Skip to main content
Top

09-28-2017 | Type 1 diabetes | Book chapter | Article

19. Type 1 Diabetes Mellitus and Exercise

Authors: Alissa J. Roberts, MD, Gregory P. Forlenza, MD, MS, David Maahs, MD, PhD, Craig E. Taplin, MD

Publisher: Springer International Publishing

Abstract

Exercise is an important aspect of the care of both children and adults with type 1 diabetes, promoting improved cardiovascular health, glycemic control, and participation in normal life. However, exercise presents several important challenges related to exogenous insulin delivery and risk of potentially dangerous glycemic excursions. In these and other respects, considerations for management of exercise in type 1 diabetes are quite different from type 2 diabetes. In this chapter, general recommendations for exercise will be reviewed, along with an update on the understanding of differential physiologic mechanisms that contribute to glycemic excursions in type 1 diabetes. We will emphasize a practical approach based on underlying physiology to facilitate safe exercise in type 1 diabetes, with a specific discussion pertinent to new technology including the artificial pancreas.
Literature
1.
Eisenbarth GS. Type I diabetes mellitus. A chronic autoimmune disease. N Engl J Med. 1986;314(21):1360–8.CrossRefPubMed
2.
Saudek CD, Derr RL, Kalyani RR. Assessing glycemia in diabetes using self-monitoring blood glucose and hemoglobin A1c. JAMA. 2006;295(14):1688–97.CrossRefPubMed
3.
Hirsch IB. Insulin analogues. N Engl J Med. 2005;352(2):174–83.CrossRefPubMed
4.
Diabetes Control and Complications Trial Research Group, Nathan DM, Genuth S, Lachin J, Cleary P, Crofford O, Davis M, Rand L, Siebert C. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–86.CrossRef
5.
Lachin JM, Orchard TJ, Nathan DM, Group DER. Update on cardiovascular outcomes at 30 years of the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes Care. 2014;37(1):39–43.CrossRefPubMed
6.
Tamborlane WV. Fulfilling the promise of insulin pump therapy in childhood diabetes. Pediatr Diabetes. 2006;7(Suppl 4):4–10.CrossRefPubMed
7.
Klonoff DC. Continuous glucose monitoring: roadmap for 21st century diabetes therapy. Diabetes Care. 2005;28(5):1231–9.CrossRefPubMed
8.
Sherr JL, Cengiz E, Palerm CC, Clark B, Kurtz N, Roy A, et al. Reduced hypoglycemia and increased time in target using closed-loop insulin delivery during nights with or without antecedent afternoon exercise in type 1 diabetes. Diabetes Care. 2013;36(10):2909–14.CrossRefPubMedPubMedCentral
9.
Haidar A, Legault L, Dallaire M, Alkhateeb A, Coriati A, Messier V, et al. Glucose-responsive insulin and glucagon delivery (dual-hormone artificial pancreas) in adults with type 1 diabetes: a randomized crossover controlled trial. CMAJ. 2013;185(4):297–305.CrossRefPubMedPubMedCentral
10.
Grosman B, Ilany J, Roy A, Kurtz N, Wu D, Parikh N, et al. Hybrid closed-loop insulin delivery in type 1 diabetes during supervised outpatient conditions. J Diabetes Sci Technol. 2016;10:708.CrossRefPubMedPubMedCentral
11.
Farrington C. The artificial pancreas: challenges and opportunities. Lancet Diabetes Endocrinol. 2015;3(12):937.CrossRefPubMed
12.
American Diabetes A. 4. Foundations of care: education, nutrition, physical activity, smoking cessation, psychosocial care, and immunization. Diabetes Care. 2015;38(Supplement 1):S20–30.CrossRef
13.
Robertson K, Riddell MC, Guinhouya BC, Adolfsson P, Hanas R. Exercise in children and adolescents with diabetes. Pediatr Diabetes. 2014;15(Suppl 20):203–23.CrossRefPubMed
14.
Wasserman DH, Zinman B. Exercise in individuals with IDDM. Diabetes Care. 1994;17(8):924–37.CrossRefPubMed
15.
Loberlo F, et al. Physical activity and electronic media use in the SEARCH for diabetes in youth case-control study. Pediatrics. 2010;125(6):1364–71.CrossRef
16.
Liu LL, Lawrence JM, Davis C, Liese AD, Pettitt DJ, Pihoker C, et al. Prevalence of overweight and obesity in youth with diabetes in USA: the SEARCH for Diabetes in Youth study. Pediatr Diabetes. 2010;11(1):4–11.CrossRefPubMed
17.
DuBose SN, Hermann JM, Tamborlane WV, Beck RW, Dost A, DiMeglio LA, et al. Obesity in youth with type 1 diabetes in Germany, Austria, and the United States. J Pediatr. 2015;167(3):627–32. e1–4.CrossRefPubMed
18.
Brazeau A, et al. Barriers to physical activity among patients with type 1 diabetes. Diabetes Care. 2008;31(11):2108–9.CrossRefPubMedPubMedCentral
19.
Beraki A, et al. Increase in physical activity is associated with lower HbA1c levels in children and adolescents with type 1 diabetes: results from a cross-sectional study based on the Swedish pediatric diabetes quality registry (SWEDIABKIDS). Diabetes Res Clin Pract. 2014;105(1):119–25.CrossRefPubMed
20.
Herbst A, Bachran R, Kapellen T, Holl RW. Effects of regular physical activity on control of glycemia in pediatric patients with type 1 diabetes mellitus. Arch Pediatr Adolesc Med. 2006;160(6):573–7.CrossRefPubMed
21.
Aman J, et al. Associations between physical activity, sedentary behavior, and glycemic control in a large cohort of adolescents with type 1 diabetes: the Hvidoere Study Group on Childhood Diabetes. Pediatr Diabetes. 2009;10(4):234–9.CrossRefPubMed
22.
Quirk H, Blake H, Tennyson R, Randell TL, Glazebrook C. Physical activity interventions in children and young people with type 1 diabetes mellitus: a systematic review with meta-analysis. Diabet Med. 2014;31(10):1163–73.CrossRefPubMedPubMedCentral
23.
Yardley JE, Hay J, Abou-Setta AM, Marks SD, McGavock J. A systematic review and meta-analysis of exercise interventions in adults with type 1 diabetes. Diabetes Res Clin Pract. 2014;106(3):393–400.CrossRefPubMed
24.
Chimen M, Kennedy A, Nirantharakumar K, Pang TT, Andrews R, Narendran P. What are the health benefits of physical activity in type 1 diabetes mellitus? A literature review. Diabetologia. 2012;55(3):542–51.CrossRefPubMed
25.
Salem MA, Aboelasrar MA, Elbarbary NS, Elhilaly RA, Refaat YM. Is exercise a therapeutic tool for improvement of cardiovascular risk factors in adolescents with type 1 diabetes mellitus? A randomised controlled trial. Diabetol Metab Syndr. 2010;2(1):47.CrossRefPubMedPubMedCentral
26.
Seeger JP, Thijssen DH, Noordam K, Cranen ME, Hopman MT, Nijhuis-van der Sanden MW. Exercise training improves physical fitness and vascular function in children with type 1 diabetes. Diabetes Obes Metab. 2011;13(4):382–4.CrossRefPubMed
27.
Laaksonen DE, Atalay M, Niskanen LK, Mustonen J, Sen CK, Lakka TA, et al. Aerobic exercise and the lipid profile in type 1 diabetic men: a randomized controlled trial. Med Sci Sports Exerc. 2000;32(9):1541–8.CrossRefPubMed
28.
Naughton M, et al. Longitudinal associations between sex, diabetes self-care, and health-related quality of life among youth with type 1 or type 2 diabetes mellitus. J Pediatr. 2014;164(6):1376–83.CrossRefPubMedPubMedCentral
29.
D’Hooge R, Hellinckx T, Van Laethem C, Stegen S, De Schepper J, Van Aken S, et al. Influence of combined aerobic and resistance training on metabolic control, cardiovascular fitness and quality of life in adolescents with type 1 diabetes: a randomized controlled trial. Clin Rehabil. 2011;25(4):349–59.CrossRefPubMed
30.
Brazeau AS, Leroux C, Mircescu H, Rabasa-Lhoret R. Physical activity level and body composition among adults with type 1 diabetes. Diabet Med. 2012;29(11):e402–8.CrossRefPubMed
31.
LaPorte RE, Dorman JS, Tajima N, Cruickshanks KJ, Orchard TJ, Cavender DE, et al. Pittsburgh insulin-dependent diabetes mellitus morbidity and mortality study: physical activity and diabetic complications. Pediatrics. 1986;78(6):1027–33.PubMed
32.
Cuenca-Garcia M, Jago R, Shield JP, Burren CP. How does physical activity and fitness influence glycaemic control in young people with type 1 diabetes? Diabet Med. 2012;29(10):e369–76.CrossRefPubMed
33.
Lukacs A, Mayer K, Juhasz E, Varga B, Fodor B, Barkai L. Reduced physical fitness in children and adolescents with type 1 diabetes. Pediatr Diabetes. 2012;13(5):432–7.CrossRefPubMed
34.
Ruzic L, Sporis G, Matkovic BR. High volume-low intensity exercise camp and glycemic control in diabetic children. J Paediatr Child Health. 2008;44(3):122–8.CrossRefPubMed
35.
Tagougui S, Leclair E, Fontaine P, Matran R, Marais G, Aucouturier J, et al. Muscle oxygen supply impairment during exercise in poorly controlled type 1 diabetes. Med Sci Sports Exerc. 2015;47(2):231–9.CrossRefPubMedPubMedCentral
36.
Baldi JC, Cassuto NA, Foxx-Lupo WT, Wheatley CM, Snyder EM. Glycemic status affects cardiopulmonary exercise response in athletes with type I diabetes. Med Sci Sports Exerc. 2010;42(8):1454–9.CrossRefPubMed
37.
Veves A, Saouaf R, Donaghue VM, Mullooly CA, Kistler JA, Giurini JM, et al. Aerobic exercise capacity remains normal despite impaired endothelial function in the micro- and macrocirculation of physically active IDDM patients. Diabetes. 1997;46(11):1846–52.CrossRefPubMed
38.
Hsia CC, Raskin P. The diabetic lung: relevance of alveolar microangiopathy for the use of inhaled insulin. Am J Med. 2005;118(3):205–11.CrossRefPubMed
39.
Niranjan V, McBrayer DG, Ramirez LC, Raskin P, Hsia CC. Glycemic control and cardiopulmonary function in patients with insulin-dependent diabetes mellitus. Am J Med. 1997;103(6):504–13.CrossRefPubMed
40.
Gusso S, Pinto TE, Baldi JC, Robinson E, Cutfield WS, Hofman PL. Diastolic function is reduced in adolescents with type 1 diabetes in response to exercise. Diabetes Care. 2012;35(10):2089–94.CrossRefPubMedPubMedCentral
41.
Cree-Green M, Newcomer BR, Brown MS, Baumgartner AD, Bergman B, Drew B, et al. Delayed skeletal muscle mitochondrial ADP recovery in youth with type 1 diabetes relates to muscle insulin resistance. Diabetes. 2015;64(2):383–92.CrossRefPubMed
42.
Ditzel J. Oxygen transport impairment in diabetes. Diabetes. 1976;25(2 SUPPL):832–8.PubMed
43.
Trigona B, Aggoun Y, Maggio A, Martin XE, Marchand LM, Beghetti M, et al. Preclinical noninvasive markers of atherosclerosis in children and adolescents with type 1 diabetes are influenced by physical activity. J Pediatr. 2010;157(4):533–9.CrossRefPubMed
44.
Bjornstad P, Cree-Green M, Baumgartner A, Maahs DM, Cherney DZ, Pyle L, et al. Renal function is associated with peak exercise capacity in adolescents with type 1 diabetes. Diabetes Care. 2015;38(1):126–31.CrossRefPubMed
45.
Greenbaum CJ. Insulin resistance in type 1 diabetes. Diabetes Metab Res Rev. 2002;18(3):192–200.CrossRefPubMed
46.
Reinehr T, Holl RW, Roth CL, Wiesel T, Stachow R, Wabitsch M, et al. Insulin resistance in children and adolescents with type 1 diabetes mellitus: relation to obesity. Pediatr Diabetes. 2005;6(1):5–12.CrossRefPubMed
47.
Schauer IE, Snell-Bergeon JK, Bergman BC, Maahs DM, Kretowski A, Eckel RH, et al. Insulin resistance, defective insulin-mediated fatty acid suppression, and coronary artery calcification in subjects with and without type 1 diabetes: the CACTI study. Diabetes. 2011;60(1):306–14.CrossRefPubMed
48.
Nadeau KJ, Regensteiner JG, Bauer TA, Brown MS, Dorosz JL, Hull A, et al. Insulin resistance in adolescents with type 1 diabetes and its relationship to cardiovascular function. J Clin Endocrinol Metab. 2010;95(2):513–21.CrossRefPubMed
49.
Arslanian S, Nixon PA, Becker D, Drash AL. Impact of physical fitness and glycemic control on in vivo insulin action in adolescents with IDDM. Diabetes Care. 1990;13(1):9–15.CrossRefPubMed
50.
Maahs DM, Daniels SR, de Ferranti SD, Dichek HL, Flynn J, Goldstein BI, et al. Cardiovascular disease risk factors in youth with diabetes mellitus: a scientific statement from the American Heart Association. Circulation. 2014;130(17):1532–58.CrossRefPubMed
51.
de Ferranti SD, de Boer IH, Fonseca V, Fox CS, Golden SH, Lavie CJ, et al. Type 1 diabetes mellitus and cardiovascular disease: a scientific statement from the American Heart Association and American Diabetes Association. Circulation. 2014;130(13):1110–30.CrossRefPubMed
52.
Camacho RC, Galassetti P, Davis SN, Wasserman DH. Glucoregulation during and after exercise in health and insulin-dependent diabetes. Exerc Sport Sci Rev. 2005;33(1):17–23.PubMed
53.
Riddell MC, Iscoe KE. Physical activity, sport, and pediatric diabetes. Pediatr Diabetes. 2006;7(1):60–70.CrossRefPubMed
54.
Tansey MJ, Tsalikian E, Beck RW, Mauras N, Buckingham BA, Weinzimer SA, et al. The effects of aerobic exercise on glucose and counterregulatory hormone concentrations in children with type 1 diabetes. Diabetes Care. 2006;29(1):20–5.CrossRefPubMed
55.
Amiel SA, Tamborlane WV, Simonson DC, Sherwin RS. Defective glucose counterregulation after strict glycemic control of insulin-dependent diabetes mellitus. N Engl J Med. 1987;316(22):1376–83.CrossRefPubMed
56.
Galassetti P, Tate D, Neill RA, Richardson A, Leu SY, Davis SN. Effect of differing antecedent hypoglycemia on counterregulatory responses to exercise in type 1 diabetes. Am J Physiol Endocrinol Metab. 2006;290(6):E1109–17.CrossRefPubMed
57.
Galassetti P, Tate D, Neill RA, Morrey S, Wasserman DH, Davis SN. Effect of antecedent hypoglycemia on counterregulatory responses to subsequent euglycemic exercise in type 1 diabetes. Diabetes. 2003;52(7):1761–9.CrossRefPubMed
58.
Galassetti P, Neill AR, Tate D, Ertl AC, Wasserman DH, Davis SN. Sexual dimorphism in counterregulatory responses to hypoglycemia after antecedent exercise. J Clin Endocrinol Metab. 2001;86(8):3516–24.CrossRefPubMed
59.
Galassetti P, Tate D, Neill RA, Morrey S, Wasserman DH, Davis SN. Effect of sex on counterregulatory responses to exercise after antecedent hypoglycemia in type 1 diabetes. Am J Physiol Endocrinol Metab. 2004;287(1):E16–24.CrossRefPubMed
60.
Eliakim A, Nemet D, Zaldivar F, McMurray RG, Culler FL, Galassetti P, et al. Reduced exercise-associated response of the GH-IGF-I axis and catecholamines in obese children and adolescents. J Appl Physiol (1985). 2006;100(5):1630–7.CrossRef
61.
Galassetti P, Larson J, Iwanaga K, Salsberg SL, Eliakim A, Pontello A. Effect of a high-fat meal on the growth hormone response to exercise in children. J Pediatr Endocrinol Metab. 2006;19(6):777–86.CrossRefPubMed
62.
Nosek L, Roggen K, Heinemann L, Gottschalk C, Kaiser M, Arnolds S, et al. Insulin aspart has a shorter duration of action than human insulin over a wide dose-range. Diabetes Obes Metab. 2013;15(1):77–83.CrossRefPubMed
63.
Koivisto VA, Felig P. Effects of leg exercise on insulin absorption in diabetic patients. N Engl J Med. 1978;298(2):79–83.CrossRefPubMed
64.
Marliss EB, Vranic M. Intense exercise has unique effects on both insulin release and its roles in glucoregulation: implications for diabetes. Diabetes. 2002;51(Suppl 1):S271–83.CrossRefPubMed
65.
Guelfi KJ, Jones TW, Fournier PA. The decline in blood glucose levels is less with intermittent high-intensity compared with moderate exercise in individuals with type 1 diabetes. Diabetes Care. 2005;28(6):1289–94.CrossRefPubMed
66.
Turner D, Luzio S, Gray BJ, Dunseath G, Rees ED, Kilduff LP, et al. Impact of single and multiple sets of resistance exercise in type 1 diabetes. Scand J Med Sci Sports. 2015;25(1):e99–109.CrossRefPubMed
67.
Yardley JE, Kenny GP, Perkins BA, Riddell MC, Balaa N, Malcolm J, et al. Resistance versus aerobic exercise: acute effects on glycemia in type 1 diabetes. Diabetes Care. 2013;36(3):537–42.CrossRefPubMedPubMedCentral
68.
Yardley JE, Kenny GP, Perkins BA, Riddell MC, Malcolm J, Boulay P, et al. Effects of performing resistance exercise before versus after aerobic exercise on glycemia in type 1 diabetes. Diabetes Care. 2012;35(4):669–75.CrossRefPubMedPubMedCentral
69.
Iscoe KE, Riddell MC. Continuous moderate-intensity exercise with or without intermittent high-intensity work: effects on acute and late glycaemia in athletes with type 1 diabetes mellitus. Diabet Med. 2011;28(7):824–32.CrossRefPubMed
70.
Bussau VA, Ferreira LD, Jones TW, Fournier PA. The 10-s maximal sprint: a novel approach to counter an exercise-mediated fall in glycemia in individuals with type 1 diabetes. Diabetes Care. 2006;29(3):601–6.CrossRefPubMed
71.
McMahon SK, Ferreira LD, Ratnam N, Davey RJ, Youngs LM, Davis EA, et al. Glucose requirements to maintain euglycemia after moderate-intensity afternoon exercise in adolescents with type 1 diabetes are increased in a biphasic manner. J Clin Endocrinol Metab. 2007;92(3):963–8.CrossRefPubMed
72.
Davis EA, Keating B, Byrne GC, Russell M, Jones TW. Hypoglycemia: incidence and clinical predictors in a large population-based sample of children and adolescents with IDDM. Diabetes Care. 1997;20(1):22–5.CrossRefPubMed
73.
Banarer S, Cryer PE. Sleep-related hypoglycemia-associated autonomic failure in type 1 diabetes: reduced awakening from sleep during hypoglycemia. Diabetes. 2003;52(5):1195–203.CrossRefPubMed
74.
Cryer PE. Diverse causes of hypoglycemia-associated autonomic failure in diabetes. N Engl J Med. 2004;350(22):2272–9.CrossRefPubMed
75.
Cryer PE. Mechanisms of hypoglycemia-associated autonomic failure and its component syndromes in diabetes. Diabetes. 2005;54(12):3592–601.CrossRefPubMed
76.
Tsalikian E, Mauras N, Beck RW, Tamborlane WV, Janz KF, Chase HP, et al. Impact of exercise on overnight glycemic control in children with type 1 diabetes mellitus. J Pediatr. 2005;147(4):528–34.CrossRefPubMed
77.
Pivovarov JA, Taplin CE, Riddell MC. Current perspectives on physical activity and exercise for youth with diabetes. Pediatr Diabetes. 2015;16(4):242–55.CrossRefPubMed
78.
Colberg SR, Sigal RJ, Yardley JE, Riddell MC, Dunstan DW, Dempsey PC, et al. Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. Diabetes Care. 2016;39(11):2065–79.CrossRefPubMed
79.
Rabasa-Lhoret R, et al. Guidelines for Premeal insulin dose reduction for postprandial exercise of different intensities and durations in type 1 diabetic subjects treated intensively with a basal-bolus insulin regimen (Ultralente-Lispro). Diabetes Care. 2001;24(4):625–30.CrossRefPubMed
80.
Al Khalifah RA, Suppere C, Haidar A, Rabasa-Lhoret R, Ladouceur M, Legault L. Association of aerobic fitness level with exercise-induced hypoglycaemia in type 1 diabetes. Diabet Med. 2016;33:1686.CrossRefPubMed
81.
Taplin CE, Cobry E, Messer L, McFann K, Chase HP, Fiallo-Scharer R. Preventing post-exercise nocturnal hypoglycemia in children with type 1 diabetes. J Pediatr. 2010;157(5):784–8. e1.CrossRefPubMedPubMedCentral
82.
Diabetes Research in Children Network Study Group, Tsalikian E, Kollman C, Tamborlane WB, Beck RW, Fiallo-Scharer R, et al. Prevention of hypoglycemia during exercise in children with type 1 diabetes by suspending basal insulin. Diabetes Care. 2006;29(10):2200–4.CrossRef
83.
van Albada ME, Bakker-van Waarde WM. Recurrent nightly ketosis after prolonged exercise in type 1 diabetes – the need for glycogen replacement strategies. Case report and review of literature. Pediatr Diabetes. 2016;17(7):531–4.CrossRefPubMed
84.
Andersen G, Alluis B, Meiffren G, Ranson A, Seroussi C, Gandier M, et al. Ultra-rapid BioChaperone Insulin Lispro (BC LIS): linear dose-response and faster absorption than insulin lispro (LIS) [abstract]. Diabetes. 2015;64(suppl 1)(June).
85.
Bode BW, Hyveled L, Tamer SC, Ybanez P, Demissie M. Improved postprandial glycemic control with faster-acting insulin aspart in subjects with Type 1 diabetes using CSII [abstract]. Diabetes. 2015;64(suppl 1)(June).
86.
Buckley ST, Jeppesen CB, Olsen HB, Hostrup S, Sturis J. Faster-acting insulin aspart: towards an understanding of the mechanism(s) of action of nicotinamide [abstract]. Diabetes. 2015;64(suppl 1)(June).
87.
Danne T, Biester T, Fath M, Thorsson L, Rikte T, Kordonouri O, et al. Earlier onset and higher early exposure of faster-acting insulin aspart vs. Insulin aspart in adults is retained in children and adolescents with T1D [abstract]. Diabetes. 2015;64(suppl 1)(June).
88.
Heise T, Zijlstra E, Rikte T, Thorsson L, Nosek L, Haahr H. Faster-acting insulin aspart using continuous subcutaneous insulin infusion (CSII): earlier onset of exposure and greater early pharmacokinetic (PK) and pharmacodynamic (PD) effects than insulin aspart [abstract]. Diabetes. 2015;64(suppl 1)(June).
89.
Lv D, Kulkarni SD, Chan A, Keith S, Pettis R, Kovatchev BP, et al. Pharmacokinetic model of the transport of fast-acting insulin from the subcutaneous and intradermal spaces to blood. J Diabetes Sci Technol. 2015;9:831.CrossRefPubMedPubMedCentral
90.
Shiramoto M, Nishida T, Hansen AK, Haahr H. Higher early exposure and greater early glucose-lowering effect with faster-acting insulin aspart vs. insulin aspart in Japanese patients with T1D [abstract]. Diabetes. 2015;64(suppl 1)(June).
91.
Bakhtiani PA, Caputo N, Castle JR, El Youssef J, Carroll JM, David LL, et al. A novel, stable, aqueous glucagon formulation using ferulic acid as an excipient. J Diabetes Sci Technol. 2015;9(1):17–23.CrossRefPubMed
92.
Doyle FJ 3rd, Huyett LM, Lee JB, Zisser HC, Dassau E. Closed-loop artificial pancreas systems: engineering the algorithms. Diabetes Care. 2014;37(5):1191–7.CrossRefPubMedPubMedCentral
93.
Kropff J, DeVries JH. Continuous glucose monitoring, future products, and update on worldwide artificial pancreas projects. Diabetes Technol Ther. 2016;18(Suppl 2):S253–63.CrossRefPubMed
94.
Kowalski A. Pathway to artificial pancreas systems revisited: moving downstream. Diabetes Care. 2015;38(6):1036–43.CrossRefPubMed
95.
Forlenza GP, Buckingham B, Maahs DM. Progress in diabetes technology: developments in insulin pumps, continuous glucose monitors, and progress towards the artificial pancreas. J Pediatr. 2015.
96.
Shah VN, Shoskes A, Tawfik B, Garg SK. Closed-loop system in the management of diabetes: past, present, and future. Diabetes Technol Ther. 2014;16(8):477–90.CrossRefPubMed
97.
Breton M, Farret A, Bruttomesso D, Anderson S, Magni L, Patek S, et al. Fully integrated artificial pancreas in type 1 diabetes: modular closed-loop glucose control maintains near normoglycemia. Diabetes. 2012;61(9):2230–7.CrossRefPubMedPubMedCentral
98.
Colberg SR, Laan R, Dassau E, Kerr D. Physical activity and type 1 diabetes: time for a rewire? J Diabetes Sci Technol. 2015;9(3):609–18.CrossRefPubMedPubMedCentral
99.
Roberts AJ, Taplin CE. Exercise in youth with type 1 diabetes. Curr Pediatr Rev. 2015;11(2):120–5.CrossRefPubMed
100.
Breton MD, Brown SA, Karvetski CH, Kollar L, Topchyan KA, Anderson SM, et al. Adding heart rate signal to a control-to-range artificial pancreas system improves the protection against hypoglycemia during exercise in type 1 diabetes. Diabetes Technol Ther. 2014;16(8):506–11.CrossRefPubMedPubMedCentral
101.
Haidar A, Rabasa-Lhoret R, Legault L, Lovblom LE, Rakheja R, Messier V, et al. Single- and dual-hormone artificial pancreas for overnight glucose control in Type 1 Diabetes. J Clin Endocrinol Metab. 2015:jc20153003.
102.
Wong CH, Chiang YC, Wai JP, Lo FS, Yeh CH, Chung SC, et al. Effects of a home-based aerobic exercise programme in children with type 1 diabetes mellitus. J Clin Nurs. 2011;20(5–6):681–91.CrossRefPubMed
103.
Aouadi R, Khalifa R, Aouidet A, Ben Mansour A, Ben Rayana M, Mdini F, et al. Aerobic training programs and glycemic control in diabetic children in relation to exercise frequency. J Sports Med Phys Fitness. 2011;51(3):393–400.PubMed
104.
Tunar M, Ozen S, Goksen D, Asar G, Bediz CS, Darcan S. The effects of Pilates on metabolic control and physical performance in adolescents with type 1 diabetes mellitus. J Diabetes Complicat. 2012;26(4):348–51.CrossRefPubMed
105.
Heyman E, Toutain C, Delamarche P, Berthon P, Briard D, Youssef H, et al. Exercise training and cardiovascular risk factors in type 1 diabetic adolescent girls. Pediatr Exerc Sci. 2007;19(4):408–19.CrossRefPubMed
106.
Perry TL, Mann JI, Lewis-Barned NJ, Duncan AW, Waldron MA, Thompson C. Lifestyle intervention in people with insulin-dependent diabetes mellitus (IDDM). Eur J Clin Nutr. 1997;51(11):757–63.CrossRefPubMed
107.
Durak EP, Jovanovic-Peterson L, Peterson CM. Randomized crossover study of effect of resistance training on glycemic control, muscular strength, and cholesterol in type I diabetic men. Diabetes Care. 1990;13(10):1039–43.CrossRefPubMed
108.
Fuchsjager-Mayrl G, Pleiner J, Wiesinger GF, Sieder AE, Quittan M, Nuhr MJ, et al. Exercise training improves vascular endothelial function in patients with type 1 diabetes. Diabetes Care. 2002;25(10):1795–801.CrossRefPubMed

Be confident that your patient care is up to date

Medicine Matters is being incorporated into Springer Medicine, our new medical education platform. 

Alongside the news coverage and expert commentary you have come to expect from Medicine Matters diabetes, Springer Medicine's complimentary membership also provides access to articles from renowned journals and a broad range of Continuing Medical Education programs. Create your free account »