Skip to main content

02-03-2018 | Obesity | Review | Article

Insulin resistance in obesity: an overview of fundamental alterations

Journal: Eating and Weight Disorders - Studies on Anorexia, Bulimia and Obesity

Authors: Rocco Barazzoni, Gianluca Gortan Cappellari, Maurizio Ragni, Enzo Nisoli

Publisher: Springer International Publishing


Obesity is a major health risk factor, and obesity-induced morbidity and complications account for huge costs for affected individuals, families, healthcare systems, and society at large. In particular, obesity is strongly associated with the development of insulin resistance, which in turn plays a key role in the pathogenesis of obesity-associated cardiometabolic complications, including metabolic syndrome components, type 2 diabetes, and cardiovascular diseases. Insulin sensitive tissues, including adipose tissue, skeletal muscle, and liver, are profoundly affected by obesity both at biomolecular and functional levels. Altered adipose organ function may play a fundamental pathogenetic role once fat accumulation has ensued. Modulation of insulin sensitivity appears to be, at least in part, related to changes in redox balance and oxidative stress as well as inflammation, with a relevant underlying role for mitochondrial dysfunction that may exacerbate these alterations. Nutrients and substrates as well as systems involved in host–nutrient interactions, including gut microbiota, have been also identified as modulators of metabolic pathways controlling insulin action. This review aims at providing an overview of these concepts and their potential inter-relationships in the development of insulin resistance, with particular regard to changes in adipose organ and skeletal muscle.
Barazzoni R, Zanetti M, Gortan Cappellari G, Semolic A, Boschelle M, Codarin E, Pirulli A, Cattin L, Guarnieri G (2012) Fatty acids acutely enhance insulin-induced oxidative stress and cause insulin resistance by increasing mitochondrial reactive oxygen species (ROS) generation and nuclear factor-kappaB inhibitor (IkappaB)-nuclear factor-kappaB (NFkappaB) activation in rat muscle, in the absence of mitochondrial dysfunction. Diabetologia 55(3):773–782. https://​doi.​org/​10.​1007/​s00125-011-2396-x CrossRefPubMed
Breen DM, Giacca A (2011) Effects of insulin on the vasculature. Curr Vasc Pharmacol 9(3):321–332CrossRef
Goldstein BJ, Mahadev K, Wu X (2005) Redox paradox: insulin action is facilitated by insulin-stimulated reactive oxygen species with multiple potential signaling targets. Diabetes 54(2):311–321CrossRef
Chen M, Porte D Jr (1976) The effect of rate and dose of glucose infusion on the acute insulin response in man. J Clin Endocrinol Metab 42(6):1168–1175. https://​doi.​org/​10.​1210/​jcem-42-6-1168 CrossRefPubMed
Wilcox G (2005) Insulin and insulin resistance. Clin Biochem Rev 26(2):19–39PubMedPubMedCentral
Draznin B, Rizza R (1997) Clinical research in diabetes and obesity. Contemporary biomedicine. Humana Press, TotowaCrossRef
Stump CS, Short KR, Bigelow ML, Schimke JM, Nair KS (2003) Effect of insulin on human skeletal muscle mitochondrial ATP production, protein synthesis, and mRNA transcripts. Proc Natl Acad Sci USA 100(13):7996–8001. https://​doi.​org/​10.​1073/​pnas.​1332551100 CrossRefPubMed
Duncan RE, Ahmadian M, Jaworski K, Sarkadi-Nagy E, Sul HS (2007) Regulation of lipolysis in adipocytes. Annu Rev Nutr 27:79–101. https://​doi.​org/​10.​1146/​annurev.​nutr.​27.​061406.​093734 CrossRefPubMedPubMedCentral
Luzi L, Petrides AS, De Fronzo RA (1993) Different sensitivity of glucose and amino acid metabolism to insulin in NIDDM. Diabetes 42(12):1868–1877CrossRef
Williams KJ, Wu X (2016) Imbalanced insulin action in chronic over nutrition: Clinical harm, molecular mechanisms, and a way forward. Atherosclerosis 247:225–282. https://​doi.​org/​10.​1016/​j.​atherosclerosis.​2016.​02.​004 CrossRefPubMed
Popkin BM, Adair LS, Ng SW (2012) Global nutrition transition and the pandemic of obesity in developing countries. Nutr Rev 70(1):3–21. https://​doi.​org/​10.​1111/​j.​1753-4887.​2011.​00456.​x CrossRefPubMedPubMedCentral
American Medical Association House of Delegates (2013) Resolution 420 (A-13). http://​www.​npr.​org/​documents/​2013/​jun/​ama-resolution-obesity.​pdf. Accessed 19 Jan 2018
Pataky Z, Bobbioni-Harsch E, Golay A (2010) Open questions about metabolically normal obesity. Int J Obes (Lond) 34(Suppl 2):S18-23. https://​doi.​org/​10.​1038/​ijo.​2010.​235 CrossRef
Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, James WP, Loria CM, Smith SC Jr (2009) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120(16):1640–1645. https://​doi.​org/​10.​1161/​CIRCULATIONAHA.​109.​192644 CrossRefPubMed
Hocking S, Samocha-Bonet D, Milner KL, Greenfield JR, Chisholm DJ (2013) Adiposity and insulin resistance in humans: the role of the different tissue and cellular lipid depots. Endocr Rev 34(4):463–500. https://​doi.​org/​10.​1210/​er.​2012-1041 CrossRefPubMed
Sethi JK, Vidal-Puig AJ (2007) Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res 48(6):1253–1262. https://​doi.​org/​10.​1194/​jlr.​R700005-JLR200 CrossRefPubMedPubMedCentral
Gortan Cappellari G, Semolic A, Ruozi G, Vinci P, Guarnieri G, Bortolotti F, Barbetta D, Zanetti M, Giacca M, Barazzoni R (2017) Unacylated ghrelin normalizes skeletal muscle oxidative stress and prevents muscle catabolism by enhancing tissue mitophagy in experimental chronic kidney disease. Faseb J. https://​doi.​org/​10.​1096/​fj.​201700126R CrossRefPubMed
Gortan Cappellari G, Zanetti M, Semolic A, Vinci P, Ruozi G, Falcione A, Filigheddu N, Guarnieri G, Graziani A, Giacca M, Barazzoni R (2016) Unacylated ghrelin reduces skeletal muscle reactive oxygen species generation and inflammation and prevents high-fat diet-induced hyperglycemia and whole-body insulin resistance in rodents. Diabetes 65(4):874–886. https://​doi.​org/​10.​2337/​db15-1019 CrossRefPubMed
Barazzoni R, Zanetti M, Nagliati C, Cattin MR, Ferreira C, Giuricin M, Palmisano S, Edalucci E, Dore F, Guarnieri G, de Manzini N (2013) Gastric bypass does not normalize obesity-related changes in ghrelin profile and leads to higher acylated ghrelin fraction. Obesity (Silver Spring) 21(4):718–722. https://​doi.​org/​10.​1002/​oby.​20272 CrossRef
Barazzoni R, Zanetti M, Stulle M, Mucci MP, Pirulli A, Dore F, Panzetta G, Vasile A, Biolo G, Guarnieri G (2008) Higher total ghrelin levels are associated with higher insulin-mediated glucose disposal in non-diabetic maintenance hemodialysis patients. Clin Nutr 27(1):142–149. https://​doi.​org/​10.​1016/​j.​clnu.​2007.​06.​013 CrossRefPubMed
Birnbaum MJ (2001) Turning down insulin signaling. J Clin Invest 108(5):655–659. https://​doi.​org/​10.​1172/​JCI13714 CrossRefPubMedPubMedCentral
Kim JK, Kim YJ, Fillmore JJ, Chen Y, Moore I, Lee J, Yuan M, Li ZW, Karin M, Perret P, Shoelson SE, Shulman GI (2001) Prevention of fat-induced insulin resistance by salicylate. J Clin Invest 108(3):437–446. https://​doi.​org/​10.​1172/​JCI11559 CrossRefPubMedPubMedCentral
Shoelson SE, Lee J, Goldfine AB (2006) Inflammation and insulin resistance. J Clin Invest 116(7):1793–1801. https://​doi.​org/​10.​1172/​JCI29069 CrossRefPubMedPubMedCentral
Zanetti M, Barazzoni R, Guarnieri G (2008) Inflammation and insulin resistance in uremia. J Ren Nutr 18(1):70–75. https://​doi.​org/​10.​1053/​j.​jrn.​2007.​10.​015 CrossRefPubMed
Anderson EJ, Lustig ME, Boyle KE, Woodlief TL, Kane DA, Lin CT, Price JW 3rd, Kang L, Rabinovitch PS, Szeto HH, Houmard JA, Cortright RN, Wasserman DH, Neufer PD (2009) Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J Clin Invest 119(3):573–581. https://​doi.​org/​10.​1172/​JCI37048 CrossRefPubMedPubMedCentral
Rani V, Deep G, Singh RK, Palle K, Yadav UC (2016) Oxidative stress and metabolic disorders: pathogenesis and therapeutic strategies. Life Sci 148:183–193. https://​doi.​org/​10.​1016/​j.​lfs.​2016.​02.​002 CrossRefPubMed
Barazzoni R, Gortan Cappellari G, Palus S, Vinci P, Ruozi G, Zanetti M, Semolic A, Ebner N, von Heahling S, Sinagra G, Giacca M, Springer J (2017) Acylated ghrelin treatment normalizes skeletal muscle mitochondrial oxidative capacity and AKT phosphorylation in rat chronic heart failure. J Cachexia Sarcopenia Muscle. https://​doi.​org/​10.​1002/​jcsm.​12254 CrossRefPubMedPubMedCentral
Bifari F, Ruocco C, Decimo I, Fumagalli G, Valerio A, Nisoli E (2017) Amino acid supplements and metabolic health: a potential interplay between intestinal microbiota and systems control. Genes Nutr 12:27. https://​doi.​org/​10.​1186/​s12263-017-0582-2 CrossRefPubMedPubMedCentral
Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S (2012) Host-gut microbiota metabolic interactions. Science 336(6086):1262–1267. https://​doi.​org/​10.​1126/​science.​1223813 CrossRefPubMed
Poulos SP, Hausman DB, Hausman GJ (2010) The development and endocrine functions of adipose tissue. Mol Cell Endocrinol 323(1):20–34. https://​doi.​org/​10.​1016/​j.​mce.​2009.​12.​011 CrossRefPubMed
Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn BB, Kadowaki T (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8(11):1288–1295. https://​doi.​org/​10.​1038/​nm788 CrossRefPubMed
Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K (2006) Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 116(7):1784–1792. https://​doi.​org/​10.​1172/​JCI29126 CrossRefPubMedPubMedCentral
Kern PA, Saghizadeh M, Ong JM, Bosch RJ, Deem R, Simsolo RB (1995) The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase. J Clin Invest 95(5):2111–2119. https://​doi.​org/​10.​1172/​JCI117899 CrossRefPubMedPubMedCentral
Kern PA, Di Gregorio GB, Lu T, Rassouli N, Ranganathan G (2003) Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-alpha expression. Diabetes 52(7):1779–1785CrossRef
Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114(12):1752–1761. https://​doi.​org/​10.​1172/​JCI21625 CrossRefPubMedPubMedCentral
Barazzoni R, Bernardi A, Biasia F, Semolic A, Bosutti A, Mucci M, Dore F, Zanetti M, Guarnieri G (2007) Low fat adiponectin expression is associated with oxidative stress in nondiabetic humans with chronic kidney disease—impact on plasma adiponectin concentration. Am J Physiol Regul Integr Comp Physiol 293(1):R47-54. https://​doi.​org/​10.​1152/​ajpregu.​00745.​2006 CrossRefPubMed
Marseglia L, Manti S, D’Angelo G, Nicotera A, Parisi E, Di Rosa G, Gitto E, Arrigo T (2014) Oxidative stress in obesity: a critical component in human diseases. Int J Mol Sci 16(1):378–400. https://​doi.​org/​10.​3390/​ijms16010378 CrossRefPubMedPubMedCentral
Gomez-Serrano M, Camafeita E, Lopez JA, Rubio MA, Breton I, Garcia-Consuegra I, Garcia-Santos E, Lago J, Sanchez-Pernaute A, Torres A, Vazquez J, Peral B (2017) Differential proteomic and oxidative profiles unveil dysfunctional protein import to adipocyte mitochondria in obesity-associated aging and diabetes. Redox Biol 11:415–428. https://​doi.​org/​10.​1016/​j.​redox.​2016.​12.​013 CrossRefPubMed
Pepping JK, Freeman LR, Gupta S, Keller JN, Bruce-Keller AJ (2013) NOX2 deficiency attenuates markers of adiposopathy and brain injury induced by high-fat diet. Am J Physiol Endocrinol Metab 304(4):E392-404. https://​doi.​org/​10.​1152/​ajpendo.​00398.​2012 CrossRefPubMed
Gustafson B, Hedjazifar S, Gogg S, Hammarstedt A, Smith U (2015) Insulin resistance and impaired adipogenesis. Trends Endocrinol Metab 26(4):193–200. https://​doi.​org/​10.​1016/​j.​tem.​2015.​01.​006 CrossRefPubMed
Giordano A, Murano I, Mondini E, Perugini J, Smorlesi A, Severi I, Barazzoni R, Scherer PE, Cinti S (2013) Obese adipocytes show ultrastructural features of stressed cells and die of pyroptosis. J Lipid Res 54(9):2423–2436. https://​doi.​org/​10.​1194/​jlr.​M038638 CrossRefPubMedPubMedCentral
Giordano A, Smorlesi A, Frontini A, Barbatelli G, Cinti S (2014) White, brown and pink adipocytes: the extraordinary plasticity of the adipose organ. Eur J Endocrinol 170(5):R159-171. https://​doi.​org/​10.​1530/​EJE-13-0945 CrossRef
Kuo FC, Huang YH, Lin FH, Hung YJ, Hsieh CH, Lu CH, Su SC, Huang CL, Lee CH, Chu NF (2017) Circulating soluble IL-6 receptor concentration and visceral adipocyte size are related to insulin resistance in Taiwanese adults with morbid obesity. Metab Syndr Relat Disord 15(4):187–193. https://​doi.​org/​10.​1089/​met.​2016.​0135 CrossRefPubMed
Weyer C, Foley JE, Bogardus C, Tataranni PA, Pratley RE (2000) Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, predicts type II diabetes independent of insulin resistance. Diabetologia 43(12):1498–1506. https://​doi.​org/​10.​1007/​s001250051560 CrossRefPubMed
Eldor R, DeFronzo RA, Abdul-Ghani M (2013) In vivo actions of peroxisome proliferator-activated receptors: glycemic control, insulin sensitivity, and insulin secretion. Diabetes Care 36(Suppl 2):S162-174. https://​doi.​org/​10.​2337/​dcS13-2003 CrossRef
Cohen P, Spiegelman BM (2015) Brown and beige fat: molecular parts of a thermogenic machine. Diabetes 64(7):2346–2351. https://​doi.​org/​10.​2337/​db15-0318 CrossRefPubMedPubMedCentral
Giordano A, Frontini A, Cinti S (2016) Convertible visceral fat as a therapeutic target to curb obesity. Nat Rev Drug Discov 15(6):405–424. https://​doi.​org/​10.​1038/​nrd.​2016.​31 CrossRefPubMed
Martinez-Sanchez N, Moreno-Navarrete JM, Contreras C, Rial-Pensado E, Ferno J, Nogueiras R, Dieguez C, Fernandez-Real JM, Lopez M (2017) Thyroid hormones induce browning of white fat. J Endocrinol 232(2):351–362. https://​doi.​org/​10.​1530/​JOE-16-0425 CrossRefPubMed
Weiner J, Kranz M, Kloting N, Kunath A, Steinhoff K, Rijntjes E, Kohrle J, Zeisig V, Hankir M, Gebhardt C, Deuther-Conrad W, Heiker JT, Kralisch S, Stumvoll M, Bluher M, Sabri O, Hesse S, Brust P, Tonjes A, Krause K (2016) Thyroid hormone status defines brown adipose tissue activity and browning of white adipose tissues in mice. Sci Rep 6:38124. https://​doi.​org/​10.​1038/​srep38124 CrossRefPubMedPubMedCentral
Ramage LE, Akyol M, Fletcher AM, Forsythe J, Nixon M, Carter RN, van Beek EJ, Morton NM, Walker BR, Stimson RH (2016) Glucocorticoids acutely increase brown adipose tissue activity in humans, revealing species-specific differences in UCP-1 regulation. Cell Metab 24(1):130–141. https://​doi.​org/​10.​1016/​j.​cmet.​2016.​06.​011 CrossRefPubMedPubMedCentral
Kong X, Yu J, Bi J, Qi H, Di W, Wu L, Wang L, Zha J, Lv S, Zhang F, Li Y, Hu F, Liu F, Zhou H, Liu J, Ding G (2015) Glucocorticoids transcriptionally regulate miR-27b expression promoting body fat accumulation via suppressing the browning of white adipose tissue. Diabetes 64(2):393–404. https://​doi.​org/​10.​2337/​db14-0395 CrossRefPubMed
Trayhurn P (2016) Recruiting brown adipose tissue in human obesity. Diabetes 65(5):1158–1160. https://​doi.​org/​10.​2337/​dbi16-0002 CrossRefPubMed
Yuan X, Wei G, You Y, Huang Y, Lee HJ, Dong M, Lin J, Hu T, Zhang H, Zhang C, Zhou H, Ye R, Qi X, Zhai B, Huang W, Liu S, Xie W, Liu Q, Liu X, Cui C, Li D, Zhan J, Cheng J, Yuan Z, Jin W (2017) Rutin ameliorates obesity through brown fat activation. Faseb J 31(1):333–345. https://​doi.​org/​10.​1096/​fj.​201600459RR CrossRefPubMed
Bonnard C, Durand A, Peyrol S, Chanseaume E, Chauvin MA, Morio B, Vidal H, Rieusset J (2008) Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J Clin Invest 118(2):789–800. https://​doi.​org/​10.​1172/​JCI32601 CrossRefPubMedPubMedCentral
Valerio A, Cardile A, Cozzi V, Bracale R, Tedesco L, Pisconti A, Palomba L, Cantoni O, Clementi E, Moncada S, Carruba MO, Nisoli E (2006) TNF-alpha downregulates eNOS expression and mitochondrial biogenesis in fat and muscle of obese rodents. J Clin Invest 116(10):2791–2798. https://​doi.​org/​10.​1172/​JCI28570 CrossRefPubMedPubMedCentral
Boden G (2011) Obesity, insulin resistance and free fatty acids. Curr Opin Endocrinol Diabetes Obes 18(2):139–143. https://​doi.​org/​10.​1097/​MED.​0b013e3283444b09​ CrossRefPubMedPubMedCentral
Boden G, Chen X (1995) Effects of fat on glucose uptake and utilization in patients with non-insulin-dependent diabetes. J Clin Invest 96(3):1261–1268. https://​doi.​org/​10.​1172/​JCI118160 CrossRefPubMedPubMedCentral
Boden G, Jadali F, White J, Liang Y, Mozzoli M, Chen X, Coleman E, Smith C (1991) Effects of fat on insulin-stimulated carbohydrate metabolism in normal men. J Clin Invest 88(3):960–966. https://​doi.​org/​10.​1172/​JCI115399 CrossRefPubMedPubMedCentral
Mittendorfer B (2011) Origins of metabolic complications in obesity: adipose tissue and free fatty acid trafficking. Curr Opin Clin Nutr Metab Care 14(6):535–541. https://​doi.​org/​10.​1097/​MCO.​0b013e32834ad8b6​ CrossRefPubMedPubMedCentral
Paolisso G, Gambardella A, Tagliamonte MR, Saccomanno F, Salvatore T, Gualdiero P, D’Onofrio MV, Howard BV (1996) Does free fatty acid infusion impair insulin action also through an increase in oxidative stress? J Clin Endocrinol Metab 81(12):4244–4248. https://​doi.​org/​10.​1210/​jcem.​81.​12.​8954022 CrossRefPubMed
Guo W, Wong S, Xie W, Lei T, Luo Z (2007) Palmitate modulates intracellular signaling, induces endoplasmic reticulum stress, and causes apoptosis in mouse 3T3-L1 and rat primary preadipocytes. Am J Physiol Endocrinol Metab 293(2):E576-586. https://​doi.​org/​10.​1152/​ajpendo.​00523.​2006 CrossRef
Rachek LI, Musiyenko SI, LeDoux SP, Wilson GL (2007) Palmitate induced mitochondrial deoxyribonucleic acid damage and apoptosis in l6 rat skeletal muscle cells. Endocrinology 148(1):293–299. https://​doi.​org/​10.​1210/​en.​2006-0998 CrossRefPubMed
Yuzefovych L, Wilson G, Rachek L (2010) Different effects of oleate vs. palmitate on mitochondrial function, apoptosis, and insulin signaling in L6 skeletal muscle cells: role of oxidative stress. Am J Physiol Endocrinol Metab 299(6):E1096-1105. https://​doi.​org/​10.​1152/​ajpendo.​00238.​2010 CrossRef
Richardson DK, Kashyap S, Bajaj M, Cusi K, Mandarino SJ, Finlayson J, DeFronzo RA, Jenkinson CP, Mandarino LJ (2005) Lipid infusion decreases the expression of nuclear encoded mitochondrial genes and increases the expression of extracellular matrix genes in human skeletal muscle. J Biol Chem 280(11):10290–10297. https://​doi.​org/​10.​1074/​jbc.​M408985200 CrossRefPubMed
Samuel VT, Petersen KF, Shulman GI (2010) Lipid-induced insulin resistance: unravelling the mechanism. Lancet 375(9733):2267–2277. https://​doi.​org/​10.​1016/​S0140-6736(10)60408-4 CrossRefPubMedPubMedCentral
Shulman GI (2014) Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N Engl J Med 371(23):2237–2238. https://​doi.​org/​10.​1056/​NEJMc1412427 CrossRefPubMed
Guarnieri G, Zanetti M, Vinci P, Cattin MR, Barazzoni R (2009) Insulin resistance in chronic uremia. J Ren Nutr 19(1):20–24. https://​doi.​org/​10.​1053/​j.​jrn.​2008.​11.​014 CrossRefPubMed
Bikman BT, Summers SA (2011) Ceramides as modulators of cellular and whole-body metabolism. J Clin Invest 121(11):4222–4230. https://​doi.​org/​10.​1172/​JCI57144 CrossRefPubMedPubMedCentral
Ritter O, Jelenik T, Roden M (2015) Lipid-mediated muscle insulin resistance: different fat, different pathways? J Mol Med (Berl) 93(8):831–843. https://​doi.​org/​10.​1007/​s00109-015-1310-2 CrossRef
Jans A, Konings E, Goossens GH, Bouwman FG, Moors CC, Boekschoten MV, Afman LA, Muller M, Mariman EC, Blaak EE (2012) PUFAs acutely affect triacylglycerol-derived skeletal muscle fatty acid uptake and increase postprandial insulin sensitivity. Am J Clin Nutr 95(4):825–836. https://​doi.​org/​10.​3945/​ajcn.​111.​028787 CrossRefPubMed
Storlien LH, Baur LA, Kriketos AD, Pan DA, Cooney GJ, Jenkins AB, Calvert GD, Campbell LV (1996) Dietary fats and insulin action. Diabetologia 39(6):621–631CrossRef
Barazzoni R, Gortan Cappellari G, Semolic A, Ius M, Dore F, Giacca M, Zanetti M, Vinci P, Guarnieri G (2017) Intravenous lipid infusion and total plasma fatty acids positively modulate plasma acylated ghrelin in vivo. Clin Nutr 36(3):775–781. https://​doi.​org/​10.​1016/​j.​clnu.​2016.​05.​017 CrossRefPubMed
Bravard A, Bonnard C, Durand A, Chauvin MA, Favier R, Vidal H, Rieusset J (2011) Inhibition of xanthine oxidase reduces hyperglycemia-induced oxidative stress and improves mitochondrial alterations in skeletal muscle of diabetic mice. Am J Physiol Endocrinol Metab 300(3):E581-591. https://​doi.​org/​10.​1152/​ajpendo.​00455.​2010 CrossRef
Morino K, Petersen KF, Shulman GI (2006) Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes 55(Suppl 2):S9-S15. https://​doi.​org/​10.​2337/​db06-S002 CrossRefPubMedPubMedCentral
Barazzoni R, Zanetti M, Semolic A, Cattin MR, Pirulli A, Cattin L, Guarnieri G (2011) High-fat diet with acyl-ghrelin treatment leads to weight gain with low inflammation, high oxidative capacity and normal triglycerides in rat muscle. PLoS One 6(10):e26224. https://​doi.​org/​10.​1371/​journal.​pone.​0026224 CrossRefPubMedPubMedCentral
Barazzoni R (2004) Skeletal muscle mitochondrial protein metabolism and function in ageing and type 2 diabetes. Curr Opin Clin Nutr Metab Care 7(1):97–102CrossRef
Barazzoni R, Zanetti M, Bosutti A, Biolo G, Vitali-Serdoz L, Stebel M, Guarnieri G (2005) Moderate caloric restriction, but not physiological hyperleptinemia per se, enhances mitochondrial oxidative capacity in rat liver and skeletal muscle–tissue-specific impact on tissue triglyceride content and AKT activation. Endocrinology 146(4):2098–2106. https://​doi.​org/​10.​1210/​en.​2004-1396 CrossRefPubMed
Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstrale M, Laurila E, Houstis N, Daly MJ, Patterson N, Mesirov JP, Golub TR, Tamayo P, Spiegelman B, Lander ES, Hirschhorn JN, Altshuler D, Groop LC (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34(3):267–273. https://​doi.​org/​10.​1038/​ng1180 CrossRefPubMed
Jheng HF, Huang SH, Kuo HM, Hughes MW, Tsai YS (2015) Molecular insight and pharmacological approaches targeting mitochondrial dynamics in skeletal muscle during obesity. Ann N Y Acad Sci 1350:82–94. https://​doi.​org/​10.​1111/​nyas.​12863 CrossRefPubMed
Bondia-Pons I, Ryan L, Martinez JA (2012) Oxidative stress and inflammation interactions in human obesity. J Physiol Biochem 68(4):701–711. https://​doi.​org/​10.​1007/​s13105-012-0154-2 CrossRefPubMed
de Mello AH, Costa AB, Engel JDG, Rezin GT (2018) Mitochondrial dysfunction in obesity. Life Sci 192:26–32. https://​doi.​org/​10.​1016/​j.​lfs.​2017.​11.​019 CrossRefPubMed
Chavez AO, Kamath S, Jani R, Sharma LK, Monroy A, Abdul-Ghani MA, Centonze VE, Sathyanarayana P, Coletta DK, Jenkinson CP, Bai Y, Folli F, Defronzo RA, Tripathy D (2010) Effect of short-term free Fatty acids elevation on mitochondrial function in skeletal muscle of healthy individuals. J Clin Endocrinol Metab 95(1):422–429. https://​doi.​org/​10.​1210/​jc.​2009-1387 CrossRefPubMed
Nair KS, Bigelow ML, Asmann YW, Chow LS, Coenen-Schimke JM, Klaus KA, Guo ZK, Sreekumar R, Irving BA (2008) Asian Indians have enhanced skeletal muscle mitochondrial capacity to produce ATP in association with severe insulin resistance. Diabetes 57(5):1166–1175. https://​doi.​org/​10.​2337/​db07-1556 CrossRefPubMed
Ostergard T, Andersen JL, Nyholm B, Lund S, Nair KS, Saltin B, Schmitz O (2006) Impact of exercise training on insulin sensitivity, physical fitness, and muscle oxidative capacity in first-degree relatives of type 2 diabetic patients. Am J Physiol Endocrinol Metab 290(5):E998-1005. https://​doi.​org/​10.​1152/​ajpendo.​00012.​2005 CrossRefPubMed
Short KR, Vittone JL, Bigelow ML, Proctor DN, Rizza RA, Coenen-Schimke JM, Nair KS (2003) Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity. Diabetes 52(8):1888–1896CrossRef
Toledo FG, Menshikova EV, Azuma K, Radikova Z, Kelley CA, Ritov VB, Kelley DE (2008) Mitochondrial capacity in skeletal muscle is not stimulated by weight loss despite increases in insulin action and decreases in intramyocellular lipid content. Diabetes 57(4):987–994. https://​doi.​org/​10.​2337/​db07-1429 CrossRefPubMed
Sarparanta J, Garcia-Macia M, Singh R (2016) Autophagy and mitochondria in obesity and type 2 diabetes. Curr Diabetes Rev 13(4):352–369. https://​doi.​org/​10.​2174/​1573399812666160​217122530 CrossRef
Buchner DA, Yazbek SN, Solinas P, Burrage LC, Morgan MG, Hoppel CL, Nadeau JH (2011) Increased mitochondrial oxidative phosphorylation in the liver is associated with obesity and insulin resistance. Obesity (Silver Spring) 19(5):917–924. https://​doi.​org/​10.​1038/​oby.​2010.​214 CrossRef
Takamura T, Misu H, Matsuzawa-Nagata N, Sakurai M, Ota T, Shimizu A, Kurita S, Takeshita Y, Ando H, Honda M, Kaneko S (2008) Obesity upregulates genes involved in oxidative phosphorylation in livers of diabetic patients. Obesity (Silver Spring) 16(12):2601–2609. https://​doi.​org/​10.​1038/​oby.​2008.​419 CrossRef
Cani PD, Delzenne NM (2007) Gut microflora as a target for energy and metabolic homeostasis. Curr Opin Clin Nutr Metab Care 10(6):729–734. https://​doi.​org/​10.​1097/​MCO.​0b013e3282efdebb​ CrossRefPubMed
Cani PD, Delzenne NM (2009) The role of the gut microbiota in energy metabolism and metabolic disease. Curr Pharm Des 15(13):1546–1558CrossRef
Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, Tuohy K (2017) Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. https://​doi.​org/​10.​1007/​s00394-017-1445-8 CrossRefPubMedPubMedCentral
Cani PD (2014) Metabolism in 2013: the gut microbiota manages host metabolism. Nat Rev Endocrinol 10(2):74–76. https://​doi.​org/​10.​1038/​nrendo.​2013.​240 CrossRefPubMed
Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S, Leonard P, Li J, Burgdorf K, Grarup N, Jorgensen T, Brandslund I, Nielsen HB, Juncker AS, Bertalan M, Levenez F, Pons N, Rasmussen S, Sunagawa S, Tap J, Tims S, Zoetendal EG, Brunak S, Clement K, Dore J, Kleerebezem M, Kristiansen K, Renault P, Sicheritz-Ponten T, de Vos WM, Zucker JD, Raes J, Hansen T, Bork P, Wang J, Ehrlich SD, Pedersen O (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500(7464):541–546. https://​doi.​org/​10.​1038/​nature12506 CrossRefPubMed
Tahrani AA, Bailey CJ, Del Prato S, Barnett AH (2011) Management of type 2 diabetes: new and future developments in treatment. Lancet 378(9786):182–197. https://​doi.​org/​10.​1016/​S0140-6736(11)60207-9 CrossRefPubMed
Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, Almeida M, Quinquis B, Levenez F, Galleron N, Gougis S, Rizkalla S, Batto JM, Renault P, Dore J, Zucker JD, Clement K, Ehrlich SD (2013) Dietary intervention impact on gut microbial gene richness. Nature 500(7464):585–588. https://​doi.​org/​10.​1038/​nature12480 CrossRefPubMed
Geurts L, Neyrinck AM, Delzenne NM, Knauf C, Cani PD (2014) Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: novel insights into molecular targets and interventions using prebiotics. Benef Microbes 5(1):3–17. https://​doi.​org/​10.​3920/​BM2012.​0065 CrossRefPubMed
Kimura I, Ozawa K, Inoue D, Imamura T, Kimura K, Maeda T, Terasawa K, Kashihara D, Hirano K, Tani T, Takahashi T, Miyauchi S, Shioi G, Inoue H, Tsujimoto G (2013) The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun 4:1829. https://​doi.​org/​10.​1038/​ncomms2852 CrossRefPubMedPubMedCentral

Be confident that your patient care is up to date

Medicine Matters is being incorporated into Springer Medicine, our new medical education platform. 

Alongside the news coverage and expert commentary you have come to expect from Medicine Matters diabetes, Springer Medicine's complimentary membership also provides access to articles from renowned journals and a broad range of Continuing Medical Education programs. Create your free account »