Skip to main content
Top

10-26-2018 | PCSK9 inhibitors | Review | Article

Inhibiting PCSK9 — biology beyond LDL control

Journal: Nature Reviews Endocrinology

Authors: Robert M. Stoekenbroek, Gilles Lambert, Bertrand Cariou, G. Kees Hovingh

Publisher: Nature Publishing Group UK

Abstract

Clinical trials have unequivocally shown that inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) efficaciously and safely prevents cardiovascular events by lowering levels of LDL cholesterol. PCSK9 in the circulation is derived mainly from the liver, but the protein is also expressed in the pancreas, the kidney, the intestine and the central nervous system. Although PCSK9 modulates cholesterol metabolism by regulating LDL receptor expression in the liver, in vitro and in vivo studies have suggested that PCSK9 is involved in various other physiological processes. Although therapeutic PCSK9 inhibition could theoretically have undesired effects by interfering with these non-cholesterol-related processes, studies of individuals with genetically determined reduced PCSK9 function and clinical trials of PCSK9 inhibitors have not revealed clinically meaningful adverse consequences of almost completely eradicating PCSK9 from the circulation. The clinical implications of PCSK9 functions beyond lipid metabolism in terms of wanted or unwanted effects of therapeutic PCSK9 inhibition therefore appear to be limited. The objective of this Review is to describe the physiological role of PCSK9 beyond the LDL receptor to provide a rational basis for monitoring the effects of PCSK9 inhibition as these drugs gain traction in the clinic.
Literature
1.
Abifadel, M. et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 34, 154–156 (2003).PubMed
2.
Cohen, J. et al. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat. Genet. 37, 161–165 (2005).PubMed
3.
Cohen, J. C., Boerwinkle, E., Mosley Jr, T. H. & Hobbs, H. H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 354, 1264–1272 (2006).PubMed
4.
Stein, E. A. et al. Effect of a monoclonal antibody to PCSK9 on LDL cholesterol. N. Engl. J. Med. 366, 1108–1118 (2012).PubMed
5.
Zhang, X.-L. et al. Safety and efficacy of anti-PCSK9 antibodies: a meta-analysis of 25 randomized, controlled trials. BMC Med. 13, 123 (2015).PubMedPubMedCentral
6.
Navarese, E. et al. Effects of proprotein convertase subtilisin/kexin type 9 antibodies in adults with hypercholesterolemia: a systematic review and meta-analysis. Ann. Intern. Med. 163, 40–51 (2015).PubMed
7.
Steg, P. G. in Evaluation of cardiovascular outcomes after an acute coronary syndrome during treatment with alirocumab — ODYSSEY outcomes. Presented at American College of Cardiology Scientific Sessions 2018 in Orlando, USA (10 Mar 2018).
8.
Sabatine, M. S. et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med. 376, 1713–1722 (2017).PubMed
9.
Fitzgerald, K. et al. A highly durable RNAi therapeutic inhibitor of PCSK9. N. Engl. J. Med. 376, 41–51 (2017).PubMed
10.
Ray, K. K. et al. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N. Engl. J. Med. 376, 1430–1440 (2017).PubMed
11.
Dias, C. S. et al. Effects of AMG 145 on low-density lipoprotein cholesterol levels: results from 2 randomized, double-blind, placebo-controlled, ascending-dose phase 1 studies in healthy volunteers and hypercholesterolemic subjects on statins. J. Am. Coll. Cardiol. 60, 1888–1898 (2012).PubMed
12.
US Department of Health and Human Services. Repatha (evolocumab) injection. FDA.gov https://​www.​accessdata.​fda.​gov/​drugsatfda_​docs/​nda/​2015/​125522Orig1s000T​OC.​cfm (2015).
13.
US Department of Health and Human Services. Praluent alirocumab. FDA.gov https://​www.​accessdata.​fda.​gov/​drugsatfda_​docs/​nda/​2015/​125559Orig1s000T​OC.​cfm (2015).
14.
Lambert, G., Sjouke, B., Choque, B., Kastelein, J. J. P. & Hovingh, G. K. The PCSK9 decade. J. Lipid Res. 53, 2515–2524 (2012).PubMedPubMedCentral
15.
Seidah, N. G. & Prat, A. The biology and therapeutic targeting of the proprotein convertases. Nat. Rev. Drug Discov. 11, 367–383 (2012).PubMed
16.
Poirier, S. et al. Dissection of the endogenous cellular pathways of PCSK9-induced low density lipoprotein receptor degradation: evidence for an intracellular route. J. Biol. Chem. 284, 28856–28864 (2009).PubMedPubMedCentral
17.
Poirier, S., Mamarbachi, M., Chen, W. T., Lee, A. S. & Mayer, G. GRP94 regulates circulating cholesterol levels through blockade of PCSK9-induced LDLR degradation. Cell Rep. 13, 2064–2071 (2015).PubMed
18.
Ray, K. K. et al. Effect of an siRNA therapeutic targeting PCSK9 on atherogenic lipoproteins: pre-specified secondary end points in ORION 1. Circulation https://​doi.​org/​10.​1161/​CIRCULATIONAHA.​118.​034710 (2018).CrossRefPubMed
19.
Seidah, N. G., Awan, Z., Chrétien, M. & Mbikay, M. PCSK9: a key modulator of cardiovascular health. Circ. Res. 114, 1022–1036 (2014).PubMed
20.
Roth, E. M., McKenney, J. M., Hanotin, C., Asset, G. & Stein, E. A. Atorvastatin with or without an antibody to PCSK9 in primary hypercholesterolemia. N. Engl. J. Med. 367, 1891–1900 (2012).PubMed
21.
Sullivan, D. et al. Effect of a monoclonal antibody to PCSK9 on low-density lipoprotein cholesterol levels in statin-intolerant patients: the GAUSS randomized trial. JAMA 308, 2497–2506 (2012).PubMed
22.
Raal, F. et al. Low-density lipoprotein cholesterol-lowering effects of AMG 145, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease in patients with heterozygous familial hypercholesterolemia: the reduction of LDL-C with PCSK9 inhibition in heterozygous familial hypercholesterolemia disorder (RUTHERFORD) randomized trial. Circulation 126, 2408–2417 (2012).PubMed
23.
McKenney, J. M. et al. Safety and efficacy of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease, SAR236553/REGN727, in patients with primary hypercholesterolemia receiving ongoing stable atorvastatin therapy. J. Am. Coll. Cardiol. 59, 2344–2353 (2012).PubMed
24.
Le May, C. et al. Proprotein convertase subtilisin kexin type 9 null mice are protected from postprandial triglyceridemia. Arterioscler. Thromb. Vasc. Biol. 29, 684–690 (2009).PubMed
25.
Lambert, G. et al. Fasting induces hyperlipidemia in mice overexpressing proprotein convertase subtilisin kexin type 9: lack of modulation of very-low-density lipoprotein hepatic output by the low-density lipoprotein receptor. Endocrinology 147, 4985–4995 (2006).PubMed
26.
Herbert, B. et al. Increased secretion of lipoproteins in transgenic mice expressing human D374Y PCSK9 under physiological genetic control. Arterioscler. Thromb. Vasc. Biol. 30, 1333–1339 (2010).PubMed
27.
Reyes-Soffer, G. et al. Effects of PCSK9 inhibition with alirocumab on lipoprotein metabolism in healthy humans. Circulation 135, 352–362 (2017).PubMedPubMedCentral
28.
Ouguerram, K. et al. Apolipoprotein B100 metabolism in autosomal-dominant hypercholesterolemia related to mutations in PCSK9. Arterioscler. Thromb. Vasc. Biol. 24, 1448–1453 (2004).PubMed
29.
Lambert, G. et al. The complexity of lipoprotein (a) lowering by PCSK9 monoclonal antibodies. Clin. Sci. 131, 261–268 (2017).PubMed
30.
Kronenberg, F. & Utermann, G. Lipoprotein(a): resurrected by genetics. J. Intern. Med. 273, 6–30 (2013).PubMed
31.
Tsimikas, S. et al. NHLBI Working Group recommendations to reduce lipoprotein(a)-mediated risk of cardiovascular disease and aortic stenosis. J. Am. Coll. Cardiol. 71, 177–192 (2018).PubMedPubMedCentral
32.
Tsimikas, S. A test in context: lipoprotein(a): diagnosis, prognosis, controversies, and emerging therapies. J. Am. Coll. Cardiol. 69, 692–711 (2017).PubMed
33.
Yu, B. et al. Lipoprotein(a) induces human aortic valve interstitial cell calcification. JACC Basic Transl Sci. 2, 358–371 (2017).PubMedPubMedCentral
34.
Raal, F. J. et al. PCSK9 inhibition-mediated reduction in Lp(a) with evolocumab: an analysis of 10 clinical trials and the LDL receptor’s role. J. Lipid Res. 57, 1086–1096 (2016).PubMedPubMedCentral
35.
Ference, B. A. et al. Reduction of low density lipoprotein-cholesterol and cardiovascular events with proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors and statins: an analysis of FOURIER, SPIRE, and the Cholesterol Treatment Trialists Collaboration. Eur. Heart J. 39, 2540–2545 (2018).PubMed
36.
Gaudet, D. et al. Effect of alirocumab, a monoclonal proprotein convertase subtilisin/kexin 9 antibody, on lipoprotein(a) concentrations (a pooled analysis of 150 mg every two weeks dosing from phase 2 trials). Am. J. Cardiol. 114, 711–715 (2014).PubMed
37.
Edmiston, J. B. et al. Discordant response of low-density lipoprotein cholesterol and lipoprotein(a) levels to monoclonal antibodies targeting proprotein convertase subtilisin/kexin type 9. J. Clin. Lipidol. 11, 667–673 (2017).PubMed
38.
Raal, F. J. et al. Reduction in lipoprotein(a) with PCSK9 monoclonal antibody evolocumab (AMG 145): a pooled analysis of more than 1,300 patients in 4 phase II trials. J. Am. Coll. Cardiol. 63, 1278–1288 (2014).PubMed
39.
Khera, A. V. et al. Lipoprotein(a) concentrations, rosuvastatin therapy, and residual vascular risk: an analysis from the JUPITER trial (justification for the use of statins in prevention: an intervention trial evaluating rosuvastatin). Circulation 129, 635–642 (2014).PubMed
40.
Arsenault, B. J. et al. Effect of atorvastatin, cholesterol ester transfer protein inhibition, and diabetes mellitus on circulating proprotein subtilisin kexin type 9 and lipoprotein(a) levels in patients at high cardiovascular risk. J. Clin. Lipidol. 12, 130–136 (2018).PubMed
41.
Stein, E. A. et al. Effect of the proprotein convertase subtilisin/kexin 9 monoclonal antibody, AMG 145, in homozygous familial hypercholesterolemia. Circulation 128, 2113–2120 (2013).PubMed
42.
Thedrez, A. et al. Proprotein convertase subtilisin kexin type 9 inhibition for autosomal recessive hypercholesterolemia—brief report. Arterioscler. Thromb. Vasc. Biol. 36, 1647–1650 (2016).PubMed
43.
Thedrez, A. et al. Homozygous familial hypercholesterolemia patients with identical mutations variably express the LDLR (low-density lipoprotein receptor): implications for the efficacy of evolocumab. Arterioscler. Thromb. Vasc. Biol. 38, 592–598 (2018).PubMed
44.
Romagnuolo, R. et al. Lipoprotein(a) catabolism is regulated by proprotein convertase subtilisin/kexin type 9 through the low density lipoprotein receptor. J. Biol. Chem. 290, 11649–11662 (2015).PubMedPubMedCentral
45.
Romagnuolo, R. et al. Roles of the low density lipoprotein receptor and related receptors in inhibition of lipoprotein(a) internalization by proprotein convertase subtilisin/kexin type 9. PLOS ONE 12, e0180869 (2017).PubMedPubMedCentral
46.
Sharma, M., Redpath, G. M., Williams, M. J. & McCormick, S. P. Recycling of apolipoprotein(a) after PlgRKT-mediated endocytosis of lipoprotein(a). Circ. Res. 120, 1091–1102 (2017).
47.
Villard, E. F. et al. PCSK9 modulates the secretion but not the cellular uptake of lipoprotein (a) ex vivo: an effect blunted by alirocumab. JACC Basic Transl Sci. 1, 419–427 (2016).PubMedPubMedCentral
48.
Kotani, K. & Banach, M. Lipoprotein(a) and inhibitors of proprotein convertase subtilisin/kexin type 9. J. Thorac. Dis. 9, E78–E82 (2017).PubMedPubMedCentral
49.
Rader, D. J., Cain, W., Zech, L. A., Usher, D. & Brewer, H. B. Jr Variation in lipoprotein(a) concentrations among individuals with the same apolipoprotein (a) isoform is determined by the rate of lipoprotein(a) production. J. Clin. Invest. 91, 443–447 (1993).PubMedPubMedCentral
50.
Croyal, M. et al. PCSK9 inhibition with alirocumab reduces lipoprotein(a) levels in non-human primates by lowering apolipoprotein(a) production rate. Clin. Sci. 132, 1075–1083 (2018).PubMed
51.
Watts, G. F. et al. Factorial effects of evolocumab and atorvastatin on lipoprotein metabolism. Circulation 135, 338–351 (2017).PubMed
52.
Jeong, H. J. et al. Sterol-dependent regulation of proprotein convertase subtilisin/kexin type 9 expression by sterol-regulatory element binding protein-2. J. Lipid Res. 49, 399–409 (2008).PubMed
53.
Dubuc, G. et al. Statins upregulate PCSK9, the gene encoding the proprotein convertase neural apoptosis-regulated convertase-1 implicated in familial hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 24, 1454–1459 (2004).PubMed
54.
Dong, B. et al. Strong induction of PCSK9 gene expression through HNF1alpha and SREBP2: mechanism for the resistance to LDL-cholesterol lowering effect of statins in dyslipidemic hamsters. J. Lipid Res. 51, 1486–1495 (2010).PubMedPubMedCentral
55.
Costet, P. et al. Hepatic PCSK9 expression is regulated by nutritional status via insulin and sterol regulatory element-binding protein 1c. J. Biol. Chem. 281, 6211–6218 (2006).PubMed
56.
Persson, L. et al. Circulating proprotein convertase subtilisin kexin type 9 has a diurnal rhythm synchronous with cholesterol synthesis and is reduced by fasting in humans. Arterioscler. Thromb. Vasc. Biol. 30, 2666–2672 (2010).PubMed
57.
Persson, L. et al. Endogenous estrogens lower plasma PCSK9 and LDL cholesterol but not Lp(a) or bile acid synthesis in women. Arterioscler. Thromb. Vasc. Biol. 32, 810–814 (2012).PubMed
58.
Ghosh, M., Galman, C., Rudling, M. & Angelin, B. Influence of physiological changes in endogenous estrogen on circulating PCSK9 and LDL cholesterol. J. Lipid Res. 56, 463–469 (2015).PubMedPubMedCentral
59.
Bonde, Y. et al. Thyroid hormone reduces PCSK9 and stimulates bile acid synthesis in humans. J. Lipid Res. 55, 2408–2415 (2014).PubMedPubMedCentral
60.
Cariou, B., Benoit, I. & Le May, C. Preserved adrenal function in fully PCSK9-deficient subject. Int. J. Cardiol. 176, 499–500 (2014).PubMed
61.
Blom, D. J. et al. Effects of evolocumab on vitamin E and steroid hormone levels: results from the 52-week, phase 3, double-blind, randomized, placebo-controlled DESCARTES study. Circ. Res. 117, 731–741 (2015).PubMed
62.
Illingworth, D. R., Kenny, T. A. & Orwoll, E. S. Adrenal function in heterozygous and homozygous hypobetalipoproteinemia. J. Clin. Endocrinol. Metab. 54, 27–33 (1982).PubMed
63.
Robinson, J. G. Statins and diabetes risk: how real is it and what are the mechanisms? Curr. Opin. Lipidol. 26, 228–235 (2015).PubMed
64.
Schmidt, A. F. et al. PCSK9 genetic variants and risk of type 2 diabetes: a mendelian randomisation study. Lancet Diabetes Endocrinol. 5, 97–105 (2017).PubMedPubMedCentral
65.
Ference, B. A. et al. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N. Engl. J. Med. 375, 2144–2153 (2016).PubMed
66.
Swerdlow, D. I. et al. HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials. Lancet 385, 351–361 (2015).PubMedPubMedCentral
67.
Besseling, J., Kastelein, J. J., Defesche, J. C., Hutten, B. A. & Hovingh, G. K. Association between familial hypercholesterolemia and prevalence of type 2 diabetes mellitus. JAMA 313, 1029–1036 (2015).PubMed
68.
Kruit, J. K., Brunham, L. R., Verchere, C. B. & Hayden, M. R. HDL and LDL cholesterol significantly influence beta-cell function in type 2 diabetes mellitus. Curr. Opin. Lipidol. 21, 178–185 (2010).PubMed
69.
Rutti, S. et al. Low- and high-density lipoproteins modulate function, apoptosis, and proliferation of primary human and murine pancreatic beta-cells. Endocrinology 150, 4521–4530 (2009).PubMed
70.
Mbikay, M. et al. PCSK9-deficient mice exhibit impaired glucose tolerance and pancreatic islet abnormalities. FEBS Lett. 584, 701–706 (2010).PubMed
71.
Grupping, A. Y. et al. Low density lipoprotein binding and uptake by human and rat islet beta cells. Endocrinology 138, 4064–4068 (1997).PubMed
72.
Cnop, M., Hannaert, J. C., Grupping, A. Y. & Pipeleers, D. G. Low density lipoprotein can cause death of islet beta-cells by its cellular uptake and oxidative modification. Endocrinology 143, 3449–3453 (2002).PubMed
73.
Roehrich, M.-E. et al. Insulin-secreting beta-cell dysfunction induced by human lipoproteins. J. Biol. Chem. 278, 18368–18375 (2003).PubMed
74.
Hao, M., Head, W. S., Gunawardana, S. C., Hasty, A. H. & Piston, D. W. Direct effect of cholesterol on insulin secretion: a novel mechanism for pancreatic beta-cell dysfunction. Diabetes 56, 2328–2338 (2007).PubMed
75.
Langhi, C. et al. PCSK9 is expressed in pancreatic δ-cells and does not alter insulin secretion. Biochem. Biophys. Res. Commun. 390, 1288–1293 (2009).PubMed
76.
Seidah, N. G. et al. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc. Natl Acad. Sci. USA 100, 928–933 (2003).PubMed
77.
Brunham, L. R. et al. Beta-cell ABCA1 influences insulin secretion, glucose homeostasis and response to thiazolidinedione treatment. Nat. Med. 13, 340–347 (2007).PubMed
78.
Baragetti, A. et al. PCSK9 deficiency results in increased ectopic fat accumulation in experimental models and in humans. Eur. J. Prev. Cardiol. 24, 1870–1877 (2017).PubMed
79.
Roubtsova, A. et al. Circulating proprotein convertase subtilisin/kexin 9 (PCSK9) regulates VLDLR protein and triglyceride accumulation in visceral adipose tissue. Arterioscler. Thromb. Vasc. Biol. 31, 785–791 (2011).PubMed
80.
Cariou, B. et al. Plasma PCSK9 concentrations during an oral fat load and after short term high-fat, high-fat high-protein and high-fructose diets. Nutr. Metab. 10, 4 (2013).
81.
Lakoski, S. G., Lagace, T. A., Cohen, J. C., Horton, J. D. & Hobbs, H. H. Genetic and metabolic determinants of plasma PCSK9 levels. J. Clin. Endocrinol. Metab. 94, 2537–2543 (2009).PubMedPubMedCentral
82.
Baass, A. et al. Plasma PCSK9 is associated with age, sex, and multiple metabolic markers in a population-based sample of children and adolescents. Clin. Chem. 55, 1637–1645 (2009).PubMed
83.
Levy, E. et al. PCSK9 plays a significant role in cholesterol homeostasis and lipid transport in intestinal epithelial cells. Atherosclerosis 227, 297–306 (2013).PubMed
84.
Zaid, A. et al. Proprotein convertase subtilisin/kexin type 9 (PCSK9): hepatocyte-specific low-density lipoprotein receptor degradation and critical role in mouse liver regeneration. Hepatology 48, 646–654 (2008).PubMed
85.
Le May, C. et al. Transintestinal cholesterol excretion is an active metabolic process modulated by PCSK9 and statin involving ABCB1. Arterioscler. Thromb. Vasc. Biol. 33, 1484–1493 (2013).PubMed
86.
Rashid, S. et al. Proprotein convertase subtilisin kexin type 9 promotes intestinal overproduction of triglyceride-rich apolipoprotein B lipoproteins through both low-density lipoprotein receptor-dependent and -independent mechanisms. Circulation 130, 431–441 (2014).PubMedPubMedCentral
87.
Reeskamp, L. F., Meessen, E. C. E. & Groen, A. K. Transintestinal cholesterol excretion in humans. Curr. Opin. Lipidol. 29, 10–17 (2018).PubMed
88.
Dugardin, C. et al. Retrograde cholesterol transport in the human Caco-2/TC7 cell line: a model to study trans-intestinal cholesterol excretion in atherogenic and diabetic dyslipidemia. Acta Diabetol. 54, 191–199 (2017).PubMed
89.
Ooi, T. C. et al. The effect of PCSK9 loss-of-function variants on the postprandial lipid and ApoB-lipoprotein response. J. Clin. Endocrinol. Metab. 102, 3452–3460 (2017).PubMed
90.
Boren, J., Matikainen, N., Adiels, M. & Taskinen, M.-R. Postprandial hypertriglyceridemia as a coronary risk factor. Clin. Chim. Acta 431, 131–142 (2014).PubMed
91.
Veilleux, A. et al. Intestinal lipid handling: evidence and implication of insulin signaling abnormalities in human obese subjects. Arterioscler. Thromb. Vasc. Biol. 34, 644–653 (2014).PubMed
92.
Grefhorst, A., McNutt, M. C., Lagace, T. A. & Horton, J. D. Plasma PCSK9 preferentially reduces liver LDL receptors in mice. J. Lipid Res. 49, 1303–1311 (2008).PubMedPubMedCentral
93.
Schmidt, R. J. et al. Secreted proprotein convertase subtilisin/kexin type 9 reduces both hepatic and extrahepatic low-density lipoprotein receptors in vivo. Biochem. Biophys. Res. Commun. 370, 634–640 (2008).PubMed
94.
Sharotri, V., Collier, D. M., Olson, D. R., Zhou, R. & Snyder, P. M. Regulation of epithelial sodium channel trafficking by proprotein convertase subtilisin/kexin type 9 (PCSK9). J. Biol. Chem. 287, 19266–19274 (2012).PubMedPubMedCentral
95.
Berger, J.-M. et al. PCSK9-deficiency does not alter blood pressure and sodium balance in mouse models of hypertension. Atherosclerosis 239, 252–259 (2015).PubMed
96.
Rogacev, K. S. et al. PCSK9 plasma concentrations are independent of GFR and do not predict cardiovascular events in patients with decreased GFR. PLOS ONE 11, e0146920 (2016).PubMedPubMedCentral
97.
Morena, M. et al. Plasma PCSK9 concentrations during the course of nondiabetic chronic kidney disease: relationship with glomerular filtration rate and lipid metabolism. J. Clin. Lipidol. 11, 87–93 (2017).PubMed
98.
Konarzewski, M. et al. Elevated circulating PCSK-9 concentration in renal failure patients is corrected by renal replacement therapy. Am. J. Nephrol. 40, 157–163 (2014).PubMed
99.
Haas, M. E. et al. The role of proprotein convertase subtilisin/kexin type 9 in nephrotic syndrome-associated hypercholesterolemia. Circulation 134, 61–72 (2016).PubMedPubMedCentral
100.
Poirier, S. et al. Implication of the proprotein convertase NARC-1/PCSK9 in the development of the nervous system. J. Neurochem. 98, 838–850 (2006).PubMed
101.
Rashid, S. et al. Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9. Proc. Natl Acad. Sci. USA 102, 5374–5379 (2005).PubMed
102.
An, D. et al. Identification of PCSK9 as a novel serum biomarker for the prenatal diagnosis of neural tube defects using iTRAQ quantitative proteomics. Sci. Rep. 5, 17559 (2015).PubMedPubMedCentral
103.
Rousselet, E. et al. PCSK9 reduces the protein levels of the LDL receptor in mouse brain during development and after ischemic stroke. J. Lipid Res. 52, 1383–1391 (2011).PubMedPubMedCentral
104.
Zimetti, F. et al. Increased PCSK9 cerebrospinal fluid concentrations in Alzheimer’s disease. J. Alzheimers. Dis. 55, 315–320 (2017).PubMed
105.
Courtemanche, H. et al. PCSK9 concentrations in cerebrospinal fluid are not specifically increased in Alzheimer’s disease. J. Alzheimers Dis. 62, 1519–1525 (2018).PubMed
106.
Bingham, B. et al. Proapoptotic effects of NARC 1 (=PCSK9), the gene encoding a novel serine proteinase. Cytometry A 69, 1123–1131 (2006).PubMed
107.
Wu, Q. et al. The dual behavior of PCSK9 in the regulation of apoptosis is crucial in Alzheimer’s disease progression (review). Biomed. Rep. 2, 167–171 (2014).PubMed
108.
Liu, M. et al. PCSK9 is not involved in the degradation of LDL receptors and BACE1 in the adult mouse brain. J. Lipid Res. 51, 2611–2618 (2010).PubMedPubMedCentral
109.
Benn, M., Nordestgaard, B. G., Frikke-Schmidt, R. & Tybjærg-Hansen, A. Low LDL cholesterol, PCSK9 and HMGCR genetic variation, and risk of Alzheimer’s disease and Parkinson’s disease: Mendelian randomisation study. BMJ 357, j1648 (2017).PubMedPubMedCentral
110.
Muldoon, M. F. et al. Effects of lovastatin on cognitive function and psychological well-being. Am. J. Med. 108, 538–546 (2000).PubMed
111.
US Department of Health and Human Services. Important safety label changes to cholesterol-lowering statin drugs. FDA.gov https://​www.​fda.​gov/​Drugs/​DrugSafety/​ucm293101.​htm (2012).
112.
Ott, B. R. et al. Do statins impair cognition? A systematic review and meta-analysis of randomized controlled trials. J. Gen. Intern. Med. 30, 348–358 (2015).PubMedPubMedCentral
113.
Everett, B. M., Mora, S., Glynn, R. J., MacFadyen, J. & Ridker, P. M. Safety profile of subjects treated to very low low-density lipoprotein cholesterol levels (<30 mg/dl) with rosuvastatin 20 mg daily (from JUPITER). Am. J. Cardiol. 114, 1682–1689 (2014).PubMed
114.
Collins, R. et al. Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet 388, 2532–2561 (2016).PubMed
115.
Giugliano, R. P. et al. Cognitive function in a randomized trial of evolocumab. N. Engl. J. Med. 377, 633–643 (2017).PubMed
116.
Khan, A. R. et al. Increased risk of adverse neurocognitive outcomes with proprotein convertase subtilisin-kexin type 9 inhibitors. Circ. Cardiovasc. Qual. Outcomes 10, e003153 (2017).PubMed
117.
Harvey, P. D. et al. No evidence of neurocognitive adverse events associated with alirocumab treatment in 3340 patients from 14 randomized phase 2 and 3 controlled trials: a meta-analysis of individual patient data. Eur. Heart J. 39, 374–381 (2018).PubMed
118.
Mefford, M. T. et al. PCSK9 variants, LDL-cholesterol, and neurocognitive impairment: reasons for geographic and racial differences in stroke (REGARDS) study. Circulation 137, 1260–1269 (2018).PubMed
119.
Zhao, Z. et al. Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote. Am. J. Hum. Genet. 79, 514–523 (2006).PubMedPubMedCentral
120.
Reynolds, C. A. et al. Analysis of lipid pathway genes indicates association of sequence variation near SREBF1/TOM1L2/ATPAF2 with dementia risk. Hum. Mol. Genet. 19, 2068–2078 (2010).PubMedPubMedCentral
121.
Shibata, N. et al. No genetic association between PCSK9 polymorphisms and Alzheimer’s disease and plasma cholesterol level in Japanese patients. Psychiatr. Genet. 15, 239 (2005).PubMed
122.
Filippatos, T. D., Christopoulou, E. C. & Elisaf, M. S. Pleiotropic effects of proprotein convertase subtilisin/kexin type 9 inhibitors? Curr. Opin. Lipidol. 29, 333–339 (2018).PubMed
123.
Ding, Z. et al. Cross-talk between LOX-1 and PCSK9 in vascular tissues. Cardiovasc. Res. 107, 556–567 (2015).PubMed
124.
Ilaria, G. et al. Local effects of human PCSK9 on the atherosclerotic lesion. J. Pathol. 238, 52–62 (2015).
125.
Tang, Z.-H. et al. New role of PCSK9 in atherosclerotic inflammation promotion involving the TLR4/NF-kappaB pathway. Atherosclerosis 262, 113–122 (2017).PubMed
126.
Yvan-Charvet, L. & Cariou, B. Poststatin era in atherosclerosis management: lessons from epidemiologic and genetic studies. Curr. Opin. Lipidol. 29, 246–258 (2018).PubMed
127.
Proto, J. D. et al. Hypercholesterolemia induces T cell expansion in humanized immune mice. J. Clin. Invest. 128, 2370–2375 (2018).PubMedPubMedCentral
128.
Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).
129.
Feingold, K. R., Moser, A. H., Shigenaga, J. K., Patzek, S. M. & Grunfeld, C. Inflammation stimulates the expression of PCSK9. Biochem. Biophys. Res. Commun. 374, 341–344 (2008).PubMedPubMedCentral
130.
Ruscica, M. et al. Suppressor of cytokine signaling-3 (SOCS-3) induces proprotein convertase subtilisin kexin type 9 (PCSK9) expression in hepatic HepG2 cell line. J. Biol. Chem. 291, 3508–3519 (2016).PubMed
131.
Shende, V. R. et al. Reduction of circulating PCSK9 and LDL-C levels by liver-specific knockdown of HNF1α in normolipidemic mice. J. Lipid Res. 56, 801–809 (2015).PubMedPubMedCentral
132.
Boyd, J. H. et al. Increased plasma PCSK9 levels are associated with reduced endotoxin clearance and the development of acute organ failures during sepsis. J. Innate Immun. 8, 211–220 (2016).PubMedPubMedCentral
133.
Le Bras, M. et al. Plasma PCSK9 is a late biomarker of severity in patients with severe trauma injury. J. Clin. Endocrinol. Metab. 98, E732–E736 (2013).PubMed
134.
Gencer, B. et al. Prognostic value of PCSK9 levels in patients with acute coronary syndromes. Eur. Heart J. 37, 546–553 (2016).PubMed
135.
Cariou, B. et al. Circulating PCSK9 levels in acute coronary syndrome: results from the PC-SCA-9 prospective study. Diabetes Metab. 43, 529–535 (2017).PubMed
136.
Li, S. et al. Association of plasma PCSK9 levels with white blood cell count and its subsets in patients with stable coronary artery disease. Atherosclerosis 234, 441–445 (2014).PubMed
137.
Sahebkar, A. et al. Effect of monoclonal antibodies to PCSK9 on high-sensitivity C-reactive protein levels: a meta-analysis of 16 randomized controlled treatment arms. Br. J. Clin. Pharmacol. 81, 1175–1190 (2016).PubMedPubMedCentral
138.
Giunzioni, I. et al. Local effects of human PCSK9 on the atherosclerotic lesion. J. Pathol. 238, 52–62 (2016).PubMed
139.
Ricci, C. et al. PCSK9 induces a pro-inflammatory response in macrophages. Sci. Rep. 8, 2267 (2018).PubMedPubMedCentral
140.
Tang, Z. et al. PCSK9 siRNA suppresses the inflammatory response induced by oxLDL through inhibition of NF-kappaB activation in THP-1-derived macrophages. Int. J. Mol. Med. 30, 931–938 (2012).PubMed
141.
Topchiy, E. et al. Lipopolysaccharide is cleared from the circulation by hepatocytes via the low density lipoprotein receptor. PLOS ONE 11, e0155030 (2016).PubMedPubMedCentral
142.
Dwivedi, D. J. et al. Differential expression of PCSK9 modulates infection, inflammation, and coagulation in a murine model of sepsis. Shock 46, 672–680 (2016).PubMed
143.
Walley, K. R. et al. PCSK9 is a critical regulator of the innate immune response and septic shock outcome. Sci. Transl Med. 6, 258ra143 (2014).PubMedPubMedCentral
144.
Berger, J.-M., Loza Valdes, A., Gromada, J., Anderson, N. & Horton, J. D. Inhibition of PCSK9 does not improve lipopolysaccharide-induced mortality in mice. J. Lipid Res. 58, 1661–1669 (2017).PubMedPubMedCentral
145.
Mazumdar, B., Banerjee, A., Meyer, K. & Ray, R. Hepatitis C virus E1 envelope glycoprotein interacts with apolipoproteins in facilitating entry into hepatocytes. Hepatology 54, 1149–1156 (2011).PubMedPubMedCentral
146.
Le, Q.-T., Blanchet, M., Seidah, N. G. & Labonte, P. Plasma membrane tetraspanin CD81 complexes with proprotein convertase subtilisin/kexin type 9 (PCSK9) and low density lipoprotein receptor (LDLR), and its levels are reduced by PCSK9. J. Biol. Chem. 290, 23385–23400 (2015).PubMedPubMedCentral
147.
Labonte, P. et al. PCSK9 impedes hepatitis C virus infection in vitro and modulates liver CD81 expression. Hepatology 50, 17–24 (2009).PubMed
148.
Ramanathan, A., Gusarova, V., Stahl, N., Gurnett-Bander, A. & Kyratsous, C. A. Alirocumab, a therapeutic human antibody to PCSK9, does not affect CD81 levels or hepatitis C virus entry and replication into hepatocytes. PLOS ONE 11, e0154498 (2016).PubMedPubMedCentral
149.
Dai, C.-Y. et al. Associations between hepatitis C viremia and low serum triglyceride and cholesterol levels: a community-based study. J. Hepatol. 49, 9–16 (2008).PubMed
150.
Gopal, K. et al. Correlation between beta-lipoprotein levels and outcome of hepatitis C treatment. Hepatology 44, 335–340 (2006).PubMed
151.
Bridge, S. H. et al. PCSK9, apolipoprotein E and lipoviral particles in chronic hepatitis C genotype 3: evidence for genotype-specific regulation of lipoprotein metabolism. J. Hepatol. 62, 763–770 (2015).PubMed
152.
Kohli, P. et al. HIV and hepatitis C-coinfected patients have lower low-density lipoprotein cholesterol despite higher proprotein convertase subtilisin kexin 9 (PCSK9): an apparent “PCSK9-lipid paradox”. J. Am. Heart Assoc. 5, e002683 (2016).PubMedPubMedCentral
153.
Boccara, F. et al. Impact of protease inhibitors on circulating PCSK9 levels in HIV-infected antiretroviral-naive patients from an ongoing prospective cohort. AIDS 31, 2367–2376 (2017).PubMed
154.
Schlegel, V. et al. Low PCSK9 levels are correlated with mortality in patients with end-stage liver disease. PLOS ONE 12, e0181540 (2017).PubMedPubMedCentral
155.
Mbikay, M., Mayne, J., Seidah, N. G. & Chretien, M. Of PCSK9, cholesterol homeostasis and parasitic infections: possible survival benefits of loss-of-function PCSK9 genetic polymorphisms. Med. Hypotheses 69, 1010–1017 (2007).PubMed
156.
Hooper, A. J., Marais, A. D., Tanyanyiwa, D. M. & Burnett, J. R. The C679X mutation in PCSK9 is present and lowers blood cholesterol in a Southern African population. Atherosclerosis 193, 445–448 (2007).PubMed
157.
Arama, C. et al. Malaria severity: possible influence of the E670G PCSK9 polymorphism: a preliminary case-control study in Malian children. PLOS ONE 13, e0192850 (2018).PubMedPubMedCentral
158.
Lan, H. et al. Proprotein convertase subtilisin/kexin type 9 (PCSK9) affects gene expression pathways beyond cholesterol metabolism in liver cells. J. Cell. Physiol. 224, 273–281 (2010).PubMed
159.
Lee, S. et al. Network analyses identify liver-specific targets for treating liver diseases. Mol. Syst. Biol. 13, 938 (2017).PubMedPubMedCentral
160.
Marimuthu, A. et al. SILAC-based quantitative proteomic analysis of gastric cancer secretome. Proteomics Clin. Appl. 7, 355–366 (2013).PubMedPubMedCentral
161.
Bhat, M. et al. Decreased PCSK9 expression in human hepatocellular carcinoma. BMC Gastroenterol. 15, 176 (2015).PubMedPubMedCentral
162.
Huang, J. et al. Tumor-induced hyperlipidemia contributes to tumor growth. Cell Rep. 15, 336–348 (2016).PubMedPubMedCentral
163.
Sun, X. et al. Proprotein convertase subtilisin/kexin type 9 deficiency reduces melanoma metastasis in liver. Neoplasia 14, 1122–1131 (2012).PubMedPubMedCentral
164.
Benn, M. et al. Low-density lipoprotein cholesterol levels, and risk of ischemic heart disease: 3 independent studies and meta-analyses. J. Am. Coll. Cardiol. 55, 2833–2842 (2010).PubMed
165.
Langsted, A., Nordestgaard, B. G., Benn, M., Tybjærg-Hansen, A. & Kamstrup, P. R. PCSK9 R46L loss-of-function mutation reduces lipoprotein(a), LDL cholesterol, and risk of aortic valve stenosis. J. Clin. Endocrinol. Metab. 101, 3281–3287 (2016).PubMed
166.
Fantus, D., Awan, Z., Seidah, N. G. & Genest, J. Aortic calcification: novel insights from familial hypercholesterolemia and potential role for the low-density lipoprotein receptor. Atherosclerosis 226, 9–15 (2013).PubMed
167.
Awan, Z. et al. Vascular calcifications in homozygote familial hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 28, 777–785 (2008).PubMed
168.
Cowell, S. J. et al. A randomized trial of intensive lipid-lowering therapy in calcific aortic stenosis. N. Engl. J. Med. 352, 2389–2397 (2005).PubMed
169.
Cariou, B. et al. PCSK9 dominant negative mutant results in increased LDL catabolic rate and familial hypobetalipoproteinemia. Arterioscler. Thromb. Vasc. Biol. 29, 2191–2197 (2009).PubMed

Be confident that your patient care is up to date

Medicine Matters is being incorporated into Springer Medicine, our new medical education platform. 

Alongside the news coverage and expert commentary you have come to expect from Medicine Matters diabetes, Springer Medicine's complimentary membership also provides access to articles from renowned journals and a broad range of Continuing Medical Education programs. Create your free account »