Skip to main content
Top

04-18-2018 | Type 2 diabetes | Article

Prevalence of left ventricular systolic dysfunction and heart failure with reduced ejection fraction in men and women with type 2 diabetes mellitus: a systematic review and meta-analysis

Journal: Cardiovascular Diabetology

Authors: Selma Bouthoorn, Aisha Gohar, Gideon Valstar, Hester M. den Ruijter, J. B. Reitsma, Arno W. Hoes, Frans H. Rutten, the Queen of Hearts Consortium

Publisher: BioMed Central

Abstract

Background

Type 2 diabetes mellitus (T2D) is associated with the development of left ventricular systolic dysfunction (LVSD) and heart failure with reduced ejection fraction (HFrEF). T2D patients with LVSD are at higher risk of mortality and morbidity than patients without LVSD, while progression of LVSD can be delayed or halted by the use of proven therapies. As estimates of the prevalence are scarce and vary considerably, the aim of this study was to retrieve summary estimates of the prevalence of LVSD/HFrEF in T2D and to see if there were any sex differences.

Methods

A systematic search of Medline and Embase was performed to extract the prevalence of LVSD/HFrEF in T2D (17 studies, mean age 50.1 ± 6.3 to 71.5 ± 7.5), which were pooled using random-effects meta-analysis.

Results

The pooled prevalence of LVSD was higher in hospital populations (13 studies, n = 5835, 18% [95% CI 17–19%]), than in the general population (4 studies, n = 1707, 2% [95% CI 2–3%]). Seven studies in total reported sex-stratified prevalence estimates (men: 7% [95% CI 5–8%] vs. women: 1.3% [95% CI 0.0.2.2%]). The prevalence of HFrEF was available in one general population study (5.8% [95% CI 3.7.6%], men: 6.8% vs. women: 3.0%).

Conclusions

The summary prevalence of LVSD is higher among T2D patients from a hospital setting compared with from the general population, with a higher prevalence in men than in women in both settings. The prevalence of HFrEF among T2D in the population was only assessed in a single study and again was higher among men than women.
Literature
1.
MacDonald MR, Petrie MC, Varyani F, et al. Impact of diabetes on outcomes in patients with low and preserved ejection fraction heart failure: an analysis of the candesartan in heart failure: assessment of reduction in mortality and morbidity (CHARM) programme. Eur Heart J. 2008;29(11):1377–85.CrossRefPubMed
2.
Boonman-De Winter LJM, Rutten FH, Cramer MJM, et al. High prevalence of previously unknown heart failure and left ventricular dysfunction in patients with type 2 diabetes. Diabetologia. 2012;55(8):2154–62.CrossRefPubMedPubMedCentral
3.
Chaowalit N, Arruda AL, McCully RB, Bailey KR, Pellikka PA. Dobutamine stress echocardiography in patients with diabetes mellitus: enhanced prognostic prediction using a simple risk score. J Am Coll Cardiol. 2006;47(5):1029–36.CrossRefPubMed
4.
Van Riet EES, Hoes AW, Limburg A, Landman MAJ, Van Der Hoeven H, Rutten FH. Prevalence of unrecognized heart failure in older persons with shortness of breath on exertion. Eur J Heart Fail. 2014;16(7):772–7.CrossRefPubMed
5.
Bhatia R, Tu J, Lee D, et al. Outcome of heart failure with preserved ejection fraction in a population-based study. N Engl J Med. 2006;355:260–9.CrossRefPubMed
6.
Zimmet PZ, Magliano DJ, Herman WH, Shaw JE. Diabetes: a 21st century challenge. Lancet Diabetes Endocrinol. 2014;2(1):56–64.CrossRefPubMed
7.
Savarese G, Lund LH. Global public health burden of heart failure. Card Fail Rev. 2017;3(1):52–5.CrossRef
8.
Meta-analysis Global Group in Chronic Heart Failure (MAGGIC). The survival of patients with heart failure with preserved or reduced left ventricular ejection fraction: an individual patient data meta-analysis. Eur Heart J. 2012;33(14):1750–7.CrossRef
9.
Lauer MS, Evans JC, Levy D. Prognostic implications of subclinical left ventricular dilatation and systolic dysfunction in men free of overt cardiovascular disease (the Framingham Heart Study). Am J Cardiol. 1992;70:1180–4.CrossRefPubMed
10.
Ajello L, Coppola G, Corrado E, La Franca E, Rotolo A, Assennato P. Diagnosis and treatment of asymptomatic left ventricular systolic dysfunction after myocardial infarction. ISRN Cardiol. 2013;2013:731285. https://​doi.​org/​10.​1155/​2013/​731285.CrossRefPubMedPubMedCentral
11.
Huelsmann M, Neuhold S, Resl M, et al. PONTIAC (NT-proBNP selected prevention of cardiac eveNts in a population of diabetic patients without a history of cardiac disease): a prospective randomized controlled trial. J Am Coll Cardiol. 2013;62(15):1365–72.CrossRefPubMed
12.
Hoy D, Brooks P, Woolf A, et al. Assessing risk of bias in prevalence studies: modification of an existing tool and evidence of interrater agreement. J Clin Epidemiol. 2012;65(9):934–9.CrossRefPubMed
13.
Whiting PF, Rutjes AWS, Westwood ME, et al. Research and reporting methods accuracy studies. Ann Intern Med. 2011;155(4):529–36.CrossRefPubMed
14.
Freeman MF. Tukey JoW. Transformations related to the angular and the square root. Ann Math: Stat; 1950. p. 607–11.
15.
Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.CrossRefPubMed
16.
Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias author (s): Colin B. Begg and Madhuchhanda Mazumdar Published by : International Biometric Society Stable URL : http://​www.​jstor.​org/​stable/​2533446. Biometrics. 1994;50(4):1088–101.
17.
Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical. BMJ. 1998;316(7129):469.CrossRef
18.
Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Softw. 2010;36(3):1–48.CrossRef
19.
Annonu AK, Fattah AA, Mokhtar MS, Ghareeb S, Elhendy A. Left ventricular systolic and diastolic functional abnormalities in asymptomatic patients with non-insulin-dependent diabetes mellitus. J Am Soc Echocardiogr. 2001;14:885–91.CrossRefPubMed
20.
Fang ZY, Schull-Meade R, Leano R, Mottram PM, Prins JB, Marwick TH. Screening for heart disease in diabetic subjects. Am Heart J. 2005;149(2):349–54.CrossRefPubMed
21.
Dawson A, Morris AD, Struthers AD. The epidemiology of left ventricular hypertrophy in type 2 diabetes mellitus. Diabetologia. 2005;48(10):1971–9.CrossRefPubMed
22.
Albertini JP, Cohen R, Valensi P, Sachs RN, Charniot JC. B-type natriuretic peptide, a marker of asymptomatic left ventricular dysfunction in type 2 diabetic patients. Diabetes Metab. 2008;34(4 Pt 1):355–62.CrossRefPubMed
23.
Poulsen MK, Henriksen JE, Dahl J, et al. Left ventricular diastolic function in type 2 diabetes mellitus: prevalence and association with myocardial and vascular disease. Circ Cardiovasc Imaging. 2010;3(1):24–31.CrossRefPubMed
24.
Aigbe I, Kolo P, Omotoso A. Left ventricular structure and function in black normotensive type 2 diabetes mellitus patients. Ann Afr Med. 2012;11(2):84.CrossRefPubMed
25.
Faden G, Faganello G, De Feo S, et al. The increasing detection of asymptomatic left ventricular dysfunction in patients with type 2 diabetes mellitus without overt cardiac disease: data from the SHORTWAVE study. Diabetes Res Clin Pract. 2013;101(3):309–16.CrossRefPubMed
26.
Dodiyi-Manuel ST, Akpa MR, Odia OJ. Left ventricular dysfunction in normotensive type II diabetic patients in Port Harcourt, Nigeria. Vasc Heal Risk Manag. 2013;9:529–33.CrossRef
27.
Chen Y, Zhao CT, Zhen Z, Wong A, Tse HF, Yiu KH. Association of myocardial dysfunction with vitamin D deficiency in patients with type 2 diabetes mellitus. J Diabetes Complicat. 2014;28(3):286–90.CrossRefPubMed
28.
Jørgensen PG, Jensen MT, Mogelvang R, et al. Abnormal echocardiography in patients with type 2 diabetes and relation to symptoms and clinical characteristics. Diabetes Vasc Dis Res. 2016;13(5):321–30.CrossRef
29.
Cioffi G, Giorda CB, Chinali M, et al. Analysis of midwall shortening reveals high prevalence of left ventricular myocardial dysfunction in patients with diabetes mellitus: the DYDA study. Eur J Prev Cardiol. 2012;19(5):935–43.CrossRefPubMed
30.
Chaudhary AK, Aneja GK, Shukla S, Razi SM. Study on diastolic dysfunction in newly diagnosed type 2 diabetes mellitus and its correlation with glycosylated haemoglobin (HbA1C). J Clin Diagn Res. 2015;9(8):OC20–2.PubMedPubMedCentral
31.
Srivastava PM, Calafiore P, Macisaac RJ, et al. Prevalence and predictors of cardiac hypertrophy and dysfunction in patients with type 2 diabetes. Clin Sci. 2008;114:313–20.CrossRefPubMed
32.
Dandamudi S, Rodeheffer RJ, Chen HH. The prevalence of diabetic cardiomyopathy: a population based study in Olmsted County, Minnesota. J Card Fail. 2014;42(2):157–62.
33.
Xanthakis V, Sung JH, Samdarshi TE, et al. Relations between subclinical disease markers and type 2 diabetes, metabolic syndrome, and incident cardiovascular disease: the Jackson heart study. Diabetes Care. 2015;38(6):1082–8.CrossRefPubMedPubMedCentral
34.
Modig K, Berglund A, Talbäck M, Ljung R, Ahlbom A. Estimating incidence and prevalence from population registers: example from myocardial infarction. Scand J Public Health. 2017;45(17_suppl):5–13.CrossRefPubMed
35.
Redfield MM, Jacobsen SJ, Burnett JC Jr, Mahoney DW, Bailey KR, Rodeheffer RJ. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA. 2003;289(2):194–202.CrossRefPubMed
36.
Walker AMN, Patel PA, Rajwani A, et al. Diabetes mellitus is associated with adverse structural and functional cardiac remodelling in chronic heart failure with reduced ejection fraction. Diabetes Vasc Dis Res. 2016;13(5):331–40.CrossRef
37.
Andersen NH, Poulsen SH, Eiskjaer H, Poulsen PL, Mogensen CE. Decreased left ventricular longitudinal contraction in normotensive and normoalbuminuric patients with type II diabetes mellitus: a Doppler tissue tracking and strain rate echocardiography study. Clin Sci (Lond). 2003;105(1):59–66.CrossRef
38.
van Giessen A, Boonman-de Winter LJM, Rutten FH, et al. Cost-effectiveness of screening strategies to detect heart failure in patients with type 2 diabetes. Cardiovasc Diabetol. 2016;15(1):48.
39.
Mata DA, Ramos MA, Bansal N, et al. Prevalence of depression and depressive symptoms among resident physicians. JAMA. 2015;314(22):2373.CrossRefPubMedPubMedCentral

Be confident that your patient care is up to date

Medicine Matters is being incorporated into Springer Medicine, our new medical education platform. 

Alongside the news coverage and expert commentary you have come to expect from Medicine Matters diabetes, Springer Medicine's complimentary membership also provides access to articles from renowned journals and a broad range of Continuing Medical Education programs. Create your free account »