Horm Metab Res 2024; 56(05): 341-349
DOI: 10.1055/a-2246-2900
Review

Glucocorticoid-Induced Myopathy: Typology, Pathogenesis, Diagnosis, and Treatment

Mengmeng Wu
1   Department of Nephrology, Xuzhou Medical University Affiliated Hospital, Xuzhou, China
2   Graduate School, Xuzhou Medical University, Xuzhou, China
,
Caixia Liu
1   Department of Nephrology, Xuzhou Medical University Affiliated Hospital, Xuzhou, China
,
Dong Sun
1   Department of Nephrology, Xuzhou Medical University Affiliated Hospital, Xuzhou, China
3   Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, China
› Author Affiliations

Abstract

Glucocorticoid-induced myopathy is a non-inflammatory toxic myopathy typified by proximal muscle weakness, muscle atrophy, fatigue, and easy fatigability. These vague symptoms coupled with underlying disorders may mask the signs of glucocorticoid-induced myopathy, leading to an underestimation of the disease’s impact. This review briefly summarizes the classification, pathogenesis, and treatment options for glucocorticoid-induced muscle wasting. Additionally, we discuss current diagnostic measures in clinical research and routine care used for diagnosing and monitoring glucocorticoid-induced myopathy, which includes gait speed tests, muscle strength tests, hematologic tests, bioelectrical impedance analysis (BIA), dual-energy X-ray absorptiometry (DXA), computed tomography (CT), magnetic resonance imaging (MRI), electromyography, quantitative muscle ultrasound, histological examination, and genetic analysis. Continuous monitoring of patients receiving glucocorticoid therapy plays an important role in enabling early detection of glucocorticoid-induced myopathy, allowing physicians to modify treatment plans before significant clinical weakness arises.



Publication History

Received: 12 July 2023

Accepted after revision: 15 January 2024

Accepted Manuscript online:
15 January 2024

Article published online:
04 March 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Schiaffino S, Dyar KA, Ciciliot S. et al. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J 2013; 280: 4294-4314
  • 2 Hoffman EP, Nader GA. Balancing muscle hypertrophy and atrophy. Nat Med 2004; 10: 584-585
  • 3 Schakman O, Gilson H, Thissen JP. Mechanisms of glucocorticoid-induced myopathy. J Endocrinol 2008; 197: 1-10
  • 4 Cushing H. The basophil adenomas of the pituitary body and their clinical manifestations (pituitary basophilism). Obes Res 1932; 2: 486-508
  • 5 Minetto MA, Lanfranco F, Motta G. et al. Steroid myopathy: some unresolved issues. J Endocrinol Invest 2011; 34: 370-375
  • 6 Covar RA, Leung DYM, McCormick D. et al. Risk factors associated with glucocorticoid-induced adverse effects in children with severe asthma. J Allergy Clin Immunol 2000; 106: 651-659
  • 7 Haran M, Schattner A, Kozak N. et al. Acute steroid myopathy: a highly overlooked entity. QJM 2018; 111: 307-311
  • 8 Schakman O, Kalista S, Barbé C. et al. Glucocorticoid-induced skeletal muscle atrophy. Int J Biochem Cell Biol 2013; 45: 2163-2172
  • 9 Gupta A, Gupta Y. Glucocorticoid-induced myopathy: pathophysiology, diagnosis, and treatment. Indian J Endocrinol Metab 2013; 17: 913
  • 10 Pereira RMR, Freire De Carvalho J. Glucocorticoid-induced myopathy. Joint Bone Spine 2011; 78: 41-44
  • 11 Naim MY, Reed AM. Enzyme elevation in patients with juvenile dermatomyositis and steroid myopathy. J Rheumatol 2006; 33: 1392-1394
  • 12 Batchelor TT, Taylor LP, Thaler HT. et al. Steroid myopathy in cancer patients. Neurology 1997; 48: 1234-1238
  • 13 Horak HA, Pourmand R. Endocrine myopathies. Neurol Clin 2000; 18: 203-213
  • 14 Guis S, Mattei JP, Liote F. Drug-induced and toxic myopathies. Best Pract Res Clin Rheumatol 2003; 17: 877-907
  • 15 Adhikary S, Kothari P, Choudhary D. et al. Glucocorticoid aggravates bone micro-architecture deterioration and skeletal muscle atrophy in mice fed on high-fat diet. Steroids 2019; 149: 108416
  • 16 Perrot S, Le Jeunne C. Steroid-induced myopathy. Presse Med 2012; 41: 422-426
  • 17 Schakman O, Gilson H, Kalista S. et al. Mechanisms of muscle atrophy induced by glucocorticoids. Horm Res Paediatr 2009; 72: 36-41
  • 18 Schakman O, Kalista S, Bertrand L. et al. Role of akt/gsk-3β/β-catenin transduction pathway in the muscle anti-atrophy action of insulin-like growth factor-i in glucocorticoid-treated rats. Endocrinology 2008; 149: 3900-3908
  • 19 Bodine SC, Latres E, Baumhueter S. et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 2001; 294: 1704-1708
  • 20 Hasselgren PO, Fischer JE. Muscle cachexia: current concepts of intracellular mechanisms and molecular regulation. Ann Surg 2001; 233: 9-17
  • 21 Amirouche A, Durieux A, Banzet S. et al. Down-regulation of akt/mammalian target of rapamycin signaling pathway in response to myostatin overexpression in skeletal muscle. Endocrinology 2009; 150: 286-294
  • 22 van Balkom RH, van der Heijden HF, van Herwaarden CL. et al. Corticosteroid-induced myopathy of the respiratory muscles. Neth J Med 1994; 45: 114-122
  • 23 Marzuca-Nassr GN, SanMartin-Calisto Y, Guerra-Vega P. et al. Skeletal muscle aging atrophy: assessment and exercise-based treatment. Adv Exp Med Biol 2020; 1260: 123-158
  • 24 Levin OS, Polunina AG, Demyanova MA. et al. Steroid myopathy in patients with chronic respiratory diseases. J Neurol Sci 2014; 338: 96-101
  • 25 Cruz-Jentoft AJ, Baeyens JP, Bauer JM. et al. Sarcopenia: european consensus on definition and diagnosis: report of the european working group on sarcopenia in older people. Age Ageing 2010; 39: 412-423
  • 26 Bohannon RW. Measuring knee extensor muscle strength. Am J Phys Med Rehabil 2001; 80: 13-18
  • 27 Mohamed-Hussein AAR, Makhlouf HA, Selim ZI. et al. Association between hand grip strength with weaning and intensive care outcomes in copd patients: a pilot study. Clin Respir J 2018; 12: 2475-2479
  • 28 Cottereau G, Dres M, Avenel A. et al. Handgrip strength predicts difficult weaning but not extubation failure in mechanically ventilated subjects. Respir Care 2015; 60: 1097-1104
  • 29 Syddall H, Cooper C, Martin F. et al. Is grip strength a useful single marker of frailty?. Age Ageing 2003; 32: 650-656
  • 30 Massy-Westropp NM, Gill TK, Taylor AW. et al. Hand grip strength: age and gender stratified normative data in a population-based study. BMC Res Notes 2011; 4: 127
  • 31 Vogel F, Braun LT, Rubinstein G. et al. Persisting muscle dysfunction in cushing’s syndrome despite biochemical remission. J Clin Endocrinol Metab 2020; 105: e4490-e4498
  • 32 Bragança RD, Ravetti CG, Barreto L. et al. Use of handgrip dynamometry for diagnosis and prognosis assessment of intensive care unit acquired weakness: a prospective study. Heart Lung 2019; 48: 532-537
  • 33 Minetto MA, Botter A, Lanfranco F. et al. Muscle fiber conduction slowing and decreased levels of circulating muscle proteins after short-term dexamethasone administration in healthy subjects. J Clin Endocrinol Metab 2010; 95: 1663-1671
  • 34 Khaleeli AA, Edwards RH, Gohil K. et al. Corticosteroid myopathy: a clinical and pathological study. Clin Endocrinol (Oxf) 1983; 18: 155-166
  • 35 Minetto MA, D Angelo V, Arvat E et al. Diagnostic work-up in steroid myopathy. Endocrine 2018; 60: 219-223
  • 36 Offord NJ, Witham MD. The emergence of sarcopenia as an important entity in older people. Clin Med (Lond) 2017; 17: 363-366
  • 37 Mattsson S, Thomas BJ. Development of methods for body composition studies. Phys Med Biol 2006; 51: R203-R228
  • 38 Lukaski HC. Soft tissue composition and bone mineral status: evaluation by dual-energy x-ray absorptiometry. J Nutr 1993; 123: 438-443
  • 39 Juras V, Mlynarik V, Szomolanyi P. et al. Magnetic resonance imaging of the musculoskeletal system at 7t. Top Magn Reson Imag 2019; 28: 125-135
  • 40 Cawthon PM. Assessment of lean mass and physical performance in sarcopenia. J Clin Densitom 2015; 18: 467-471
  • 41 Abellan VKG. Epidemiology and consequences of sarcopenia. J Nutr Health Aging 2009; 13: 708-712
  • 42 Laurent MR, Goemaere S, Verroken C. et al. Prevention and treatment of glucocorticoid-induced osteoporosis in adults: consensus recommendations from the Belgian bone club. Front Endocrinol (Lausanne) 2022; 13: 908727
  • 43 Shen W, Punyanitya M, Wang Z. et al. Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image. J Appl Physiol (1985) 2004; 97: 2333-2338
  • 44 Engelke K, Museyko O, Wang L. et al. Quantitative analysis of skeletal muscle by computed tomography imaging—state of the art. J Orthop Translat 2018; 15: 91-103
  • 45 Yoshida K, Matsuoka T, Kobatake Y. et al. Quantitative assessment of muscle mass and gene expression analysis in dogs with glucocorticoid-induced muscle atrophy. J Vet Med Sci 2022; 84: 275-281
  • 46 Amini B, Boyle SP, Boutin RD. et al. Approaches to assessment of muscle mass and myosteatosis on computed tomography: a systematic review. J Gerontol A Biol Sci Med Sci 2019; 74: 1671-1678
  • 47 Nawata T, Kubo M, Nomura T. et al. Change in muscle volume after steroid therapy in patients with myositis assessed using cross-sectional computed tomography. BMC Musculoskelet Disord 2018; 19: 93
  • 48 Delivanis DA, Iniguez-Ariza NM, Zeb MH. et al. Impact of hypercortisolism on skeletal muscle mass and adipose tissue mass in patients with adrenal adenomas. Clin Endocrinol (Oxf) 2018; 88: 209-216
  • 49 Hosono O, Yoshikawa N, Shimizu N. et al. Quantitative analysis of skeletal muscle mass in patients with rheumatic diseases under glucocorticoid therapy – comparison among bioelectrical impedance analysis, computed tomography, and magnetic resonance imaging. Mod Rheumatol 2014; 25: 257-263
  • 50 Prado CMM, Heymsfield SB. Lean tissue imaging. Parenter Enteral Nutr 2014; 38: 940-953
  • 51 Wokke BH, Bos C, Reijnierse M. et al. Comparison of dixon and t1-weighted MR methods to assess the degree of fat infiltration in duchenne muscular dystrophy patients. J Magn Reson Imaging 2013; 38: 619-624
  • 52 Morrow JM, Sinclair CDJ, Fischmann A. et al. Mri biomarker assessment of neuromuscular disease progression: a prospective observational cohort study. Lancet Neurol 2016; 15: 65-77
  • 53 Alizai H, Chang G, Regatte R. Mri of the musculoskeletal system: advanced applications using high and ultrahigh field MRI. Semin Musculoskelet Radiol 2015; 19: 363-374
  • 54 Parida GK, Roy SG, Kumar R. Fdg-pet/ct in skeletal muscle: pitfalls and pathologies. Semin Nucl Med 2017; 47: 362-372
  • 55 Sproule DM, Punyanitya M, Shen W. et al. Muscle volume estimation by magnetic resonance imaging in spinal muscular atrophy. J Child Neurol 2011; 26: 309-317
  • 56 Wokke BH, van den Bergen JC, Versluis MJ. et al. Quantitative MRI and strength measurements in the assessment of muscle quality in duchenne muscular dystrophy. Neuromuscul Disord 2014; 24: 409-416
  • 57 Worsley PR, Kitsell F, Samuel D. et al. Validity of measuring distal vastus medialis muscle using rehabilitative ultrasound imaging versus magnetic resonance imaging. Man Ther 2014; 19: 259-263
  • 58 Juul-Kristensen B, Bojsen-Møller F, Holst E. et al. Comparison of muscle sizes and moment arms of two rotator cuff muscles measured by ultrasonography and magnetic resonance imaging. Eur J Ultrasound 2000; 11: 161-173
  • 59 Minetto MA, Lanfranco F, Botter A. et al. Do muscle fiber conduction slowing and decreased levels of circulating muscle proteins represent sensitive markers of steroid myopathy? A pilot study in Cushing’s disease. Eur J Endocrinol 2011; 164: 985-993
  • 60 Blijham PJ, ter Laak HJ, Schelhaas HJ. et al. Relation between muscle fiber conduction velocity and fiber size in neuromuscular disorders. J Appl Physiol (1985) 2006; 100: 1837-1841
  • 61 Wijntjes J, Alfen N. Muscle ultrasound: present state and future opportunities. Muscle Nerve 2021; 63: 455-466
  • 62 Pillen S, Arts IMP, Zwarts MJ. Muscle ultrasound in neuromuscular disorders. Muscle Nerve 2008; 37: 679-693
  • 63 Minetto MA, Caresio C, Salvi M. et al. Ultrasound-based detection of glucocorticoid-induced impairments of muscle mass and structure in Cushing’s disease. J Endocrinol Invest 2019; 42: 757-768
  • 64 Pillen S, Boon A, Van Alfen N. Muscle ultrasound. Handb Clin Neurol 2016; 136: 843-853
  • 65 Adler RS, Garofalo G. Ultrasound in the evaluation of the inflammatory myopathies. Curr Rheumatol Rep 2009; 11: 302-308
  • 66 Albayda J, van Alfen N. Diagnostic value of muscle ultrasound for myopathies and myositis. Curr Rheumatol Rep 2020; 22: 82
  • 67 van Alfen N, Gijsbertse K, de Korte CL. How useful is muscle ultrasound in the diagnostic workup of neuromuscular diseases?. Curr Opin Neurol 2018; 31: 568-574
  • 68 Simon NG, Noto YI, Zaidman CM. Skeletal muscle imaging in neuromuscular disease. J Clin Neurosci 2016; 33: 1-10
  • 69 Minetto MA, Caresio C, D’Angelo V. et al. Diagnostic evaluation in steroid-induced myopathy: case report suggesting clinical utility of quantitative muscle ultrasonography. Endocr Res 2018; 43: 235-245
  • 70 Martucci MG, McIlduff CE, Shin C. et al. Quantitative ultrasound of muscle can detect corticosteroid effects. Clin Neurophysiol 2019; 130: 1460-1464
  • 71 Simon NG. A new diagnostic tool for the detection of steroid myopathy. Clin Neurophysiol 2019; 130: 1407-1408
  • 72 Pellegrino MA, D’Antona G, Bortolotto S. et al. Clenbuterol antagonizes glucocorticoid-induced atrophy and fibre type transformation in mice. Exp Physiol 2004; 89: 89-100
  • 73 Polla B. Respiratory muscle fibres: specialisation and plasticity. Thorax 2004; 5 9 808-817
  • 74 Minetto MA, Qaisar R, Agoni V. et al. Quantitative and qualitative adaptations of muscle fibers to glucocorticoids. Muscle Nerve 2015; 52: 631-639
  • 75 Hu Y, Lu C, Lin H. Concurrence of osteonecrosis and steroid myopathy secondary to oral steroid therapy in a patient with abcb1 gene polymorphisms: a case report. Front Endocrinol (Lausanne) 2022; 13: 1016687
  • 76 Rahman FA, Krause MP. Pai-1, the plasminogen system, and skeletal muscle. Int J Mol Sci 2020; 21: 7066
  • 77 Lee S, Yoo J, Kang Y. Integrative analyses of genes related to femoral head osteonecrosis: an umbrella review of systematic reviews and meta-analyses of observational studies. J Orthop Surg Res 2022; 17 182
  • 78 Ngo-Huang A, Yadav R, Bansal S. et al. An exploratory study on physical function in stem cell transplant patients undergoing corticosteroid treatment for acute graft-versus-host-disease. Am J Phys Med Rehabil 2021; 100: 402-406
  • 79 Perrot S, Le Jeunne C. Atteinte musculaire et glucocorticoïdes. La Presse Médicale 2012; 41: 422-426
  • 80 Kanda F, Okuda S, Matsushita T. et al. Steroid myopathy: pathogenesis and effects of growth hormone and insulin-like growth factor-1 administration. Horm Res 2001; 56: 24-28
  • 81 Menezes LG, Sobreira C, Neder L. et al. Creatine supplementation attenuates corticosteroid-induced muscle wasting and impairment of exercise performance in rats. J Appl Physiol (1985) 2007; 102: 698-703
  • 82 Barel M, Perez OAB, Giozzet VA. et al. Exercise training prevents hyperinsulinemia, muscular glycogen loss and muscle atrophy induced by dexamethasone treatment. Eur J Appl Physiol 2010; 108: 999-1007
  • 83 Uchikawa K, Takahashi H, Hase K. et al. Strenuous exercise-induced alterations of muscle fiber cross-sectional area and fiber-type distribution in steroid myopathy rats. Am J Phys Med Rehabil 2008; 87: 126-133