Skip to main content

Advertisement

Log in

Body composition predictors of skeletal integrity in obesity

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To determine body composition predictors of skeletal integrity in overweight/obese subjects using dual energy X-ray absorptiometry (DXA). We hypothesized that visceral adiposity would be negatively, and lean mass positively, associated with DXA measures of skeletal integrity in obesity.

Materials and methods

Our study was institutional review board (IRB)-approved and Health Insurance Portability and Accountability Act (HIPAA)-compliant and written informed consent was obtained. We studied 82 overweight or obese, but otherwise healthy premenopausal women and men of similar age who were part of a clinical trial (mean age: 37 ± 10 years, mean BMI: 34 ± 7 kg/m2). All subjects underwent DXA of the spine and hip for assessment of bone mineral density (BMD), trabecular bone score (TBS), and hip structural analysis (HSA), and of the whole body for the assessment of body composition, including estimated visceral adipose tissue (VAT).

Results

Sixty-three subjects (77 %) had normal BMD and 19 subjects (23 %) had osteopenia. There were strong age-, sex-, and BMD-independent positive associations between lean mass and HSA parameters (r = 0.50 to r = 0.81, p < 0.0001), whereas there was no association with TBS. There were strong age-, sex- and BMD-independent inverse associations between total fat and VAT mass and TBS (r = −0.60 and r = −0.72, p < 0.0001 for both correlations), whereas there were no associations with HSA parameters.

Conclusion

Lean mass is a positive predictor of hip geometry, whereas fat and VAT mass are negative predictors of trabecular microarchitecture in overweight/obese subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rexrode KM, Carey VJ, Hennekens CH, et al. Abdominal adiposity and coronary heart disease in women. JAMA. 1998;280:1843–8.

    Article  CAS  PubMed  Google Scholar 

  2. Albala C, Yanez M, Devoto E, Sostin C, Zeballos L, Santos JL. Obesity as a protective factor for postmenopausal osteoporosis. Int J Obes Relat Metab Disord. 1996;20:1027–32.

    CAS  PubMed  Google Scholar 

  3. Reid IR, Plank LD, Evans MC. Fat mass is an important determinant of whole body bone density in premenopausal women but not in men. J Clin Endocrinol Metab. 1992;75:779–82.

    CAS  PubMed  Google Scholar 

  4. Bredella MA, Torriani M, Ghomi RH, et al. Determinants of bone mineral density in obese premenopausal women. Bone. 2011;48:748–54.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gilsanz V, Chalfant J, Mo AO, Lee DC, Dorey FJ, Mittelman SD. Reciprocal relations of subcutaneous and visceral fat to bone structure and strength. J Clin Endocrinol Metab. 2009;94:3387–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Goulding A, Jones IE, Taylor RW, Williams SM, Manning PJ. Bone mineral density and body composition in boys with distal forearm fractures: a dual-energy x-ray absorptiometry study. J Pediatr. 2001;139:509–15.

    Article  CAS  PubMed  Google Scholar 

  7. Hsu YH, Venners SA, Terwedow HA, et al. Relation of body composition, fat mass, and serum lipids to osteoporotic fractures and bone mineral density in Chinese men and women. Am J Clin Nutr. 2006;83:146–54.

    CAS  PubMed  Google Scholar 

  8. Janicka A, Wren TA, Sanchez MM, et al. Fat mass is not beneficial to bone in adolescents and young adults. J Clin Endocrinol Metab. 2007;92:143–7.

    Article  CAS  PubMed  Google Scholar 

  9. Nielson CM, Marshall LM, Adams AL, et al. BMI and fracture risk in older men: the osteoporotic fractures in men study (MrOS). J Bone Miner Res. 2011;26:496–502.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhang P, Peterson M, Su GL, Wang SC. Visceral adiposity is negatively associated with bone density and muscle attenuation. Am J Clin Nutr. 2015;101:337–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cummings SR, Bates D, Black DM. Clinical use of bone densitometry: scientific review. JAMA. 2002;288:1889–97.

    Article  PubMed  Google Scholar 

  12. Hangartner TN, Warner S, Braillon P, Jankowski L, Shepherd J. The Official Positions of the International Society for Clinical Densitometry: acquisition of dual-energy X-ray absorptiometry body composition and considerations regarding analysis and repeatability of measures. J Clin Densitom. 2013;16:520–36.

    Article  PubMed  Google Scholar 

  13. Premaor MO, Pilbrow L, Tonkin C, Parker RA, Compston J. Obesity and fractures in postmenopausal women. J Bone Miner Res. 2010;25:292–7.

    Article  PubMed  Google Scholar 

  14. Evans EM, Mojtahedi MC, Kessinger RB, Misic MM. Simulated change in body fatness affects Hologic QDR 4500A whole body and central DXA bone measures. J Clin Densitom. 2006;9:315–22.

    Article  PubMed  Google Scholar 

  15. Yu EW, Thomas BJ, Brown JK, Finkelstein JS. Simulated increases in body fat and errors in bone mineral density measurements by DXA and QCT. J Bone Miner Res. 2012;27:119–24.

    Article  PubMed  Google Scholar 

  16. Beck TJ, Ruff CB, Warden KE, Scott Jr WW, Rao GU. Predicting femoral neck strength from bone mineral data. A structural approach. Invest Radiol. 1990;25:6–18.

    Article  CAS  PubMed  Google Scholar 

  17. Karlamangla AS, Barrett-Connor E, Young J, Greendale GA. Hip fracture risk assessment using composite indices of femoral neck strength: the Rancho Bernardo study. Osteoporos Int. 2004;15:62–70.

    Article  PubMed  Google Scholar 

  18. Hans D, Goertzen AL, Krieg MA, Leslie WD. Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density: the Manitoba study. J Bone Miner Res. 2011;26:2762–9.

    Article  PubMed  Google Scholar 

  19. Micklesfield LK, Goedecke JH, Punyanitya M, Wilson KE, Kelly TL. Dual-energy X-ray performs as well as clinical computed tomography for the measurement of visceral fat. Obesity (Silver Spring). 2012;20:1109–14.

    Article  Google Scholar 

  20. Barthe N, Braillon P, Ducassou D, Basse-Cathalinat B. Comparison of two Hologic DXA systems (QDR 1000 and QDR 4500/A). Br J Radiol. 1997;70:728–39.

    Article  CAS  PubMed  Google Scholar 

  21. Kanis JA, Gluer CC. An update on the diagnosis and assessment of osteoporosis with densitometry. Committee of Scientific Advisors, International Osteoporosis Foundation. Osteoporos Int. 2000;11:192–202.

    Article  CAS  PubMed  Google Scholar 

  22. LaCroix AZ, Beck TJ, Cauley JA, et al. Hip structural geometry and incidence of hip fracture in postmenopausal women: what does it add to conventional bone mineral density? Osteoporos Int. 2010;21:919–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hans D, Barthe N, Boutroy S, Pothuaud L, Winzenrieth R, Krieg MA. Correlations between trabecular bone score, measured using anteroposterior dual-energy X-ray absorptiometry acquisition, and 3-dimensional parameters of bone microarchitecture: an experimental study on human cadaver vertebrae. J Clin Densitom. 2011;14:302–12.

    Article  PubMed  Google Scholar 

  24. Silva BC, Boutroy S, Zhang C, et al. Trabecular bone score (TBS)—a novel method to evaluate bone microarchitectural texture in patients with primary hyperparathyroidism. J Clin Endocrinol Metab. 2013;98:1963–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Leslie WD, Krieg MA, Hans D. Clinical factors associated with trabecular bone score. J Clin Densitom. 2013;16:374–9.

    Article  PubMed  Google Scholar 

  26. Sritara C, Thakkinstian A, Ongphiphadhanakul B, et al. Age-adjusted dual x-ray absorptiometry-derived trabecular bone score curve for the lumbar spine in Thai females and males. J Clin Densitom. 2015; doi: 10.1016/j.jocd.2015.05.068.

    Google Scholar 

  27. Pintauro SJ, Nagy TR, Duthie CM, Goran MI. Cross-calibration of fat and lean measurements by dual-energy X-ray absorptiometry to pig carcass analysis in the pediatric body weight range. Am J Clin Nutr. 1996;63:293–8.

    CAS  PubMed  Google Scholar 

  28. Van der Sluis IM, de Ridder MA, Boot AM, Krenning EP, de Muinck Keizer-Schrama SM. Reference data for bone density and body composition measured with dual energy x ray absorptiometry in white children and young adults. Arch Dis Child. 2002;87:341–7; discussion 341–347.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bredella MA, Gill CM, Keating LK, et al. Assessment of abdominal fat compartments using DXA in premenopausal women from anorexia nervosa to morbid obesity. Obesity (Silver Spring). 2013;21:2458–64.

    Article  CAS  Google Scholar 

  30. Armstrong ME, Spencer EA, Cairns BJ, et al. Body mass index and physical activity in relation to the incidence of hip fracture in postmenopausal women. J Bone Miner Res. 2011;26:1330–8.

    Article  PubMed  Google Scholar 

  31. Compston JE, Watts NB, Chapurlat R, et al. Obesity is not protective against fracture in postmenopausal women: GLOW. Am J Med. 2011;124:1043–50.

    Article  PubMed  Google Scholar 

  32. Cohen A, Dempster DW, Recker RR, et al. Abdominal fat is associated with lower bone formation and inferior bone quality in healthy premenopausal women: a transiliac bone biopsy study. J Clin Endocrinol Metab. 2013;98:2562–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bredella MA, Gerweck AV, Barber LA, et al. Effects of growth hormone administration for 6 months on bone turnover and bone marrow fat in obese premenopausal women. Bone. 2014;62:29–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Menagh PJ, Turner RT, Jump DB, et al. Growth hormone regulates the balance between bone formation and bone marrow adiposity. J Bone Miner Res. 2010;25:757–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Mukherjee A, Murray RD, Shalet SM. Impact of growth hormone status on body composition and the skeleton. Horm Res. 2004;62 (Suppl 3):35–41.

    Article  CAS  PubMed  Google Scholar 

  36. Cartier A, Lemieux I, Almeras N, Tremblay A, Bergeron J, Despres JP. Visceral obesity and plasma glucose-insulin homeostasis: contributions of interleukin-6 and tumor necrosis factor-alpha in men. J Clin Endocrinol Metab. 2008;93:1931–8.

    Article  CAS  PubMed  Google Scholar 

  37. Pou KM, Massaro JM, Hoffmann U, et al. Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to markers of inflammation and oxidative stress: the Framingham Heart Study. Circulation. 2007;116:1234–41.

    Article  CAS  PubMed  Google Scholar 

  38. Kremer R, Campbell PP, Reinhardt T, Gilsanz V. Vitamin D status and its relationship to body fat, final height, and peak bone mass in young women. J Clin Endocrinol Metab. 2009;94:67–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Young KA, Engelman CD, Langefeld CD, et al. Association of plasma vitamin D levels with adiposity in Hispanic and African Americans. J Clin Endocrinol Metab. 2009;94:3306–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bazzocchi A, Ponti F, Diano D, et al. Trabecular bone score in healthy ageing. Br J Radiol. 2015;88:20140865.

    Article  CAS  PubMed  Google Scholar 

  41. Beck TJ, Petit MA, Wu G, LeBoff MS, Cauley JA, Chen Z. Does obesity really make the femur stronger? BMD, geometry, and fracture incidence in the women’s health initiative-observational study. J Bone Miner Res. 2009;24:1369–79.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Shen J, Nielson CM, Marshall LM, Lee DC, Keaveny TM, Orwoll ES. The association between BMI and QCT-derived proximal hip structure and strength in older men: a cross-sectional study. J Bone Miner Res. 2015;30:1301–8.

    Article  PubMed  Google Scholar 

  43. Shen J, Leslie WD, Nielson CM, Majumdar SR, Morin SN, Orwoll ES. Associations of body mass index with incident fractures and hip structural parameters in a large Canadian cohort. J Clin Endocrinol Metab. 2016;101:476–84.

    Article  PubMed  Google Scholar 

  44. Hu WW, Zhang H, Wang C, et al. Lean mass predicts hip geometry and bone mineral density in Chinese men and women and age comparisons of body composition. J Clin Densitom. 2012;15:434–42.

    Article  PubMed  Google Scholar 

  45. Beck TJ, Oreskovic TL, Stone KL, et al. Structural adaptation to changing skeletal load in the progression toward hip fragility: the study of osteoporotic fractures. J Bone Miner Res. 2001;16:1108–19.

    Article  CAS  PubMed  Google Scholar 

  46. Cianferotti L, Brandi ML. Muscle-bone interactions: basic and clinical aspects. Endocrine. 2014;45:165–77.

    Article  CAS  PubMed  Google Scholar 

  47. Sartori R, Sandri M. Bone and morphogenetic protein signalling and muscle mass. Curr Opin Clin Nutr Metab Care. 2015;18:215–20.

    Article  CAS  PubMed  Google Scholar 

  48. Jahn K, Lara-Castillo N, Brotto L, et al. Skeletal muscle secreted factors prevent glucocorticoid-induced osteocyte apoptosis through activation of beta-catenin. Eur Cell Mater. 2012;24:197–209; discussion 209–110.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kramer I, Halleux C, Keller H, et al. Osteocyte Wnt/beta-catenin signaling is required for normal bone homeostasis. Mol Cell Biol. 2010;30:3071–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ramamurthi K, Ahmad O, Engelke K, et al. An in vivo comparison of hip structure analysis (HSA) with measurements obtained by QCT. Osteoporos Int. 2012;23:543–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Roux JP, Wegrzyn J, Boutroy S, Bouxsein ML, Hans D, Chapurlat R. The predictive value of trabecular bone score (TBS) on whole lumbar vertebrae mechanics: an ex vivo study. Osteoporos Int. 2013;24:2455–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam A. Bredella.

Ethics declarations

Funding

This study was supported by NIH grants R01 DK095792, K24 HL092902 and UL1 RR-025758.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Clinical trials number: NCT01724489

Karen K. Miller and Miriam A. Bredella contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schorr, M., Dichtel, L.E., Gerweck, A.V. et al. Body composition predictors of skeletal integrity in obesity. Skeletal Radiol 45, 813–819 (2016). https://doi.org/10.1007/s00256-016-2363-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-016-2363-1

Keywords

Navigation