Skip to main content
main-content
Top

06-14-2018 | Other types of diabetes | Review | Article

Type 1 Diabetes in a Resource-Poor Setting: Malnutrition Related, Malnutrition Modified, or Just Diabetes?

Journal: Current Diabetes Reports

Authors: Shitaye Alemu Balcha, David I.W. Phillips, Elisabeth R. Trimble

Publisher: Springer US

share
SHARE

Abstract

Purpose of Review

Very little is known about the occurrence of type 1 diabetes (T1DM) in resource-poor countries and particularly in their rural hinterlands.

Recent Findings

Studies of the epidemiology of T1DM in Ethiopia and similar countries in sub-Saharan Africa show that the pattern of presenting disease differs substantially from that in the West. Typically, the peak age of onset of the disease is more than a decade later with a male excess and a low prevalence of indicators of islet-cell autoimmunity. It is also associated with markers of undernutrition.

Summary

These findings raise the question as to whether the principal form of T1DM seen in these resource-poor communities has a different pathogenesis. Whether the disease is a direct result of malnutrition or whether malnutrition may modify the expression of islet-cell autoimmunity is unclear. However, the poor prognosis in these settings underlines the urgent need for detailed clinical and epidemiological studies.
Literature
1.
• Bahendeka SK. Diabetes in sub-Saharan Africa: let us not forget type 1. Lancet Diabetes Endocrinol. 2017;5:575–7. Editorial for the Lancet commission on diabetes in sub-Saharan Africa. CrossRefPubMed
2.
•• Mbanya JC, Motala AA, Sobngwi E, Assah FK, Enoru ST. Diabetes in sub-Saharan Africa. Lancet. 2010;375(9733):2254–66. A general review of diabetes in sub-Saharan Africa. CrossRefPubMed
3.
• Gill GV, Mbanya JC, Ramaiya KL, Tesfaye S. A sub-Saharan African perspective of diabetes. Diabetologia. 2009;52(1):8–16. A review of the problems of diabetes in sub-Saharan Africa. CrossRefPubMed
4.
Dodge RE Jr, Demeke T. The epidemiology of infant malnutrition in Dabat. Ethiop Med J. 1970;8(2):53–72. PubMed
5.
• Alemu S, Dessie A, Seid E, Bard E, Lee PT, Trimble ER, et al. Insulin-requiring diabetes in rural Ethiopia: should we reopen the case for malnutrition-related diabetes? Diabetologia. 2009;52(9):1842–5. This study describes the epidemiology of type 1 diabetes in a rural Ethiopian population. CrossRefPubMed
6.
Habtu E, Gill G, Tesfaye S. Characteristics of insulin requiring diabetes in rural northern Ethiopia—a possible link with malnutrition? Ethiop Med J. 1999;37(4):263–7. PubMed
7.
Kalk WJ, Huddle KR, Raal FJ. The age of onset and sex distribution of insulin-dependent diabetes mellitus in Africans in South Africa. Postgrad Med J. 1993;69(813):552–6. CrossRefPubMedPubMedCentral
8.
Asanghanwa M, Gorus FK, Weets I, der Auwera BV, Aminkeng F, Mbunwe E, et al. Clinical and biological characteristics of diabetic patients under age 40 in Cameroon: relation to autoantibody status and comparison with Belgian patients. Diabetes Res Clin Pract. 2014;103:97–105. CrossRefPubMed
9.
Pundziute-Lycka A, Dahlquist G, Nystrom L, Arnqvist H, Bjork E, Blohme G, et al. The incidence of type I diabetes has not increased but shifted to a younger age at diagnosis in the 0-34 years group in Sweden 1983-1998. Diabetologia. 2002;45(6):783–91. CrossRefPubMed
10.
• Fekadu S, Yigzaw M, Alemu S, Dessie A, Fieldhouse H, Girma T, et al. Insulin-requiring diabetes in Ethiopia: associations with poverty, early undernutrition and anthropometric disproportion. Eur J Clin Nutr. 2010;64(10):1192–8. Evidence from Ethiopia linking type 1 diabetes with undernutrition. CrossRefPubMed
11.
Zung A, Elizur M, Weintrob N, Bistritzer T, Hanukoglu A, Zadik Z, et al. Type 1 diabetes in Jewish Ethiopian immigrants in Israel: HLA class II immunogenetics and contribution of new environment. Hum Immunol. 2004;65(12):1463–8. CrossRefPubMed
12.
Hussen HI, Persson M, Moradi T. The trends and risk of type 1 diabetes over the past 40 years: an analysis by birth cohorts and by parental background in Sweden. BMJ Open. 2013;3:e003418. CrossRefPubMedPubMedCentral
13.
Dahri S, Snoeck A, Reusens-Billen B, Remacle C, Hoet JJ. Islet function in offspring of mothers on low-protein diet during gestation. Diabetes. 1991;40:115–20. CrossRefPubMed
14.
Waterland RA, Lin JR, Smith CA, Jirtle RL. Post-weaning diet affects genomic imprinting at the insulin-like growth factor 2 (Igf2) locus. Hum Mol Genet. 2006;15(5):705–16. CrossRefPubMed
15.
Park JH, Stoffers DA, Nicholls RD, Simmons RA. Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1. J Clin Invest. 2008;118(6):2316–24. PubMedPubMedCentral
16.
Sandovici I, Smith NH, Nitert MD, ckers-Johnson M, Uribe-Lewis S, Ito Y, et al. Maternal diet and aging alter the epigenetic control of a promoter-enhancer interaction at the Hnf4a gene in rat pancreatic islets. Proc Natl Acad Sci U S A. 2011;108(13):5449–54. CrossRefPubMedPubMedCentral
17.
Besser RE, Shepherd MH, McDonald TJ, Shields BM, Knight BA, Ellard S, et al. Urinary C-peptide creatinine ratio is a practical outpatient tool for identifying hepatocyte nuclear factor 1-{alpha}/hepatocyte nuclear factor 4-{alpha} maturity-onset diabetes of the young from long-duration type 1 diabetes. Diabetes Care. 2011;34(2):286–91. CrossRefPubMedPubMedCentral
18.
Sinclair KD, Allegrucci C, Singh R, Gardner DS, Sebastian S, Bispham J, et al. DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc Natl Acad Sci U S A. 2007;104(49):19351–6. CrossRefPubMedPubMedCentral
19.
de Rooij S, Painter RC, Roseboom TJ, Phillips DI, Osmond C, Barker DJ, et al. Glucose tolerance at age 58 and the decline of glucose tolerance in comparison with age 50 in people prenatally exposed to the Dutch famine. Diabetologia. 2006;49(4):637–43. CrossRefPubMed
20.
de Rooij S, Painter RC, Phillips DI, Osmond C, Michels RP, Godsland IF, et al. Impaired insulin secretion after prenatal exposure to the Dutch famine. Diabetes Care. 2006;29(8):1897–901. CrossRefPubMed
21.
Muthayya S, Kurpad AV, Duggan CP, Bosch RJ, Dwarkanath P, Mhaskar A, et al. Low maternal vitamin B 12 status is associated with intrauterine growth retardation in urban South Indians. Eur J Clin Nutr. 2006;60:791–801. CrossRefPubMed
22.
• Yajnik CS. Transmission of obesity-adiposity and related disorders from the mother to the baby. Ann Nutr Metab. 2014;64(suppl 1):8–17. Human evidence for the link between early nutrition and subsequent diabetes. CrossRefPubMed
23.
Lutale JJ, Thordarson H, Holm PI, Eide GE, Velvik K. Islet cell autoantibodies in African patients with type 1 and type 2 diabetes in Dar es Salaam Tanzania: a cross sectional study. J Autoimmune Dis 2007;4:4.
24.
• Siraj ES, Gupta MK, Yifter H, Ahmed A, Kebede T, Reja A, et al. Islet-cell associated autoantibodies in Ethiopians with diabetes mellitus. J Diabetes Complications. 2016;30:1039–42. A recent paper showing the low rates of islet-cell autoimmunity in Ethiopia. CrossRefPubMed
25.
Gill GV, Tekle A, Reja A, Wile D, English PJ, Diver M, et al. Immunological and C-peptide studies of patients with diabetes in northern Ethiopia: existence of an unusual subgroup possibly related to malnutrition. Diabetologia. 2011;54:51–7. CrossRefPubMed
26.
Botero D, Wolfsdorf JI. Diabetes mellitus in children and adolescents. Arch Med Res. 2005;36(3):281–90. CrossRefPubMed
27.
Jensen R, Gilliam L, Torn C, Landin-Olsson M, Palmer J, Akesson K, et al. Islet cell autoantibody levels after the diagnosis of young adult diabetic patients. Diabet Med. 2007;24(11):1221–8. CrossRefPubMed
28.
Graham J, Hagopian WA, Kockum I, Li LS, Sanjeevi CB, Lowe RM, et al. Genetic effects on age-dependent onset and islet cell autoantibody markers in type 1 diabetes. Diabetes. 2002;51(5):1346–55. CrossRefPubMed
29.
Stayoussef M, Benmansour J, Al-Jenaidi FA, Said HB, Rayana CB, et al. Glutamic acid decarboxylase 65 and islet cell antigen 512/IA-2 autoantibodies in relation to human leukocyte antigen class II DR and DQ alleles and haplotypes in type 1 diabetes mellitus. Clin Vaccine Immunol. 2011;18:990–3. CrossRefPubMedPubMedCentral
30.
El-Amir MI, El-Feky MA, Laine A-P, Harkonen T, El Badawy O, et al. Risk genes and autoantibodies in Egyptian children with type 1 diabetes—low frequency of autoantibodies in carriers of the HLA-DRB1*04:05–DQA1*03–DQB1*02 risk haplotype. Diabetes Metab Res Rev. 2015;31:287–94. CrossRefPubMed
31.
Moore SE, Collinson AC, Ngom PT, Aspinall R, Prentice AM. Early immunological development and mortality from infectious disease in later life. Proc Nutr Soc. 2006;65:311–8. CrossRefPubMed
32.
Ngom PT, Solon J, Moore SE, Morgan G, Prentice AM, Aspinall R. Thymic function and T cell parameters in a natural human experimental model of seasonal infectious diseases and nutritional burden. J Biomed Sci. 2011;18:41. CrossRefPubMedPubMedCentral
33.
• Prentice S. They are what you eat: can nutritional factors during gestation and early infancy modulate the neonatal immune response? Review. Front Immunol. 2017;8 https://​doi.​org/​10.​3389/​fimmu.​2017.​01641. A review of the increasing evidence that nutritional factors in early life can influence the immune response.
34.
Umeta M, West CE, Haidar J, Deurenberg P, Hautvast JGAJ. Zinc supplementation and stunted infants in Ethiopia: a randomised controlled trial. Lancet. 2000;355:2021–6. CrossRefPubMed
35.
Umeta M, West CE, Verhoef H, Haidar J, Hautvast JGAJ. Factors associated with stunting in infants aged 5-11 months in the Dodota-Sire district, rural Ethiopia. J Nutr. 2003;133:1064–9. CrossRefPubMed
36.
Fraker PJ, King LE. Reprogramming of the immune system during zinc deficiency. Annu Rev Nutr. 2004;24:277–98. CrossRefPubMed
37.
Bono MR, Tejon G, Flores-Santibanez F, Fernandez D, Rosemblatt M, Sauma D. Retinoic acid as a modulator of T cell immunity. Nutrients. 2016;8:349. https://​doi.​org/​10.​3390/​nu8060349. CrossRefPubMedCentral
38.
Ngom PT, Collinson AC, Pido-Lopez J, Henson SM, Prentice AM, Aspinall R. Improved thymic function in exclusively breastfed infants is associated with higher interleukin 7 concentrations in their mothers’ breast milk. Am J Clin Nutr. 2004;80:722–8. CrossRefPubMed
39.
Suda T, Zlotnik A. IL-7 maintains the T cell precursor potential of CD3-CD4-CD8-thymocytes. J Immunol. 1991;146:3068–73. PubMed
40.
Abdulkadir J, Mengesha B, Welde GZ, Keen H, Worku Y, Gebre P, et al. The clinical and hormonal (C-peptide and glucagon) profile and liability to ketoacidosis during nutritional rehabilitation in Ethiopian patients with malnutrition-related diabetes mellitus. Diabetologia. 1990;33(4):222–7. CrossRefPubMed
41.
Samal KC, Kanungo A, Sanjeevi CB. Clinicoepidemiological and biochemical profile of malnutrition-modulated diabetes mellitus. Ann N Y Acad Sci. 2002;958:131–7. CrossRefPubMed

New additions to the Adis Journal Club

A selection of topical peer-reviewed articles from the Adis journals, curated by the editors.

ADA 2022 coverage

Access the latest news and expert insight from the ADA 82nd Scientific Sessions