Skip to main content
Log in

Subclinical Vascular Endothelial Dysfunctions and Myocardial Changes With Type 1 Diabetes Mellitus in Children and Adolescents

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

Vascular endothelial dysfunction, accelerated thickening of arterial intima, and changes in ventricular functions contribute to increased cardiovascular morbidity in type 1 diabetes mellitus (T1DM). This study aimed to investigate the functional-structural changes in the arteries and myocardium together with affection of highly sensitive C-reactive protein (hsCRP), circulating endothelial cells (CECs), and vitamin C levels in children with T1DM. Also, to test the association with early atherosclerotic changes. The study included 30 children with a diagnosis of T1DM and 30 healthy subjects matched by sex, age, and body mass index. Serum lipids, HbA1c, hsCRP, vitamin C, and CECs were detected. Corrected QT interval (QTc), cardiac dimensions, and left ventricular (LV) functions were assessed using conventional echocardiography. Noninvasive ultrasound was used to measure brachial artery flow-mediated dilation (FMD) responses and carotid intima-media thickness (IMT). The QTc interval was significantly higher in the diabetic patients than in the control subjects (P < 0.001). The findings showed LV diastolic dysfunction as reflected by significantly lower early peak flow velocity, decreased E/A ratio, increased early filling deceleration time (DcT), and prolonged isovolumic relaxation time (IVRT) (P < 0.001 for each). The children with diabetes had a significantly lower FMD response, increased IMT, lower vitamin C level, higher hsCRP, and higher CEC compared with the control subjects (P < 0.001 for each). A positive correlation between CEC and HbA1c was found (P = 0.004). An alteration in myocardial function and endothelial dysfunction may begin early with the association of early atherosclerotic changes. These changes are accelerated when glycemic control is poor. The authors recommend early and close observation of children with diabetes for any alterations in cardiac and vascular endothelial function. Vitamin C supplementation may reduce the risk of complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Asicioglu E, Yavuz DG, Koc M, Ozben B, Yazici D, Deyneli O, Akalin S (2010) Circulating endothelial cells are elevated in patients with type 1 diabetes mellitus. Eur J Endocrinol 162:711–717

    Article  CAS  PubMed  Google Scholar 

  2. Ayla G, Tolga O, Olcay G, Murat A, Kemal B (2010) Association between the corrected QT interval and carotid artery intima-media thickness in obese children. J Clin Res Pediatr Endocrinol 2:21–27

    Article  Google Scholar 

  3. Babar GS, Zidan H, Widlansky ME et al (2011) Impaired endothelial function in preadolescent children with type 1 diabetes. Diabetes Care 34:681–685

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Bazett HC (1920) An analysis of the time relationships of electrocardiograms. Heart 7:353–357

    Google Scholar 

  5. Berenson GS, Bogalusa Heart Study Research Group (2002) Childhood risk factors predict adult risk associated with subclinical cardiovascular disease: the Bogalusa heart study. Am J Cardiol 90:3L–7L

    Article  Google Scholar 

  6. Bert S, Sara H, Daniel DE, Marc V et al (2006) Glycemia and corrected QT interval prolongation in young type 1 diabetic patients. Diabetes Care 29:427

    Article  Google Scholar 

  7. Dalle-Donne I, Ranieri R, Roberto C, Daniela G, Aldo M (2006) Biomarkers of oxidative damage in human disease. Clin Chem 52:601–623

    Article  CAS  PubMed  Google Scholar 

  8. Daneman D (2006) Type 1 diabetes. Lancet 367:847–858

    Article  CAS  PubMed  Google Scholar 

  9. de Simone G, Mureddu GF, Vaccaro O et al (2000) Cardiac abnormalities in type 1 diabetes. Ital Heart J 1:493–499

    PubMed  Google Scholar 

  10. Di Cori AD, Di Bello V, Miccoli R et al (2007) Left ventricular function in normotensive young adults with well-controlled type 1 diabetes mellitus. Am J Cardiol 99:84–90

    Article  PubMed  Google Scholar 

  11. Dimitriadis E, Griffin M, Owens D, Johnson A, Collins P, Tomkin GH (1995) Oxidation of low-density lipoprotein in NIDDM: its relationship to fatty acid composition. Diabetologia 38:1300–1306

    Article  CAS  PubMed  Google Scholar 

  12. Donahue RP, Orchard TJ (1992) Diabetes mellitus and macrovascular complications: an epidemiological perspective. Diabetes Care 15:1141–1155

    Article  CAS  PubMed  Google Scholar 

  13. Fang ZY, Prins JB, Marwick TH (2004) Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev 25:543–567

    Article  CAS  PubMed  Google Scholar 

  14. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502

    CAS  PubMed  Google Scholar 

  15. From AM, Scott CG, Chen HH (2009) Changes in diastolic dysfunction in diabetes mellitus over time. Am J Cardiol 103:1246–1463

    Google Scholar 

  16. Galina M, Angelika S (2011) Influence of metabolic decompensation in children with diabetes mellitus type 1 on changes of QT interval. Endocr Abstr 25:137

    Google Scholar 

  17. Głowińska-Olszewska B, Urban M, Peczyńska J, Koput A (2007) hsCRP protein in children and adolescents with diabetes type 1. Pediatr Endocrinol Diabetes Metab 13:79–84

    PubMed  Google Scholar 

  18. Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment (review). Drugs Aging 18:685–716

    Article  CAS  PubMed  Google Scholar 

  19. Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? (review). Br J Pharmacol 142:231–255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Heilman K, Zilmer M, Zilmer K, Lintrop M, Kampus P, Kals J, Tillmann V (2009) Arterial stiffness, carotid artery intima-media thickness, and plasma myeloperoxidase level in children with type 1 diabetes. Diabetes Res Clin Pract 84:168–173

    Article  CAS  PubMed  Google Scholar 

  21. Jane EW, Jonathan R, Ajay V, Mihai G, Sanjiv JS (2011) Usefulness of electrocardiographic QT interval to predict left ventricular diastolic dysfunction. Am J Cardiol 108:1760–1766

    Article  Google Scholar 

  22. Järvisalo MJ, Jartti L, Näntö-Salonen K, Irjala K, Rönnemaa T, Hartiala JJ, Celermajer DS, Raitakari OT (2001) Increased aortic intima-media thickness: a marker of preclinical atherosclerosis in high-risk children. Circulation 104:2943–2947

    Article  PubMed  Google Scholar 

  23. Järvisalo MJ, Putto-Laurila A, Jartti L, Lehtimäki T, Solakivi T, Rönnemaa T, Raitakari OT (2002) Carotid intima-media thickness in children with type 1 diabetes. Diabetes 51:493–498

    Article  PubMed  Google Scholar 

  24. Järvisalo MJ, Rönnemaa T, Volanen I et al (2002) Brachial artery dilatation responses in healthy children and adolescents. Am J Physiol Heart Circ Physiol 282:H87–H92

    PubMed  Google Scholar 

  25. Järvisalo MJ, Lehtimäki T, Raitakari OT (2004) Determinants of arterial nitrate-mediated dilatation in children: role of oxidized low-density lipoprotein, endothelial function, and carotid intima-media thickness. Circulation 109:2885–2889

    Article  PubMed  Google Scholar 

  26. Järvisalo MJ, Raitakari M, Toikka JO, Putto-Laurila A, Rontu R, Laine S, Lehtimäki T, Rönnemaa T, Viikari J, Raitakari OT (2004) Endothelial dysfunction and increased arterial intima-media thickness in children with type 1 diabetes. Circulation 109:1750–1755

    Article  PubMed  Google Scholar 

  27. Jin SM, Noh CI, Yang SW et al (2008) Endothelial dysfunction and microvascular complications in type 1 diabetes mellitus. J Korean Med Sci 23:77–82

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Kanters SD, Algra A, van Leeuwen MS, Banga JD (1997) Reproducibility of in vivo carotid intima-media thickness measurements: a review. Stroke 28:665–671

    Article  CAS  PubMed  Google Scholar 

  29. Karamitsos TD, Karvounis HI, Dalamanga EG, Papadopoulos CE et al (2006) Early diastolic impairment of diabetic heart: the significance of right ventricle. Int J Cardiol. doi:10.1016/j.ijcard.2006.02.003

    PubMed  Google Scholar 

  30. Khan SS, Solomon MA, McCoy JP Jr (2005) Detection of circulating endothelial cells and endothelial progenitor cells by flow cytometry. Cytometry B 64:1–8

    Article  Google Scholar 

  31. Kim EH, Kim YH (2010) Left ventricular function in children and adolescents with type 1 diabetes mellitus. Korean Circ J 40:125–130

    Article  PubMed Central  PubMed  Google Scholar 

  32. King GL, Loeken MR (2004) Hyperglycemia-induced oxidative stress in diabetic complications. Histochem Cell Biol 122:333–338

    Article  CAS  PubMed  Google Scholar 

  33. Krantz MJ, Long CS, Hosokawa P, Karimkhani E, Dickinson M, Estacio RO, Masoudi FA, Havranek EP (2011) Pulse wave velocity and carotid atherosclerosis in White and Latino patients with hypertension. BMC Cardiovasc Disord 11:15. doi:10.1186/1471-2261-11-15

    Article  PubMed Central  PubMed  Google Scholar 

  34. Lu Z, Abe J, Taunton J et al (2008) Reactive oxygen species-induced activation of p90 ribosomal S6 kinase prolongs cardiac repolarization through inhibiting outward K+ channel activity. Circ Res 103:269–278

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Makimattila S, Liu ML, Vakkilainen J, Schlenzka A, Lahdenpera S, Syvanne M, Mantysaari M, Summanen P, Bergholm R, Taskinen MR, Yki-Jarvinen H (1999) Impaired endothelium-dependent vasodilation in type 2 diabetes: relation to LDL size, oxidized LDL, and antioxidants. Diabetes Care 22:973–981

    Article  CAS  PubMed  Google Scholar 

  36. Maritim AC, Sanders RA, Watkins JB (2003) Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 17:24–38

    Article  CAS  PubMed  Google Scholar 

  37. Mayet J, Shahi M, McGrath K, Poulter NR, Sever PS, Foale RA, Thom SA (1996) Left ventricular hypertrophy and QT dispersion in hypertension. Hypertension 28:791–796

    Article  CAS  PubMed  Google Scholar 

  38. McClung JA, Naseer N, Saleem M, Rossi GP, Weiss MB, Abraham NG, Kappas A (2005) Circulating endothelial cells are elevated in patients with type 2 diabetes mellitus independently of HbA(1)c. Diabetologia 48:345–350

    Article  CAS  PubMed  Google Scholar 

  39. Nicolls MR, Haskins K, Flores SC (2007) Oxidant stress, immune dysregulation, and vascular function in type I diabetes. Antioxid Redox Signal 9:879–889

    Article  CAS  PubMed  Google Scholar 

  40. Odermarsky M, Lykkesfeldt J, Liuba P (2009) Poor vitamin C status is associated with increased carotid intima-media thickness, decreased microvascular function, and delayed myocardial repolarization in young patients with type 1 diabetes. Am J Clin Nutr 90:447–452

    Article  CAS  PubMed  Google Scholar 

  41. Park MK (2008) Pediatric cardiology for practitioners. Noninvasive techniques (Chap. 6), 5th edn., An imprint of Elsevier, Part 2: Special tools in evaluation of cardiac patientsElsevier, Mosby

    Google Scholar 

  42. Park MK (2008) Pediatric cardiology for practitioners. Dyslipidemia and other cardiovascular risk factors (Chap. 6), 5th edn., An imprint of Elsevier, Part 7: Special problemsElsevier, Mosby

    Google Scholar 

  43. Perségol L, Foissac M, Lagrost L et al (2007) HDL particles from type 1 diabetic patients are unable to reverse the inhibitory effect of oxidised LDL on endothelium-dependent vasorelaxation. Diabetologia 50:2384–2387

    Article  PubMed  Google Scholar 

  44. Pirro M, Bagaglia F, Paoletti L, Razzi R, Mannarino MR (2008) Hypercholesterolemia-associated endothelial progenitor cell dysfunction. Ther Adv Cardiovasc Dis 2:329–339

    Article  PubMed  Google Scholar 

  45. Pozza RD, Bechtold S, Bonfig W et al (2007) Age of onset of type 1 diabetes in children and carotid intima medial thickness. J Clin Endocrinol Metab 92:2053–2057

    Article  PubMed  Google Scholar 

  46. Ramakrishna V, Jailkhani R (2007) Evaluation of oxidative stress in insulin-dependent diabetes mellitus (IDDM) patients. Diagn Pathol 2:22. doi:10.1186/1746-1596-2-22

    Article  PubMed Central  PubMed  Google Scholar 

  47. Sanguinetti MC, Tristani-Firouzi M (2006) hERG potassium channels and cardiac arrhythmia. Nature 440:463–469

    Article  CAS  PubMed  Google Scholar 

  48. Selvin E, Coresh J, Golden SH, Boland LL, Brancati FL, Steffes MW (2005) Glycemic control, atherosclerosis, and risk factors for cardiovascular disease in individuals with diabetes: the Atherosclerosis Risk in Communities Study. Diabetes Care 28:1965–1973

    Article  PubMed  Google Scholar 

  49. Sibal L, Aldibbiat A, Agarwal SC, Mitchell G, Oates C, Razvi S, Weaver JU, Shaw JA, Home PD (2009) Circulating endothelial progenitor cells, endothelial function, carotid intima-media thickness and circulating markers of endothelial dysfunction in people with type 1 diabetes without macrovascular disease or microalbuminuria. Diabetologia 52:1464–1473

    Article  CAS  PubMed  Google Scholar 

  50. Sies H (1991) Oxidative stress: oxidants and antioxidants. Academic Press, New York

    Google Scholar 

  51. Singh TP, Groehn H, Kazmers A (2003) Vascular function and carotid intima-medial thickness in children with insulin-dependent diabetes mellitus. J Am Coll Cardiol 41:661–665

    Article  PubMed  Google Scholar 

  52. Snell-Bergeon JK, West NA, Mayer-Davis EJ, Liese AD et al (2010) Inflammatory markers are increased in youth with type 1 diabetes: The SEARCH case–control study. J Clin Endocrinol Metab 95:2868–2876

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Stakos DA, Schuster DP, Sparks EA, Wooley CF, Osei K, Boudoulas H (2005) Cardiovascular effects of type 1 diabetes mellitus in children. Angiology 56:311–317

    Article  PubMed  Google Scholar 

  54. Stettler C, Bearth A, Allemann S et al (2007) QTc interval and resting heart rate as long-term predictors of mortality in type 1 and type 2 diabetes mellitus: a 23-year follow-up. Diabetologia 50:186–194

    Article  CAS  PubMed  Google Scholar 

  55. Strohmer B, Pichler M, Iglseder B, Paulweber B (2005) Relationship of QT interval duration with carotid intima-media thickness in a clinically healthy population undergoing cardiovascular risk screening. J Intern Med 257:238–246

    Article  CAS  PubMed  Google Scholar 

  56. van Heerebeek L, Hamdani N, Handoko ML et al (2008) Diastolic stiffness of the failing diabetic heart: importance of fibrosis, advanced glycation end products, and myocyte resting tension. Circulation 117:43–51

    Article  PubMed  Google Scholar 

  57. Will JC, Byers T (1996) Does diabetes mellitus increase the requirement for vitamin C? Nutr Rev 54:193–202

    Article  CAS  PubMed  Google Scholar 

  58. Wojcik M, Rudzinski A, Starzyk J (2010) Left ventricular diastolic dysfunction in adolescents with type 1 diabetes reflects the long- but not short-term metabolic control. J Pediatr Endocrinol Metab 23:1055–1064

    Article  PubMed  Google Scholar 

  59. Woywodt A, Blann AD, Kirsch T, Erdbruegger U, Banzet N, Haubitz M, Dignat-George F (2006) Isolation and enumeration of circulating endothelial cells by immunomagnetic isolation: proposal of a definition and a consensus protocol. J Thromb Haemost 4:671–677

    Article  CAS  PubMed  Google Scholar 

  60. Zhang Y, Xiao J, Wang H et al (2006) Restoring depressed hERG K+ channel function as a mechanism for insulin treatment of abnormal QT prolongation and associated arrhythmias in diabetic rabbits. Am J Physiol Heart Circ Physiol 291:H1446–H1455

    Article  CAS  PubMed  Google Scholar 

  61. Zou MH, Shi C, Cohen RA (2002) High glucose via peroxynitrite causes tyrosine nitration and inactivation of prostacyclin synthase that is associated with thromboxane/prostaglandin H(2) receptormediated apoptosis and adhesion molecule expression in cultured human aortic endothelial cells. Diabetes 51:198–203

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We acknowledge the Grant support to all staff members and the nursing team in the diabetic outpatient clinic of the pediatric Department at Assiut Children University Hospital, Egypt, for their help and cooperation in the completion of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azza A. Eltayeb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eltayeb, A.A., Ahmad, FA., Sayed, D.M. et al. Subclinical Vascular Endothelial Dysfunctions and Myocardial Changes With Type 1 Diabetes Mellitus in Children and Adolescents. Pediatr Cardiol 35, 965–974 (2014). https://doi.org/10.1007/s00246-014-0883-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-014-0883-9

Keywords

Navigation