Skip to main content

Advertisement

Log in

The dose–response effect of insulin sensitivity on albuminuria in children according to diabetes type

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Insulin resistance is associated with microalbuminuria among youth with diabetes mellitus. We sought to determine the dose–response effect of insulin sensitivity (IS) on the magnitude of albuminuria and whether there is a threshold below which urine albumin excretion increases.

Methods

These analyses included participants from the SEARCH for Diabetes in Youth Study with incident diabetes who completed a baseline study visit (n = 2988). We estimated IS using a validated equation incorporating waist circumference, HbA1C, and fasting serum triglycerides. Multivariate regression analyses were performed to assess the effect of IS on urine albumin creatinine ratio (UACR), stratified by diabetes type. The IS threshold was then determined using segmented regressions within each diabetes type and incorporated into the multivariate model.

Results

There was an association between IS and UACR in type 2 diabetes only (beta = −0.39; p < 0.001). There was strong statistical evidence for a threshold effect of IS score on UACR in the group of youth with type 2 (beta = 0.40; p < 0.001) but not type 1 diabetes (p = 0.3).

Conclusions

In cross-sectional analyses, there is a negative association between IS and UACR in youth with type 2 but not type 1 diabetes, and this association likely includes a threshold effect of IS on UACR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Dabelea D, Bell RA, D’agostino RB Jr, Imperatore G, Johansen JM, Linder B, Liu LL, Loots B, Marcovina S, Mayer-Davis EJ, Pettitt DJ, Waitzfelder B (2007) Incidence of diabetes in youth in the United States. JAMA 297:2716–2724

    Article  PubMed  Google Scholar 

  2. Ninomiya T, Perkovic V, De Galan BE, Zoungas S, Pillai A, Jardine M, Patel A, Cass A, Neal B, Poulter N, Mogensen CE, Cooper M, Marre M, Williams B, Hamet P, Mancia G, Woodward M, Macmahon S, Chalmers J, ADVANCE Collaborative Group (2009) Albuminuria and kidney function independently predict cardiovascular and renal outcomes in diabetes. J Am Soc Nephrol 20:1813–1821

    Article  PubMed  PubMed Central  Google Scholar 

  3. Afkarian M, Sachs MC, Kestenbaum B, Hirsch IB, Tuttle KR, Himmelfarb J, De Boer IH (2013) Kidney disease and increased mortality risk in type 2 diabetes. J Am Soc Nephrol 24:302–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Saran R, Li Y, Robinson B, Ayanian J, Balkrishnan R, Bragg-Gresham J, Chen JT, Cope E, Gipson D, He K, Herman W, Heung M, Hirth RA, Jacobsen SS, Kalantar-Zadeh K, Kovesdy CP, Leichtman AB, Lu Y, Molnar MZ, Morgenstern H, Nallamothu B, O’hare AM, Pisoni R, Plattner B, Port FK, Rao P, Rhee CM, Schaubel DE, Selewski DT, Shahinian V, Sim JJ, Song P, Streja E, Kurella Tamura M, Tentori F, Eggers PW, Agodoa LY, Abbott KC (2015) United States Renal Data System. 2014 USRDS annual data report: Epidemiology of kidney disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases. Bethesda, MD

  5. Caramori ML, Fioretto P, Mauer M (2006) Enhancing the predictive value of urinary albumin for diabetic nephropathy. J Am Soc Nephrol 17:339–352

    Article  CAS  PubMed  Google Scholar 

  6. Chang A, Van Horn L, Jacobs DR Jr, Liu K, Muntner P, Newsome B, Shoham DA, Durazo-Arvizu R, Bibbins-Domingo K, Reis J, Kramer H (2013) Lifestyle-related factors, obesity, and incident microalbuminuria: the CARDIA (Coronary Artery Risk Development in Young Adults) study. Am J Kidney Dis 62:267–275

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sanad M, Gharib A (2011) Evaluation of microalbuminuria in obese children and its relation to metabolic syndrome. Pediatr Nephrol 26:2193–2199

    Article  PubMed  Google Scholar 

  8. Maahs DM, Snively BM, Bell RA, Dolan L, Hirsch I, Imperatore G, Linder B, Marcovina SM, Mayer-Davis EJ, Pettitt DJ, Rodriguez BL, Dabelea D (2007) Higher prevalence of elevated albumin excretion in youth with type 2 than type 1 diabetes: the SEARCH for Diabetes in Youth study. Diabetes Care 30:2593–2598

    Article  PubMed  Google Scholar 

  9. SEARCH Study Group (2004) SEARCH for Diabetes in Youth: a multicenter study of the prevalence, incidence and classification of diabetes mellitus in youth. Control Clin Trials 25:458–471

    Article  Google Scholar 

  10. Ingram DD, Parker JD, Schenker N, Weed JA, Hamilton B, Arias E, Madans JH (2003) United States Census 2000 population with bridged race categories. Vital Health Stat 2:1–55

    Google Scholar 

  11. Fernandez JR, Redden DT, Pietrobelli A, Allison DB (2004) Waist circumference percentiles in nationally representative samples of African-American, European-American, and Mexican-American children and adolescents. J Pediatr 145:439–444

    Article  PubMed  Google Scholar 

  12. Rodriguez BL, Fujimoto WY, Mayer-Davis EJ, Imperatore G, Williams DE, Bell RA, Wadwa RP, Palla SL, Liu LL, Kershnar A, Daniels SR, Linder B (2006) Prevalence of cardiovascular disease risk factors in U.S. children and adolescents with diabetes: the SEARCH for diabetes in youth study. Diabetes Care 29:1891–1896

    Article  PubMed  Google Scholar 

  13. Ogden CL, Kuczmarski RJ, Flegal KM, Mei Z, Guo S, Wei R, Grummer-Strawn LM, Curtin LR, Roche AF, Johnson CL (2002) Centers for Disease Control and Prevention 2000 growth charts for the United States: improvements to the 1977 National Center for Health Statistics version. Pediatrics 109:45–60

    Article  PubMed  Google Scholar 

  14. American Diabetes Association (2011) Standards of medical care in diabetes—2011. Diabetes Care 34(Suppl 1):S11–S61

    Article  PubMed Central  Google Scholar 

  15. KDOQI (2007) KDOQI Clinical Practice Guidelines and Clinical Practice Recommendations for Diabetes and Chronic Kidney Disease. Am J Kidney Dis 49:S12–S154

    Article  Google Scholar 

  16. Dabelea D, D’agostino RB Jr, Mason CC, West N, Hamman RF, Mayer-Davis EJ, Maahs D, Klingensmith G, Knowler WC, Nadeau K (2011) Development, validation and use of an insulin sensitivity score in youths with diabetes: the SEARCH for Diabetes in Youth study. Diabetologia 54:78–86

    Article  CAS  PubMed  Google Scholar 

  17. Dabelea D, Pihoker C, Talton JW, D’agostino RB Jr, Fujimoto W, Klingensmith GJ, Lawrence JM, Linder B, Marcovina SM, Mayer-Davis EJ, Imperatore G, Dolan LM (2011) Etiological approach to characterization of diabetes type: the SEARCH for Diabetes in Youth Study. Diabetes Care 34:1628–1633

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bonifacio E, Yu L, Williams AK, Eisenbarth GS, Bingley PJ, Marcovina SM, Adler K, Ziegler AG, Mueller PW, Schatz DA, Krischer JP, Steffes MW, Akolkar B (2010) Harmonization of glutamic acid decarboxylase and islet antigen-2 autoantibody assays for national institute of diabetes and digestive and kidney diseases consortia. J Clin Endocrinol Metab 95:3360–3367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed on 2015

  20. Muggeo VM (2003) Estimating regression models with unknown break-points. Stat Med 22:3055–3071

    Article  PubMed  Google Scholar 

  21. Orchard TJ, Chang YF, Ferrell RE, Petro N, Ellis DE (2002) Nephropathy in type 1 diabetes: a manifestation of insulin resistance and multiple genetic susceptibilities? Further evidence from the Pittsburgh Epidemiology of Diabetes Complication Study. Kidney Int 62:963–970

    Article  CAS  PubMed  Google Scholar 

  22. Bjornstad P, Maahs DM, Cherney DZ, Cree-Green M, West A, Pyle L, Nadeau KJ (2014) Insulin sensitivity is an important determinant of renal health in adolescents with type 2 diabetes. Diabetes Care 37:3033–3039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bjornstad P, Snell-Bergeon JK, Rewers M, Jalal D, Chonchol MB, Johnson RJ, Maahs DM (2013) Early diabetic nephropathy: a complication of reduced insulin sensitivity in type 1 diabetes. Diabetes Care 36:3678–3683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Parvanova AI, Trevisan R, Iliev IP, Dimitrov BD, Vedovato M, Tiengo A, Remuzzi G, Ruggenenti P (2006) Insulin resistance and microalbuminuria: a cross-sectional, case–control study of 158 patients with type 2 diabetes and different degrees of urinary albumin excretion. Diabetes 55:1456–1462

    Article  CAS  PubMed  Google Scholar 

  25. Groop L, Ekstrand A, Forsblom C, Widen E, Groop PH, Teppo AM, Eriksson J (1993) Insulin resistance, hypertension and microalbuminuria in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 36:642–647

    Article  CAS  PubMed  Google Scholar 

  26. De Cosmo S, Minenna A, Ludovico O, Mastroianno S, Di Giorgio A, Pirro L, Trischitta V (2005) Increased urinary albumin excretion, insulin resistance, and related cardiovascular risk factors in patients with type 2 diabetes: evidence of a sex-specific association. Diabetes Care 28:910–915

    Article  PubMed  Google Scholar 

  27. Chan JC, Tomlinson B, Nicholls MG, Swaminathan R, Cheung CK, Woo J, Cockram CS (1996) Albuminuria, insulin resistance and dyslipidaemia in Chinese patients with non-insulin-dependent diabetes (NIDDM). Diabet Med 13:150–155

    Article  CAS  PubMed  Google Scholar 

  28. Hsu CC, Chang HY, Huang MC, Hwang SJ, Yang YC, Tai TY, Yang HJ, Chang CT, Chang CJ, Li YS, Shin SJ, Kuo KN (2011) Association between insulin resistance and development of microalbuminuria in type 2 diabetes: a prospective cohort study. Diabetes Care 34:982–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Emoto M, Nishizawa Y, Maekawa K, Kawagishi T, Kogawa K, Hiura Y, Mori K, Tanaka S, Ishimura E, Inaba M, Okuno Y, Morii H (1997) Insulin resistance in non-obese, non-insulin-dependent diabetic patients with diabetic nephropathy. Metabolism 46:1013–1018

    Article  CAS  PubMed  Google Scholar 

  30. Pinkney JH, Denver AE, Mohamed-Ali V, Foster C, Yudkin JS (1995) Insulin resistance in non-insulin-dependent diabetes mellitus is associated with microalbuminuria independently of ambulatory blood pressure. J Diabetes Complicat 9:230–233

    Article  CAS  PubMed  Google Scholar 

  31. Epstein EJ, Osman JL, Cohen HW, Rajpathak SN, Lewis O, Crandall JP (2013) Use of the estimated glucose disposal rate as a measure of insulin resistance in an urban multiethnic population with type 1 diabetes. Diabetes Care 36:2280–2285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. De Boer IH, Sibley SD, Kestenbaum B, Sampson JN, Young B, Cleary PA, Steffes MW, Weiss NS, Brunzell JD (2007) Central obesity, incident microalbuminuria, and change in creatinine clearance in the epidemiology of diabetes interventions and complications study. J Am Soc Nephrol 18:235–243

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chaturvedi N, Bandinelli S, Mangili R, Penno G, Rottiers RE, Fuller JH (2001) Microalbuminuria in type 1 diabetes: rates, risk factors and glycemic threshold. Kidney Int 60:219–227

    Article  CAS  PubMed  Google Scholar 

  34. Ekstrand AV, Groop PH, Gronhagen-Riska C (1998) Insulin resistance precedes microalbuminuria in patients with insulin-dependent diabetes mellitus. Nephrol Dial Transplant 13:3079–3083

    Article  CAS  PubMed  Google Scholar 

  35. Yip J, Mattock MB, Morocutti A, Sethi M, Trevisan R, Viberti G (1993) Insulin resistance in insulin-dependent diabetic patients with microalbuminuria. Lancet 342:883–887

    Article  CAS  PubMed  Google Scholar 

  36. Jang CM, Hyun YY, Lee KB, Kim H (2015) Insulin resistance is associated with the development of albuminuria in Korean subjects without diabetes. Endocrine 48:203–210

    Article  CAS  PubMed  Google Scholar 

  37. Mykkanen L, Zaccaro DJ, Wagenknecht LE, Robbins DC, Gabriel M, Haffner SM (1998) Microalbuminuria is associated with insulin resistance in nondiabetic subjects: the insulin resistance atherosclerosis study. Diabetes 47:793–800

    Article  CAS  PubMed  Google Scholar 

  38. Liu LL, Lawrence JM, Davis C, Liese AD, Pettitt DJ, Pihoker C, Dabelea D, Hamman R, Waitzfelder B, Kahn HS (2010) Prevalence of overweight and obesity in youth with diabetes in USA: the SEARCH for Diabetes in Youth study. Pediatr Diabetes 11:4–11

    Article  PubMed  Google Scholar 

  39. Purnell JQ, Zinman B, Brunzell JD (2013) The effect of excess weight gain with intensive diabetes mellitus treatment on cardiovascular disease risk factors and atherosclerosis in type 1 diabetes mellitus: results from the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study (DCCT/EDIC) study. Circulation 127:180–187

    Article  CAS  PubMed  Google Scholar 

  40. Bjornstad P, Maahs DM, Johnson RJ, Rewers M, Snell-Bergeon JK (2015) Estimated insulin sensitivity predicts regression of albuminuria in type 1 diabetes. Diabet Med 32:257–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cho YH, Craig ME, Donaghue KC (2014) Puberty as an accelerator for diabetes complications. Pediatr Diabetes 15:18–26

    Article  CAS  PubMed  Google Scholar 

  42. Briffa JF, Mcainch AJ, Poronnik P, Hryciw DH (2013) Adipokines as a link between obesity and chronic kidney disease. Am J Physiol Ren Physiol 305:F1629–F1636

    Article  CAS  Google Scholar 

  43. Christou GA, Kiortsis DN (2014) The role of adiponectin in renal physiology and development of albuminuria. J Endocrinol 221:R49–R61

    Article  CAS  PubMed  Google Scholar 

  44. Alix PM, Guebre-Egziabher F, Soulage CO (2014) Leptin as an uremic toxin: deleterious role of leptin in chronic kidney disease. Biochimie 105:12–21

    Article  CAS  PubMed  Google Scholar 

  45. Jauregui A, Mintz DH, Mundel P, Fornoni A (2009) Role of altered insulin signaling pathways in the pathogenesis of podocyte malfunction and microalbuminuria. Curr Opin Nephrol Hypertens 18:539–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sarafidis PA, Ruilope LM (2006) Insulin resistance, hyperinsulinemia, and renal injury: mechanisms and implications. Am J Nephrol 26:232–244

    Article  PubMed  Google Scholar 

  47. Sarafidis PA, Bakris GL (2006) Protection of the kidney by thiazolidinediones: an assessment from bench to bedside. Kidney Int 70:1223–1233

    Article  CAS  PubMed  Google Scholar 

  48. Mchardy KC, Gann ME, Ross IS, Pearson DW (1991) A simple approach to screening for microalbuminuria in a type 1 (insulin-dependent) diabetic population. Ann Clin Biochem 28:450–455

    Article  PubMed  Google Scholar 

  49. Deeb A, Zaoui P, Le Penven S, Tartry D, Lantelme P, Ducher M, Fauvel JP (2012) Are triplicate urine samples necessary to assess albuminuria? Nephron Clin Pract 122:80–85

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The SEARCH for Diabetes in Youth Study is indebted to the many youth and their families, and their health care providers, whose participation made this study possible.

Grant Support: SEARCH for Diabetes in Youth is funded by the Centers for Disease Control and Prevention (PA numbers 00097, DP-05-069, and DP-10-001) and supported by the National Institute of Diabetes and Digestive and Kidney Diseases.

Site Contract Numbers: Kaiser Permanente Southern California (U48/CCU919219, U01 DP000246, and U18DP002714), University of Colorado Denver (U48/CCU819241-3, U01 DP000247, and U18DP000247-06A1), Children’s Hospital Medical Center (Cincinnati) (U48/CCU519239, U01 DP000248, and 1U18DP002709), University of North Carolina at Chapel Hill (U48/CCU419249, U01 DP000254, and U18DP002708), University of Washington School of Medicine (U58/CCU019235-4, U01 DP000244, and U18DP002710-01), Wake Forest University School of Medicine (U48/CCU919219, U01 DP000250, and 200-2010-35171).

The authors wish to acknowledge the involvement of General Clinical Research Centers (GCRC) at the South Carolina Clinical & Translational Research (SCTR) Institute, at the Medical University of South Carolina (NIH/NCRR Grant number UL1RR029882); Seattle Children’s Hospital (NIH CTSA Grant UL1 TR00423 of the University of Washington); University of Colorado Pediatric Clinical and Translational Research Center (CTRC) (Grant Number UL1 TR000154) and the Barbara Davis Center at the University of Colorado at Denver (DERC NIH P30 DK57516); and the National Center for Research Resources and the National Center for Advancing Translational Sciences, National Institutes of Health, through Grant 8 UL1 TR000077; and the Children with Medical Handicaps program managed by the Ohio Department of Health.

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention and the National Institute of Diabetes and Digestive and Kidney Disease

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Amy K. Mottl.

Ethics declarations

The study protocol was reviewed and approved by local institutional review boards (IRB) that had jurisdiction over the local study populations. Consent was obtained from parents of all participants under age 18 years and assent from participants according to the specific age requirement deemed by the local IRB.

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Table 1

(DOCX 12 kb)

Supplemental Table 2

(DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mottl, A.K., Divers, J., Dabelea, D. et al. The dose–response effect of insulin sensitivity on albuminuria in children according to diabetes type. Pediatr Nephrol 31, 933–940 (2016). https://doi.org/10.1007/s00467-015-3276-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-015-3276-2

Keywords

Navigation