Skip to main content
Top

10-19-2017 | Retinopathy | Review | Article

Diabetic retinopathy: research to clinical practice

Journal: Clinical Diabetes and Endocrinology

Authors: Anjali R. Shah, Thomas W. Gardner

Publisher: BioMed Central

Abstract

Background

Diabetic Retinopathy (DR) is a leading cause of visual impairment in the United States. The CDC estimates that the prevalence of DR will triple from 2005 to 2050.

Main body

The report summarizes major past advances in diabetes research and their impact on clinical practice. Current paradigms and future directions are also discussed.

Conclusions

DR is a leading cause of visual impairment in the US. Significant progress has been made in the understanding and treatment of DR, but rising prevalence demands innovative approaches to management in the future.
Literature
1.
Wolfensberger TJ, Hamilton AM. Diabetic retinopathy—an historical review. Semin Ophthalmol. 2001;17:2–7.CrossRef
2.
Wetzig PC, Worlton JT. Treatment of diabetic retinopathy by light coagulation. Br J Ophthalmol. 1963;47(9):539–41.CrossRefPubMedPubMedCentral
3.
Photocoagulation treatment of proliferative diabetic retinopathy. The second report of the diabetic retinopathy study findings. Ophthalmology. 1978;85:82–105.CrossRef
4.
Photocoagulation for diabetic macular edema. Early treatment of diabetic retinopathy study report number 1. Arch Ophthalmol. 1985;103:1796–806.CrossRef
5.
The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–86.CrossRef
6.
UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–53. (Erratum Lancet 1999; 354:602)CrossRef
7.
UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ. 1998;317(7160):703–13. (Erratum BMJ 1999: 318(7175): 29)CrossRefPubMedCentral
8.
Leske MC, Wu S-Y, Hennis A, Hyman L, et al. Barbados eye study group hyperglycemia, blood pressure, and the 9-year incidence of diabetic retinopathy: the Barbados eye studies. Ophthalmology. 2005;112:799–805.CrossRefPubMed
9.
ACCORD Study Group, ACCORD Eye Study Group. Effects of medical therapies on retinopathy progression in type 2 diabetes. N Engl J Med. 2010;363:233–44.CrossRef
10.
Klein R, Klein BE. Are individuals with diabetes seeing better? A long term epidemiological perspective. Diabetes. 2010;59:1853–60.CrossRefPubMedPubMedCentral
11.
Klein R, Lee KE, Gangnon RE, Klein BE. The 25-year incidence of visual impairment in type 1 diabetes mellitus: the Wisconsin epidemiologic study of diabetic retinopathy. Ophthalmology. 2010;117:63–70.CrossRefPubMed
12.
The Eye Diseases Prevalence Research Group. The prevalence of diabetic retinopathy among adults in the United States. Arch Ophthalmol. 2004;122(4):552–63.CrossRef
13.
Drummond MF, Davies LM, Frederick III. FL; assessing the costs and benefits of medical research: the diabetic retinopathy study. Soc Sci Med. 1992;34(9):973–81.CrossRefPubMed
14.
FIELD Study Investigators. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study); a randomized controlled trial. Lancet. 2007;370:1687–97.CrossRef
15.
Mitka M. Aggressive lipid, hypertension targeting yields no benefit for some with diabetes. JAMA. 2010;303(17):1681–3.CrossRefPubMed
16.
Estacio RO, McGarling E, Biggerstaff S, Jeffers BW, et al. Overt albuminuria predicts diabetic retinopathy in Hispanics with NIDDM. Am J Kidney Dis. 1998;31:947–53.CrossRefPubMed
17.
Diabetes Control and Complications Trial Research Group. Effect of pregnancy on microvascular complications in the diabetes control and complications trial. Diabetes Care. 2000;23:1084–91.CrossRef
18.
Writing Committee for the Diabetic Retinopathy Clinical Research Network, Gross JG, Glassman AR, et al. Panretinal photocoagulation vs intravitreous ranibizumab for proliferative diabetic retinopathy: a randomized clinical trial. JAMA. 2015;314:2137–46.CrossRef
19.
Diabetic Retinopathy Clinical Research Network, Elman MJ, Aiello LP, Beck RW, et al. Randomized trial evaluating ranibizumab plus prompt or deferred laser for diabetic macular edema. Ophthalmology. 2010;117:1064–77.CrossRef
20.
Adamis AP. Is diabetic retinopathy an inflammatory disease? Br J Ophthalmol. 2002;86:363–5.CrossRefPubMedPubMedCentral
21.
Kern TS. Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy. Exp Diabetes Res. 2007;2007:95103.CrossRefPubMedPubMedCentral
22.
Tang J, Kern TS. Inflammation in diabetic retinopathy. Prog Retin Eye Res. 2011;30(5):343–58.CrossRefPubMedPubMedCentral
23.
Diabetic Retinopathy Clinical Research Network. A randomized trial comparing intravitreal triamcinolone acetonide and focal/grid photocoagulation for diabetic macular edema. Ophthalmology. 2008;115(9):1447–9.CrossRefPubMedCentral
24.
Haller JA, Kuppermann BD, Blumenkranz MS, Williams GA, Weinberg DV, Chou C, Whitcup SM. Randomized controlled trial of an Intravitreous Dexamethasone drug delivery system in patients with diabetic macular edema. Arch Ophthalmol. 2010;128(3):289–96.CrossRefPubMed
25.
Bressler NM, Edwards AR, Beck RW, Flaxel CJ, Glassman AR, Ip MS, Kollman C, Kuppermann BD, Stone TW. Diabetic retinopathy clinical research network. Exploratory analysis of diabetic retinopathy progression through 3 years in a randomized clinical trial that compares Intravitreal Triamcinolone Acetonide with focal/grid photocoagulation. Arch Ophthalmol. 2009;127(12):1566–71.CrossRefPubMedPubMedCentral
26.
Wykoff CC, Chakravarthy U, Camochiaro PA, et al. Long term effects of intravitreal 0.19 mg fluocinolone acetonide implant on progression and regression of diabetic retinopathy. Ophthalmology. 2017;124(4):440–9.CrossRefPubMed
27.
Rangasamy S, McGuire PG, Franco Nitta C, Monickaraj F, Orunganti SR, Das A. Chemokine mediated monocyte trafficking in to the retina, role of inflammation in alteration of the blood-retinal barrier in diabetic retinopathy. PLoS One. 2014;9(10):e10858.CrossRef
28.
Vujosevic S, Simó R. Local and systemic inflammatory biomarkers of diabetic retinopathy: an integrative approach. Invest Ophthalmol Vis Sci. 2017;58(6):BIO68–75.CrossRefPubMed
29.
Abcouwer SF. Angiogenic factors and cytokines in diabetic retinopathy. Journal of clinical & cellular immunology. 2013;1(11):1–12.
30.
Diabetic Retinopathy Clinical Research Network, Elman MJ, Aiello LP, et al. Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology. 2010;117:1064–7.CrossRef
31.
Mitchell P, Bandello F, Schmidt-Erfurth U, RESTORE Study Group, et al. The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema. Ophthalmology. 2011;118:618–25.CrossRef
32.
Nguyen QD, Brown DM, Marcus DM, RISE and RIDE Research Group, et al. Ranibizumab for diabetic macular edema: results from 2 phase III randomized trials: RISE and RIDE. Ophthalmology. 2012;119:789–801.CrossRefPubMed
33.
Bressler SB, Liu D, Glassman AR, Blodi BA, Castellarin AA, Jampol LM, Kaufman PL, Melia M, Singh H, Wells JA. For the diabetic retinopathy clinical research network. Change in diabetic retinopathy through 2 YearsSecondary analysis of a randomized clinical trial comparing Aflibercept, Bevacizumab, and Ranibizumab. JAMA Ophthalmol. 2017;135(6):558–68.CrossRefPubMed
34.
Writing Committee for the Diabetic Retinopathy Clinical Research Network. Panretinal photocoagulation vs Intravitreous Ranibizumab for proliferative diabetic retinopathy. A randomized clinical trial. JAMA. 2015;314(20):2137–46.CrossRef
35.
Haig J, Barbeau M, Ferreira A. Cost-effectiveness of ranibizumab in the treatment of visual impairment due to diabetic macular edema. J Med Econ. 2016;19:663–71.CrossRefPubMed
36.
Brown GC, Brown MM, Turpcu A, Rajput Y. The cost-effectiveness of ranibizumab for the treatment of diabetic macular edema. Ophthalmology. 2015;122:1416–25.CrossRefPubMed
37.
Solomon SD, Chew E, Duh EJ, Sobrin L, Sun JK, Vanderbeek BL, Wykoff CC, Gardner TW. Diabetic retinopathy: a position statement by the American Diabetes Association. Diabetes Care. 2017;40:412–8.CrossRefPubMed
38.
Cohen SR, Gardner TW. Diabetic retinopathy and diabetic macular edema. Dev Ophthalmol. 2016;55:137–46.CrossRefPubMed
39.
Virgili G, Menchini F, Murro V, Peluso E, Rosa F, Casazza G. Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy. Cochrane Database Syst Rev. 2011;2011(7):CD008081.
40.
Silva PS, Cavallerano JD, NMN H, Tolls D, Thakore K, Patel B, Sehizadeh M, Tolson AM, Sun JK, Aiello LP. Comparison of nondiabetic retinal findings identified with Nonmydriatic Fundus photography vs Ultrawide field imaging in an ocular Telehealth program. JAMA Ophthalmol. 2016;134(3):330–4.CrossRefPubMed
41.
Mazhar K, Varma R, Choudhury F, Los Angeles Latino Eye Study Group, et al. Severity of diabetic retinopathy and health-related quality of life: the Los Angeles Latino eye study. Ophthalmology. 2011;118:649–55.CrossRefPubMed
42.
Jackson GR, Barber AJ. Visual dysfunction associated with diabetic retinopathy. Curr Diab Rep. 2010;10:380.CrossRefPubMed
43.
Jackson JR, Scott IU, Quillen DA WL, Hershey ME, Gardner TW. Inner retinal visual dysfunction is a sensitive marker of nonproliferative diabetic retinopathy. Br J Ophthalmol. 2012;96(5):699–703.CrossRefPubMed
44.
Sohn EH, van Dijk HW, Jiao C, et al. Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. Proc Natl Acad Sci U S A. 2016;113(19):E2655–64. doi:10.​1073/​pnas.​1522014113.CrossRefPubMedPubMedCentral
45.
Gardner TW, Davila JR. The neurovascular unit and the pathophysiologic basis of diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2017;255:1-6.
46.
Gray EJ, Gardner TW. Retinal Failure in Diabetes: a Feature of Retinal Sensory Neuropathy. Curr Diab Rep. 2015;15:107.CrossRefPubMed
47.
Fort PE, Losiewicz MK, Reiter CEN, et al. Differential roles of hyperglycemia and Hypoinsulinemia in diabetes induced retinal cell death: evidence for retinal insulin resistance. Lo ACY, ed. PLoS One. 2011;6(10):e26498. 10.​1371/​journal.​pone.​0026498.CrossRefPubMedPubMedCentral
48.
Sas KM, Kayampilly P, Byun J, et al. Tissue-specific metabolic reprogramming drives nutrient flux in diabetic complications. JCI Insight. 2016;1(15):e86976.CrossRefPubMedPubMedCentral
49.
Hernández C, Simó-Servat A, Bogdanov P, et al. Diabetic retinopathy: new therapeutic perspectives based on pathogenic mechanisms. J Endocrinol Investig. 2017). ePub ahead of print; doi:10.​1007/​s40618-017-0648-4.
50.
Campos EJ, Campos A, Martins J, Ambrósio AF. Opening eyes to nanomedicine: where we are, challenges and expectations on nanotherapy for diabetic retinopathy. Nanomedicine. 2017;13(6):2101–13.CrossRefPubMed
51.
Schram MT, Chaturvedi N, Schalkwijk CG, et al. Diabetologia. 2005;48:370–8.CrossRefPubMed
52.
Vujosevic S, Micera A, Bini S, Berton M, Esposito G, Midena E. Aqueous humor biomarkers of Müller cell activation in diabetic eyes. Invest Ophthalmol Vis Sci. 2015;56:3913–8.CrossRefPubMed
53.
Frimmel S, Zandi S, Sun D, et al. Molecular imaging of retinal endothelial injury in diabetic animals. Journal of Ophthalmic & Vision Research. 2017;12(2):175–82.
54.
Carrasco E, Hernández C, Miralles A, Huguet P, Farrés J, Simó R. Lower somatostatin expression is an early event in diabetic retinopathy and is associated with retinal neurodegeneration. Diabetes Care. 2007;30(100):2902–8.CrossRefPubMed
55.
Hölscher C. Potential role of glucagon-like peptide (GLP-1) in neuroprotection. CNS Drugs. 2012;26:871–82.CrossRefPubMed
56.
Zhang Y, Zhang J, Wang Q, Lei X, Chu Q, Xu GT, Ye W. Intravitreal injection of Exendin-4 analogue protects retinal cells in early diabetic rats. Invest Ophthalmol Vis Sci. 2011;52(1):278–85.CrossRefPubMed
57.
Hernández C, Bogdanov P, Corraliza L, García-Ramírez M, Solà-Adell C, Arranz JA, Arroba AI, Valverde A, Simó R. Topical administration of GLP-1 receptor agonists revents retinal neurodegeneration in experimental diabetes. Diabetes. 2016;65:172–87.PubMed
58.
Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, et al. LEADER steering committee, LEADER trial investigators. N Engl J Med. 2016;375(4):311–22.CrossRefPubMedPubMedCentral
59.
Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, et al. SUSTAIN-6 investigators. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375:1834–44.CrossRefPubMed
60.
Federici TJ. The non-antibiotic properties of tetracyclines: clinical potential in ophthalmic disease. Pharmacol Res. 2011;64:614–23.CrossRefPubMed
61.
Scott IU, Jackson GR, Quillen DA, Klein R, Liao J, Gardner TW. Effect of Doxycycline vs placebo on retinal function and diabetic retinopathy progression in mild to moderate nonproliferative diabetic RetinopathyA randomized proof-of-concept clinical trial. JAMA Ophthalmol. 2014;132(9):1137–42.CrossRefPubMed
62.
Stahel M, Becker M, Graf N, Michaels S. Systemic interleukin 1β inhibition in proliferative diabetic retinopathy: a prospective open-label study using Canakinumab. Retina. 2016;36(2):385–91.CrossRefPubMedPubMedCentral
63.
Behl Y, Krothapalli P, Desta T, Roy S, Graves DT. FOXO1 plays an important role in enhanced microvascular cell apoptosis and micovascular cell loss in type 1 and type 2 diabetic rats. Diabetes. 2009;58:917–25.CrossRefPubMedPubMedCentral