3.
• Golbidi S, Daiber A, Korac B, Li H, Essop MF, Laher I. Health benefits of fasting and caloric restriction. Curr Diab Rep. 2017;17:123.
This recent review summarizes some of the cellular mechanisms underlying the benefits of fasting and caloric restriction
CrossRefPubMed
4.
•• St-Onge M-P, Ard J, Baskin ML, Chiuve SE, Johnson HM, Kris-Etherton P, et al. Meal timing and frequency: implications for cardiovascular disease prevention: a scientific statement from the American Heart Association. Circulation. 2017;135:e96–121.
https://doi.org/10.1161/CIR.0000000000000476.
This statement provides an up-to-date review of the effects of meal timing on cardiovascular disease risk.
6.
Collier R. Intermittent fasting: the science of going without. CMAJ Canadian Medical Association. 2013;185:E363–4.
CrossRef
9.
Gropper S, Smith J. Integration and regulation of metabolism and the impact of exercise and sport. In: Feldman E, Cronin S, Myers M, editors. Advanced nutrition and human metabolism. Wadsworth, Cengage Learning. 2013. p. 256–9.
14.
Stannard SR, Thompson MW, Fairbairn K, Huard B, Sachinwalla T, Thompson CH, et al. Fasting for 72 h increases intramyocellular lipid content in nondiabetic, physically fit men. Am. J. Physiol. Metab.. American Physiological Society. 2002;283:E1185–91.
https://doi.org/10.1152/ajpendo.00108.2002.
CrossRef
15.
• Anton SD, Moehl K, Donahoo WT, Marosi K, Lee SA, Mainous AG, et al. Flipping the metabolic switch: understanding and applying the health benefits of fasting. Obesity. 2017.
This review synthesizes the animal and human data on the metabolic benefits of fasting.
19.
• Byrne NMM, Sainsbury A, King NA, Hills AP, Wood RE. Intermittent energy restriction improves weight loss efficiency in obese men: the MATADOR study. Int. J. Obes.. 2017;42(2):129–8.
https://doi.org/10.1038/ijo.2017.206
This recent RCT of ICR and CER in males found that REE decreased to a greater extent in the ICR group, suggesting that IF without CR may lead to weight gain.
21.
Harvie MN, Pegington M, Mattson MP, Frystyk J, Dillon B, Evans G, et al. The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: a randomized trial in young overweight women. Int J Obes. 2011;35:714–27.
22.
Bhutani S, Klempel MC, Kroeger CM, Trepanowski JF, Varady KA. Alternate day fasting and endurance exercise combine to reduce body weight and favorably alter plasma lipids in obese humans. Obesity. 2013;21:1370–9.
https://doi.org/10.1002/oby.20353.
CrossRefPubMed
23.
•• Trepanowski JF, Kroeger CM, Barnosky A, Klempel MC, Bhutani S, Hoddy KK, et al. Effect of alternate-day fasting on weight loss, weight maintenance, and cardioprotection among metabolically healthy obese adults. JAMA Intern Med. 2017;177:930–8.
https://doi.org/10.1001/jamainternmed.2017.0936
This study showed minimal between group differences, though dropout rate in the ADF group (38%) was one of the highest observed in this review.
24.
Trepanowski JF, Kroeger CM, Barnosky A, Klempel M, Bhutani S, Hoddy KK, et al. Effects of alternate-day fasting or daily calorie restriction on body composition, fat distribution, and circulating adipokines: Secondary analysis of a randomized controlled trial. Clin. Nutr. Elsevier; 2017.
26.
Varady KA, Bhutani S, Klempel MC, Kroeger CM. Comparison of effects of diet versus exercise weight loss regimens on LDL and HDL particle size in obese adults. Lipids Health Dis. 2011;10:119.
CrossRefPubMedPubMedCentral
28.
Hussin NM, Shahar S, Teng NIMF, Ngah WZW, Das SK. Efficacy of fasting and calorie restriction (FCR) on mood and depression among ageing men. J Nutr Heal Aging. 2013;17:674–80.
CrossRef
29.
Varady KA, Bhutani S, Klempel MC, Kroeger CM, Trepanowski JF, Haus JM, et al. Alternate day fasting for weight loss in normal weight and overweight subjects: a randomized controlled trial. Nutr J. 2013;12:146.
30.
Teng NIMF, Shahar S, Manaf ZA, Das SK, Taha CSC, Ngah WZW. Efficacy of fasting calorie restriction on quality of life among aging men. Physiol Behav. 2011;104:1059–64.
CrossRefPubMed
31.
• Catenacci VA, Pan Z, Ostendorf D, Brannon S, Gozansky WS, Mattson MP, et al. A randomized pilot study comparing zero-calorie alternate-day fasting to daily caloric restriction in adults with obesity. 2016;24:1874–83.
Changes in fat mass and FFM were more favorable in the ADF group than in the CR group.
32.
Harder-Lauridsen NM, Nielsen ST, Mann SP, Lyngbæk MP, Benatti FB, Langkilde AR, et al. The effect of alternate-day caloric restriction on the metabolic consequences of 8 days of bed rest in healthy lean men: a randomized trial. J Appl Physiol. 2017;122:230–41.
https://doi.org/10.1152/japplphysiol.00846.2016.
33.
Eshghinia S, Mohammadzadeh F. The effects of modified alternate-day fasting diet on weight loss and CAD risk factors in overweight and obese women. J Diabetes Metab Disord. 2013;12:4.
CrossRefPubMedPubMedCentral
34.
Klempel MC, Kroeger CM, Varady KA. Alternate day fasting (ADF) with a high-fat diet produces similar weight loss and cardio-protection as ADF with a low-fat diet. Metabolism. 2013;62:137–43.
CrossRefPubMed
35.
• Barnosky AR, Kroeger CM, Trepanowski JF, Bhutani S, Hoddy KK, Gabel K, et al. Effect of alternate day fasting on markers of bone metabolism: an exploratory analysis of a 6-month randomized controlled trial. Nutr Heal Aging2 IOS Press. 2017;4:255–63.
Insulin resistance decreased to a greater extent, independent of a change in lean mass, in the ADF group over the CR group.
CrossRef
38.
Soeters MR, Lammers NM, Dubbelhuis PF, Ackermans MT, Jonkers-Schuitema CF, Fliers E, et al. Intermittent fasting does not affect whole-body glucose, lipid, or protein metabolism. Am J Clin Nutr. 2009;90:1244–51.
CrossRefPubMed
39.
Heilbronn LK, Civitarese AE, Bogacka I, Smith SR, Hulver M, Ravussin E. Glucose tolerance and skeletal muscle gene expression in response to alternate day fasting. Obes Res. 2005;13:574–81.
CrossRefPubMed
40.
Wegman MP, Shankar MN, Guo MH, Bennion DM, Chrzanowski SM, Goldberg LA, et al. Practicality of intermittent fasting in humans and its effect on oxidative stress and genes related to aging and metabolism. Rejuvenation Res. 2015;18:162–72.
CrossRefPubMedPubMedCentral
45.
• Antoni R, Johnston KL, Collins AL, Robertson MD. Investigation into the acute effects of total and partial energy restriction on postprandial metabolism among overweight/obese participants. Br J Nutr. 2016;115:951–9.
This study suggests that CER could alter cardiometabolic risk independent of weight change.
CrossRefPubMed
48.
Mattson MP, Wan R. Beneficial effects of intermittent fasting and caloric restriction on the cardiovascular and cerebrovascular systems. J Nutr Biochem. 2005;16:129–37.
CrossRefPubMed
49.
Martin B, Mattson MP, Maudsley S. Caloric restriction and intermittent fasting: two potential diets for successful brain aging. Ageing Res Rev. 2006;5:332–53.
CrossRefPubMedPubMedCentral
50.
Betteridge D. What is oxidative stress? Metabolism. 2000;49:3–8.
CrossRefPubMed
51.
Anson RM, Guo Z, de Cabo R, Iyun T, Rios M, Hagepanos A, et al. Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake. Proc Natl Acad Sci. 2003;100:6216–20.
https://doi.org/10.1073/pnas.1035720100.
54.
Allard JS, Heilbronn LK, Smith C, Hunt ND, Ingram DK, Ravussin E, et al. In vitro cellular adaptations of indicators of longevity in response to treatment with serum collected from humans on calorie restricted diets. PLoS one. Public Libr Sci. 2008;3:e3211.
https://doi.org/10.1371/journal.pone.0003211.
55.
Pull CB. Binge eating disorder. Curr Opin Psychiatry. 2004;17:43–8.
CrossRef
56.
Vocks S, Tuschen-Caffier B, Pietrowsky R, Rustenbach SJ, Kersting A, Herpertz S. Meta-analysis of the effectiveness of psychological and pharmacological treatments for binge eating disorder. Int J Eat Disord. 2010;43:205–17.
PubMed
57.
•• Hoddy KK, Kroeger CM, Trepanowski JF, Barnosky AR, Bhutani S, Varady KA. Safety of alternate day fasting and effect on disordered eating behaviors. Nutr J. 2015;14:44.
This study found that depression and binge eating scores decreased after 8 weeks of ADF.
CrossRefPubMedPubMedCentral
58.
Ridaura VK, Faith JJ, Rey FE, Cheng J, Alexis E, Kau AL, et al. Cultured gut microbiota from twins discordant for obesity modulate adiposity and metabolic phenotypes in mice. Science (80-. ). 2013;341.
62.
Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K, Le Moan N, et al. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science. 2013;339(80):211–4.
CrossRefPubMed
63.
Youm Y-H, Nguyen KY, Grant RW, Goldberg EL, Bodogai M, Kim D, et al. The ketone metabolite [beta]-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med. Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.; 2015;21:263–9.
64.
Rahman M, Muhammad S, Khan MA, Chen H, Ridder DA, Müller-Fielitz H, et al. The β-hydroxybutyrate receptor HCA 2 activates a neuroprotective subset of macrophages. Nat Commun Nature Publishing Group. 2014;5:3944.
CrossRef
70.
Descamps O, Riondel J, Ducros V, Roussel A-M. Mitochondrial production of reactive oxygen species and incidence of age-associated lymphoma in OF1 mice: effect of alternate-day fasting. Mech Ageing Dev Elsevier. 2005;126:1185–91.
CrossRef
71.
Cerqueira FM, Chausse B, Kowaltowski AJ. Intermittent fasting effects on the central nervous system: how hunger modulates brain function. In: Preedy V, Patel VB, editors. Handb. Famine, Starvation, Nutr. Deprivation. Cham: Springer; 2017. p. 1–18.
https://doi.org/10.1007/978-3-319-40007-5_29-1.
73.
Lee JM, Wagner M, Xiao R, Kim KH, Feng D, Lazar MA, et al. Nutrient-sensing nuclear receptors coordinate autophagy. Nature. Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.; 2014;516:112. doi:
https://doi.org/10.1038/nature13961.
74.
Liu H-Y, Han J, Cao SY, Hong T, Zhuo D, Shi J, et al. Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: inhibition of FOXO1-dependent expression of key autophagy genes by insulin. J Biol Chem. 2009;284:31484–92. Available from:
http://www.jbc.org/content/284/45/31484.abstract.
75.
Liu H, Javaheri A, Godar RJ, Murphy J, Ma X, Rohatgi N, et al. Intermittent fasting preserves beta-cell mass in obesity-induced diabetes via the autophagy-lysosome pathway. Autophagy. Taylor & Francis. 2017;13:1952–68.
https://doi.org/10.1080/15548627.2017.1368596.
76.
• Harvie MN, Sims AH, Pegington M, Spence K, Mitchell A, Vaughan AA, et al. Intermittent energy restriction induces changes in breast gene expression and systemic metabolism. Breast Cancer Res. 2016;18:57.
https://doi.org/10.1186/s13058-016-0714-4.
This study compared the effects of CER and ICR on serum and urine metabolites as well as breast tissue gene expression.
78.
•• Kim K-H, Kim YH, Son JE, Lee JH, Kim S, Choe MS, et al. Intermittent fasting promotes adipose thermogenesis and metabolic homeostasis via VEGF-mediated alternative activation of macrophage. Cell Res The Author(s). 2017;27:1309–26.
https://doi.org/10.1038/cr.2017.126
This study demonstrated a new mechanism for IF involving changes in AT inflammation in mice and evaluated correlations between genes involved in this pathway in human AT.
79.
Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature. 2007. p. 819–26.
80.
Homko CJ, Cheung P, Boden G. Effects of free fatty acids on glucose uptake and utilization in healthy women. Diabetes. 2003;52:487–91.
CrossRefPubMed
82.
Thomas D, Apovian C. Macrophage functions in lean and obese adipose tissue. Metab. - Clin. Exp. Elsevier. 2017;72:120–43.
CrossRef
83.
Kosteli A, Sugaru E, Haemmerle G, Martin JF, Lei J, Zechner R, et al. Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J Clin Invest Am Soc Clin Investig. 2010;120:3466–79.
84.
Schreiber R, Zechner R. Lipolysis meets inflammation-arachidonic acid mobilization from fat. J Lipid Res ASBMB. 2014;55:2447–9.
CrossRef
86.
Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology. Wiley Subscription Services, Inc., A Wiley Company. 2012;55:2005–23.
https://doi.org/10.1002/hep.25762.
90.
Cotter DG, Ercal B, Huang X, Leid JM, d’Avignon DA, Graham MJ, et al. Ketogenesis prevents diet-induced fatty liver injury and hyperglycemia. J. Clin. Invest. The American Society for Clinical Investigation. 2014;124:5175–90.
https://doi.org/10.1172/JCI76388.
CrossRef
91.
Stote KS, Baer DJ, Spears K, Paul DR, Harris GK, Rumpler WV, et al. A controlled trial of reduced meal frequency without caloric restriction in healthy, normal-weight, middle-aged adults. Am J Clin Nutr. 2007;85:981–8.
92.
Varady KA. Intermittent versus daily calorie restriction: which diet regimen is more effective for weight loss? Obes Rev. 2011;12:e593–601.
CrossRefPubMed