Skip to main content
Log in

Effective dose values in bone mineral measurements by photon absorptiometry and computed tomography

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

A high degree of uncertainty and irritation predominates in the assessment and comparison of radiation dose values resulting from measurements of bone mineral density of the lumbar spine by photon absorptiometry and X-ray computed tomography. The skin dose values which are usually given in the literature are of limited relevance because the size of the irradiated volumes, the relative sensitivity of the affected organs and the radiation energies are not taken into account. The concept of effective dose, sometimes called whole-body equivalent dose, has to be applied. A detailed analysis results in an effective dose value of about 1 µSv for absorptiometry and about 30 µSv for computed tomography when low kV and mAs values are used. Lateral localizer radiographs, which are necessary for slice selection in CT, mean an additional dose of 30 µSv. Lateral X-ray films of the spine which are frequently taken in combination with absorptiometry result in a dose of 700 µSv or more. The concept of effective dose, the basic data and assumptions used in its assessment and a comparison with other dose burdens (for example the natural background radiation, of typically 2400 µSv per year) are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Genant HK, Block JE, Steiger P et al. Appropriate use of bone densitometry. Radiology 1989; 170: 817–22.

    Google Scholar 

  2. Proceedings of the 8th International Workshop on Bone Densitometry. Osteoporosis Int 1991; 1: 189–213.

    Google Scholar 

  3. Glüer CC, Steiger P, Genant HK. Validity of dual-photon absorptiometry. Radiology 1988; 166: 574–5.

    Google Scholar 

  4. Ross PD, Wasnich RD, Vogel JM. Precision error in dual-photon absorptiometry related to source age. Radiology 1988; 166: 523–7.

    Google Scholar 

  5. Cullum ID, Ell PJ, Ryder JP. X-ray dual-photon absorptiometry: a new method for the measurement of bone density. Brit J Radiol 1989; 62: 587–92.

    Google Scholar 

  6. Stein JA, Waltham MA, Lazewatsdy IL et al. Dual-energy X-ray bone densitometer incorporating an internal reference system. Radiology 1987; 165(P): 313.

    Google Scholar 

  7. Kalender WA, Brestowsky H, Felsenberg D. Automated determination of the midvertebral slice for CT bone mineral measurements. Radiology 1987; 168: 219–21.

    Google Scholar 

  8. Kalender WA, Klotz E, Süss C. Vertebral bone mineral analysis: an integrated approach with CT. Radiology 1987; 164: 419–23.

    Google Scholar 

  9. Cann CE. Low-dose CT scanning for quantitative spinal mineral analysis. Radiology 1981; 140: 813–15.

    Google Scholar 

  10. Felsenberg D, Kalender WA, Trinkwalter W et al. CT-Untersuchungen mit reduzierter Strahlendosis. Fortschr Röntgenstr 1990; 153: 516–21.

    Google Scholar 

  11. ICRP publication no. 33. Protection against ionizing radiation from external sources used in medicine. Frankfurt: Pergamon Press, 1982.

  12. Schmidt T. Effektive Dosis — Beruflich strahlenexponierte Personen — Arztliche Überwachung (Neue Röntgenverordnung). Rntgen-Bl. 1988; 41: 444–6.

    Google Scholar 

  13. Traut H. Die effektive Äquivalentdosis: Erläuterungen und Anmerkungen zu einem neuen Dosiskonzept. Fortschr Röntgenstr 1989; 151: 487–90.

    Google Scholar 

  14. Huda W, Bissessur K. Effective dose equivalents, HE, in diagnostic radiology. Med Phys 1990; 17: 998–1003.

    Google Scholar 

  15. Pye DW, Hannan WJ, Hesp R. Correspondence: Effective dose equivalent in dual X-ray absorptiometry. Br J Radiol 1990; 63: 149.

    Google Scholar 

  16. Shope T, Gagne RM, Johnson GC. A method for describing the doses delivered by transmission X-ray computed tomography. Med Phys 1981; 8: 488–95.

    Google Scholar 

  17. Drexler G, Panzer W, Widenmann L et al. Die Bestimmung von Organdosen in der Röntgendiagnostik. Berlin: Hoffmann Verlag, 1985.

    Google Scholar 

  18. McCrohan JL, Patterson JF, Gagne RM. Average radiation doses in a standard head examination for 250 CT systems. Radiology 1987; 163: 263–8.

    Google Scholar 

  19. SOMATOM Plus dose and imaging performance information. Erlangen: Siemens AG Medizinische Technik. Order no. Cl-015.203.12.01.02, 1990.

  20. Vogel H. Strahlendosis und Strahlenrisiko in der bildgebenden Diagnostik. Landsberg: Ecomed Verlag, 1989.

    Google Scholar 

  21. Richardson RB. Past and revised risk for cancer induced by irradiation and their influence on dose limits. Br J Radiol 1990; 63: 235–45.

    Google Scholar 

  22. Unweltbericht 1990. Salzgitter: Bundesamt für Strahlenschutz, 1990.

  23. Steinbach WR, Richter K, Uhlich F et al. Strahlenbelastung und-risiko von Patienten und Untersuchern bei Angiokardiographie und Koronarangiographie. Electromedica 1990; 58: 66–9.

    Google Scholar 

  24. Consensus development conference: Prophylaxis and treatment of osteoporosis. Conference report. Osteoporosis Int 1991; 1: 114–17.

    Google Scholar 

  25. Virtama P. Uneven distribution of bone minerals and covering effect of nonmineralized tissue as reasons for impaired detectability of bone density from roentgenograms. Ann Med Intern Fenn 1960; 49: 57–65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalender, W.A. Effective dose values in bone mineral measurements by photon absorptiometry and computed tomography. Osteoporosis Int 2, 82–87 (1992). https://doi.org/10.1007/BF01623841

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01623841

Keywords

Navigation