Google Scholar 

  20. Cittadini A, Napoli R, Monti MG, Rea D, Longobardi S, Netti PA, et al. Metformin prevents the development of chronic heart failure in the SHHF rat model. Diabetes. 2012;61:944–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Xiao H, Ma X, Feng W, Fu Y, Lu Z, Xu M, et al. Metformin attenuates cardiac fibrosis by inhibiting the TGFbeta1-Smad3 signalling pathway. Cardiovasc Res. 2010;87:504–13.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang CX, Pan SN, Meng RS, Peng CQ, Xiong ZJ, Chen BL, et al. Metformin attenuates ventricular hypertrophy by activating the AMP-activated protein kinase-endothelial nitric oxide synthase pathway in rats. Clin Exp Pharmacol Physiol. 2011;38(1):55–62.

    Article  PubMed  Google Scholar 

  23. Pocock SJ, Simon R. Sequential treatment assignment with balancing for prognostic factors in the controlled clinical trial. Biometrics. 1975;31(1):103–15.

    Article  CAS  PubMed  Google Scholar 

  24. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Bohm M, Dickstein K, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2012;33(14):1787–847.

    Article  PubMed  Google Scholar 

  25. Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur J Echocardiogr. 2009;10(2):165–93.

    Article  PubMed  Google Scholar 

  26. Shan K, Bick RJ, Poindexter BJ, Shimoni S, Letsou GV, Reardon MJ, et al. Relation of tissue Doppler derived myocardial velocities to myocardial structure and beta-adrenergic receptor density in humans. J Am Coll Cardiol. 2000;36:891–6.

    Article  CAS  PubMed  Google Scholar 

  27. ADA. Standards of medical care in diabetes--2012. Diabetes Care. 2012;35 Suppl 1:S11–63.

    Google Scholar 

Download references

Conflicts of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Ladeiras-Lopes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ladeiras-Lopes, R., Fontes-Carvalho, R., Bettencourt, N. et al. METformin in DIastolic Dysfunction of MEtabolic Syndrome (MET-DIME) Trial: Rationale and Study Design. Cardiovasc Drugs Ther 28, 191–196 (2014). https://doi.org/10.1007/s10557-014-6512-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-014-6512-2

Keywords

Navigation