Skip to main content
Top

04-13-2018 | Nephropathy | Review | Article

CKD in diabetes: diabetic kidney disease versus nondiabetic kidney disease

Journal: Nature Reviews Nephrology

Authors: Hans-Joachim Anders, Tobias B. Huber, Berend Isermann, Mario Schiffer

Publisher: Nature Publishing Group UK

Abstract

The increasing global prevalence of type 2 diabetes mellitus (T2DM) and chronic kidney disease (CKD) has prompted research efforts to tackle the growing epidemic of diabetic kidney disease (DKD; also known as diabetic nephropathy). The limited success of much of this research might in part be due to the fact that not all patients diagnosed with DKD have renal dysfunction as a consequence of their diabetes mellitus. Patients who present with CKD and diabetes mellitus (type 1 or type 2) can have true DKD (wherein CKD is a direct consequence of their diabetes status), nondiabetic kidney disease (NDKD) coincident with diabetes mellitus, or a combination of both DKD and NDKD. Preclinical studies using models that more accurately mimic these three entities might improve the ability of animal models to predict clinical trial outcomes. Moreover, improved insights into the pathomechanisms that are shared by these entities — including sodium–glucose cotransporter 2 (SGLT2) and renin–angiotensin system-driven glomerular hyperfiltration and tubular hyper-reabsorption — as well as those that are unique to individual entities might lead to the identification of new treatment targets. Acknowledging that the clinical entity of CKD plus diabetes mellitus encompasses NDKD as well as DKD could help solve some of the urgent unmet medical needs of patients affected by these conditions.
Glossary
Diabetic kidney disease
(DKD). Also known as diabetic nephropathy. Often defined as a clinical syndrome of albuminuria in patients with diabetes mellitus but more accurately defined as a distinct histopathological pattern of kidney injury, characterized by arteriolar hyalinosis and nodular glomerulosclerosis, induced by hyperglycaemia.
Sodium–glucose cotransporter 2
(SGLT2). A transporter expressed in the S2 segment of the (convoluted) proximal tubule that reabsorbs freely filtered glucose and cotransports sodium.
GLP1 analogue
Glucagon-like peptide 1 analogues are incretin mimetics that reduce meal-related hyperglycaemia and have a low risk of causing hypoglycaemia. Liraglutide reduced cardiovascular and renal end points in patients with type 2 diabetes mellitus.
Kidney hypertrophy
A diffuse nephron hypertrophy that increases the size of the kidney.
Tubuloglomerular feedback
An autoregulatory mechanism of glomerular perfusion that maintains a submaximal single-nephron glomerular filtration rate (SNGFR) and responds to changes in intravascular fluid volume. Hyperglycaemia deactivates tubuloglomerular feedback and leads to a persistent increase in SNGFR.
Glomerular hyperfiltration
The consequence of an increase in single-nephron glomerular filtration rate due to impaired autoregulation of glomerular haemodynamics or a reduction in the nephron number:body mass ratio.
Glomerular hypertension
The increased pressure gradient across the glomerular filtration barrier that occurs, for example, when glomerular hyperfiltration is not associated with a respective increase in filtration surface.
Sterile inflammation
Non-infectious causes of inflammation such as those that occur in autoinflammatory or autoimmune disorders upon trauma or toxic tissue injury.
Spiegelmer
L-Ribonucleic acid aptamers that mirror structures of natural RNA oligonucleotides, protecting them from enzymatic degradation. Spiegelmers can bind and neutralize small proteins.
Danger-associated molecular patterns
(DAMPs). Natural cellular components, often released by dying cells, that induce inflammation via specific pattern recognition receptors of the innate immune system.
Adipokines
Cytokines secreted by the adipose tissue, including leptin, adiponectin, and apelin.
Nephron hypertrophy
The increased dimensions of nephrons, usually as a consequence of glomerular hypertension and hyperfiltration.
Total GFR
In poorly controlled diabetes, the total glomerular filtration rate (GFR) is close to maximal GFR.
Nephron number
A critical parameter for kidney function. The number of nephrons multiplied by single-nephron glomerular filtration rate (GFR) equals the total GFR.
Kimmelstiel–Wilson lesions
A lesion characterized by nodular glomerulosclerosis that is commonly found in biopsy samples from patients with diabetes mellitus.
Literature
1.
International Diabetes Federation. IDF Diabetes Atlas — 7th Edition. Diabetes Atlas http://​www.​diabetesatlas.​org/​ (2015).
2.
Zoungas, S. et al. Effects of intensive glucose control on microvascular outcomes in patients with type 2 diabetes: a meta-analysis of individual participant data from randomised controlled trials. Lancet Diabetes Endocrinol 5, 431–437 (2017).PubMedCrossRef
3.
American Diabetes, A.. Standards of medical care in diabetes 2017. Diabetes Care 40, S1–S106 (2017).CrossRef
4.
Group, A. S. et al. Long-term effects of intensive glucose lowering on cardiovascular outcomes. N. Engl. J. Med. 364, 818–828 (2011).CrossRef
5.
Dabelea, D. et al. Association of type 1 diabetes versus type 2 diabetes diagnosed during childhood and adolescence with complications during teenage years and young adulthood. JAMA 317, 825–835 (2017).PubMedPubMedCentralCrossRef
6.
Tervaert, T. W. et al. Pathologic classification of diabetic nephropathy. J. Am. Soc. Nephrol. 21, 556–563 (2010).PubMedCrossRef
7.
ERA-EDTA Registry. ERA-EDTA Registry Annual Report 2014 (Department of Medical Informatics, Amsterdam, The Netherlands, 2016).
8.
Bello, A. K. et al. Assessment of global kidney health care status. JAMA 317, 1864–1881 (2017).PubMedPubMedCentralCrossRef
9.
Saran, R. et al. US Renal Data System 2016 Annual Data Report: Epidemiology of kidney disease in the United States. Am. J. Kidney Dis. 69, A7–A8 (2017).PubMedCrossRef
10.
Hill, N. R. et al. Global Prevalence of chronic kidney disease — a systematic review and meta-analysis. PLoS ONE 11, e0158765 (2016).PubMedPubMedCentralCrossRef
11.
Gonzalez Suarez, M. L., Thomas, D. B., Barisoni, L. & Fornoni, A. Diabetic nephropathy: Is it time yet for routine kidney biopsy? World J. Diabetes 4, 245–255 (2013).PubMedPubMedCentralCrossRef
12.
Sharma, S. G. et al. The modern spectrum of renal biopsy findings in patients with diabetes. Clin. J. Am. Soc. Nephrol. 8, 1718–1724 (2013).PubMedPubMedCentralCrossRef
13.
Fiorentino, M. et al. Renal biopsy in patients with diabetes: a pooled meta-analysis of 48 studies. Nephrol. Dial Transplant. 32, 97–110 (2017).PubMedCrossRef
14.
Levin, A. et al. Global kidney health 2017 and beyond: a roadmap for closing gaps in care, research, and policy. Lancet 390, 1888–1917 (2017).
15.
[No authors listed.] Diabetic Kidney Disease. The mechanisms and pathophysiology underlying diabetic nephropathy and its progression. National Institute of Diabetes and Digestive and Kidney Diseases https://​www.​niddk.​nih.​gov/​research-funding/​research-programs/​diabetic-kidney-disease (2018).
16.
Wan, Q., Xu, Y. & Dong, E. Diabetic nephropathy research in China: Data analysis and review from the National Natural Science Foundation of China. J. Diabetes 7, 307–314 (2015).PubMedCrossRef
17.
Navaneethan, S. D. et al. Diabetes control and the risks of ESRD and mortality in patients with CKD. Am. J. Kidney Dis. 70, 191–198 (2017).PubMedCrossRefPubMedCentral
18.
Ingelfinger, J. R. & Rosen, C. J. Cardiac and renovascular complications in type 2 diabetes — is there hope? N. Engl. J. Med. 375, 380–382 (2016).PubMedCrossRef
19.
Prospective Diabetes, U. K. Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 352, 854–865 (1998).CrossRef
20.
Brenner, B. M. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 345, 861–869 (2001).PubMedCrossRef
21.
Zinman, B. et al. Empagliflozin, Cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 373, 2117–2128 (2015).PubMedCrossRef
22.
Neal, B. et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med. 377, 644–657 (2017).PubMedCrossRef
23.
Marso, S. P. et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 375, 311–322 (2016).PubMedPubMedCentralCrossRef
24.
Rawshani, A. et al. Mortality and cardiovascular disease in type 1 and type 2 diabetes. N. Engl. J. Med. 376, 1407–1418 (2017).PubMedCrossRef
25.
Gregg, E. W. et al. Changes in diabetes-related complications in the United States, 1990–2010. N. Engl. J. Med. 370, 1514–1523 (2014).PubMedCrossRef
26.
Parving, H. H., Hommel, E., Jensen, B. R. & Hansen, H. P. Long-term beneficial effect of ACE inhibition on diabetic nephropathy in normotensive type 1 diabetic patients. Kidney Int. 60, 228–234 (2001).PubMedCrossRef
27.
Zhang, M. Z. et al. Role of blood pressure and the renin-angiotensin system in development of diabetic nephropathy (DN) in eNOS−/− db/db mice. Am. J. Physiol. Renal Physiol. 302, F433–F438 (2012).PubMedCrossRef
28.
Wanner, C. et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N. Engl. J. Med. 375, 323–334 (2016).PubMedCrossRef
29.
Mann, J. F. E. et al. Liraglutide and renal outcomes in type 2 diabetes. N. Engl. J. Med. 377, 839–848 (2017).PubMedCrossRef
30.
Anders, H. J., Davis, J. M. & Thurau, K. Nephron protection in diabetic kidney disease. N. Engl. J. Med. 375, 2096–2098 (2016).PubMedCrossRef
31.
Lewis, E. J. et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N. Engl. J. Med. 345, 851–860 (2001).PubMedCrossRef
32.
Parving, H. H. et al. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N. Engl. J. Med. 345, 870–878 (2001).PubMedCrossRef
33.
de Zeeuw, D. et al. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N. Engl. J. Med. 369, 2492–2503 (2013).PubMedPubMedCentralCrossRef
34.
Parving, H. H. et al. Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N. Engl. J. Med. 367, 2204–2213 (2012).PubMedCrossRef
35.
Voelker, J. et al. Anti-TGF-β1 antibody therapy in patients with diabetic nephropathy. J. Am. Soc. Nephrol. 28, 953–962 (2017).PubMedCrossRef
36.
Berhane, A. M., Weil, E. J., Knowler, W. C., Nelson, R. G. & Hanson, R. L. Albuminuria and estimated glomerular filtration rate as predictors of diabetic end-stage renal disease and death. Clin. J. Am. Soc. Nephrol. 6, 2444–2451 (2011).PubMedPubMedCentralCrossRef
37.
Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 3, 1–150 (2013).CrossRef
38.
Chatzikyrkou, C. et al. Predictors for the development of microalbuminuria and interaction with renal function. J. Hypertens. 35, 2501–2509 (2017).PubMedCrossRef
39.
Oh, S. W. et al. Clinical implications of pathologic diagnosis and classification for diabetic nephropathy. Diabetes Res. Clin. Pract. 97, 418–424 (2012).PubMedCrossRef
40.
Adler, A. I. et al. Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int. 63, 225–232 (2003).PubMedCrossRef
41.
Ahmad, T., Ulhaq, I., Mawani, M. & Islam, N. Microalbuminuria in type-2 diabetes mellitus; the tip of iceberg of diabetic complications. Pak. J. Med. Sci. 33, 519–523 (2017).PubMedPubMedCentral
42.
Wiseman, M. J., Saunders, A. J., Keen, H. & Viberti, G. Effect of blood glucose control on increased glomerular filtration rate and kidney size in insulin-dependent diabetes. N. Engl. J. Med. 312, 617–621 (1985).PubMedCrossRef
43.
Skupien, J. et al. Improved glycemic control and risk of ESRD in patients with type 1 diabetes and proteinuria. J. Am. Soc. Nephrol. 25, 2916–2925 (2014).PubMedPubMedCentralCrossRef
44.
Fioretto, P., Barzon, I. & Mauer, M. Is diabetic nephropathy reversible? Diabetes Res. Clin. Pract. 104, 323–328 (2014).PubMedCrossRef
45.
Tonneijck, L. et al. Glomerular hyperfiltration in diabetes: mechanisms, clinical significance, and treatment. J. Am. Soc. Nephrol. 28, 1023–1039 (2017).PubMedPubMedCentralCrossRef
46.
McKnight, A. J., Duffy, S. & Maxwell, A. P. Genetics of diabetic nephropathy: a long road of discovery. Curr. Diab Rep. 15, 41 (2015).PubMedCrossRef
47.
Vallon, V. The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus. Annu. Rev. Med. 66, 255–270 (2015).PubMedCrossRef
48.
Zeni, L., Norden, A. G. W., Cancarini, G. & Unwin, R. J. A more tubulocentric view of diabetic kidney disease. J. Nephrol. 30, 701–717 (2017).PubMedPubMedCentralCrossRef
49.
Goligorsky, M. S. Vascular endothelium in diabetes. Am. J. Physiol. Renal Physiol. 312, F266–F275 (2017).PubMedCrossRef
50.
van Sloten, T. T. et al. Endothelial dysfunction plays a key role in increasing cardiovascular risk in type 2 diabetes: the Hoorn study. Hypertension 64, 1299–1305 (2014).PubMedCrossRef
51.
Frati Munari, A. C. Medical significance of endothelial glycocalyx. Part 2: Its role in vascular diseases and in diabetic complications [Spanish]. Arch. Cardiol. Mex. 84, 110–116 (2014).PubMed
52.
Fu, J., Lee, K., Chuang, P. Y., Liu, Z. & He, J. C. Glomerular endothelial cell injury and cross talk in diabetic kidney disease. Am. J. Physiol. Renal Physiol. 308, F287–F297 (2015).PubMedCrossRef
53.
Nieuwdorp, M. et al. Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes 55, 480–486 (2006).PubMedCrossRef
54.
Kashihara, N., Watanabe, Y., Makino, H., Wallner, E. I. & Kanwar, Y. S. Selective decreased de novo synthesis of glomerular proteoglycans under the influence of reactive oxygen species. Proc. Natl Acad. Sci. USA 89, 6309–6313 (1992).PubMedPubMedCentralCrossRef
55.
Bock, F. et al. Activated protein C ameliorates diabetic nephropathy by epigenetically inhibiting the redox enzyme p66Shc. Proc. Natl Acad. Sci. USA 110, 648–653 (2013).PubMedCrossRef
56.
Isermann, B. et al. Activated protein C protects against diabetic nephropathy by inhibiting endothelial and podocyte apoptosis. Nat. Med. 13, 1349–1358 (2007).PubMedCrossRef
57.
Mason, R. M. & Wahab, N. A. Extracellular matrix metabolism in diabetic nephropathy. J. Am. Soc. Nephrol. 14, 1358–1373 (2003).PubMedCrossRef
58.
Kriz, W. et al. Accumulation of worn-out GBM material substantially contributes to mesangial matrix expansion in diabetic nephropathy. Am. J. Physiol. Renal Physiol. 312, F1101–F1111 (2017).PubMedCrossRef
59.
Ziyadeh, F. N. et al. Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-beta antibody in db/db diabetic mice. Proc. Natl Acad. Sci. USA 97, 8015–8020 (2000).PubMedPubMedCentralCrossRef
60.
Bai, Y. et al. High ambient glucose levels modulates the production of MMP-9 and alpha5(IV) collagen by cultured podocytes. Cell Physiol. Biochem. 17, 57–68 (2006).PubMedCrossRef
61.
Dalla Vestra, M., Saller, A., Mauer, M. & Fioretto, P. Role of mesangial expansion in the pathogenesis of diabetic nephropathy. J. Nephrol. 14(Suppl. 4), S51–S57 (2001).PubMed
62.
Pagtalunan, M. E. et al. Podocyte loss and progressive glomerular injury in type II diabetes. J. Clin. Invest. 99, 342–348 (1997).PubMedPubMedCentralCrossRef
63.
Stieger, N. et al. Impact of high glucose and transforming growth factor-β on bioenergetic profiles in podocytes. Metabolism 61, 1073–1086 (2012).PubMedCrossRef
64.
Susztak, K., Raff, A. C., Schiffer, M. & Bottinger, E. P. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes 55, 225–233 (2006).PubMedCrossRef
65.
Regoli, M. & Bendayan, M. Alterations in the expression of the alpha 3 beta 1 integrin in certain membrane domains of the glomerular epithelial cells (podocytes) in diabetes mellitus. Diabetologia 40, 15–22 (1997).PubMedCrossRef
66.
Schiffer, M. et al. Apoptosis in podocytes induced by TGF-β and Smad7. J. Clin. Invest. 108, 807–816 (2001).PubMedPubMedCentralCrossRef
67.
Wang, X. X. et al. SGLT2 Protein expression is increased in human diabetic nephropathy: SGLT2 protein inhibition decreases renal lipid accumulation, inflammation, and the development of nephropathy in diabetic mice. J. Biol. Chem. 292, 5335–5348 (2017).PubMedPubMedCentralCrossRef
68.
Li, X. et al. Nephrin preserves podocyte viability and glomerular structure and function in adult kidneys. J. Am. Soc. Nephrol. 26, 2361–2377 (2015).PubMedPubMedCentralCrossRef
69.
Doublier, S. et al. Nephrin expression is reduced in human diabetic nephropathy: evidence for a distinct role for glycated albumin and angiotensin II. Diabetes 52, 1023–1030 (2003).PubMedCrossRef
70.
Quack, I. et al. PKCα mediates β-arrestin2-dependent nephrin endocytosis in hyperglycemia. J. Biol. Chem. 286, 12959–12970 (2011).PubMedPubMedCentralCrossRef
71.
Tossidou, I. et al. Podocytic PKC-α is regulated in murine and human diabetes and mediates nephrin endocytosis. PLoS ONE 5, e10185 (2010).PubMedPubMedCentralCrossRef
72.
Teng, B. et al. CIN85 Deficiency prevents nephrin endocytosis and proteinuria in diabetes. Diabetes 65, 3667–3679 (2016).PubMedPubMedCentralCrossRef
73.
Madhusudhan, T. et al. Defective podocyte insulin signalling through p85-XBP1 promotes ATF6-dependent maladaptive ER-stress response in diabetic nephropathy. Nat. Commun. 6, 6496 (2015).PubMedPubMedCentralCrossRef
74.
Madhusudhan, T. et al. Signal integration at the PI3K-p85-XBP1 hub endows coagulation protease activated protein C with insulin-like function. Blood 130, 1445–1455 (2017).PubMedPubMedCentralCrossRef
75.
Welsh, G. I. et al. Insulin signaling to the glomerular podocyte is critical for normal kidney function. Cell Metab. 12, 329–340 (2010).PubMedPubMedCentralCrossRef
76.
Wharram, B. L. et al. Podocyte depletion causes glomerulosclerosis: diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. J. Am. Soc. Nephrol. 16, 2941–2952 (2005).PubMedCrossRef
77.
Lasagni, L., Lazzeri, E., Shankland, S. J., Anders, H. J. & Romagnani, P. Podocyte mitosis — a catastrophe. Curr. Mol. Med. 13, 13–23 (2013).PubMedPubMedCentralCrossRef
78.
Fufaa, G. D. et al. Urinary monocyte chemoattractant protein-1 and hepcidin and early diabetic nephropathy lesions in type 1 diabetes mellitus. Nephrol. Dial. Transplant. 30, 599–606 (2015).PubMedPubMedCentralCrossRef
79.
Wada, J. & Makino, H. Innate immunity in diabetes and diabetic nephropathy. Nat. Rev. Nephrol. 12, 13–26 (2016).PubMedCrossRef
80.
Menne, J. et al. C-C motif-ligand 2 inhibition with emapticap pegol (NOX-E36) in type 2 diabetic patients with albuminuria. Nephrol. Dial Transplant 32, 307–315 (2017).PubMedCrossRef
81.
de Zeeuw, D. et al. The effect of CCR2 inhibitor CCX140-B on residual albuminuria in patients with type 2 diabetes and nephropathy: a randomised trial. Lancet Diabetes Endocrinol 3, 687–696 (2015).PubMedCrossRef
82.
Chow, F. Y., Nikolic-Paterson, D. J., Ozols, E., Atkins, R. C. & Tesch, G. H. Intercellular adhesion molecule-1 deficiency is protective against nephropathy in type 2 diabetic db/db mice. J. Am. Soc. Nephrol. 16, 1711–1722 (2005).PubMedCrossRef
83.
Sayyed, S. G. et al. An orally active chemokine receptor CCR2 antagonist prevents glomerulosclerosis and renal failure in type 2 diabetes. Kidney Int. 80, 68–78 (2011).PubMedCrossRef
84.
Shahzad, K. et al. Nlrp3-inflammasome activation in non-myeloid-derived cells aggravates diabetic nephropathy. Kidney Int. 87, 74–84 (2015).PubMedCrossRef
85.
Anders, H. J. Of inflammasomes and alarmins: IL-1β and IL-1α in kidney disease. J. Am. Soc. Nephrol. 27, 2564–2575 (2016).PubMedPubMedCentral
86.
Perez-Gomez, M. V. et al. Targeting inflammation in diabetic kidney disease: early clinical trials. Expert Opin. Invest. Drugs 25, 1045–1058 (2016).CrossRef
87.
Tschopp, J. & Schroder, K. NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat. Rev. Immunol. 10, 210–215 (2010).PubMedCrossRef
88.
Leemans, J. C., Kors, L., Anders, H. J. & Florquin, S. Pattern recognition receptors and the inflammasome in kidney disease. Nat. Rev. Nephrol. 10, 398–414 (2014).PubMedCrossRef
89.
Qiu, Y. Y. & Tang, L. Q. Roles of the NLRP3 inflammasome in the pathogenesis of diabetic nephropathy. Pharmacol. Res. 114, 251–264 (2016).PubMedCrossRef
90.
Shahzad, K. et al. Caspase-1, but not caspase-3, promotes diabetic nephropathy. J. Am. Soc. Nephrol. 27, 2270–2275 (2016).PubMedPubMedCentralCrossRef
91.
Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).PubMedCrossRef
92.
Nathan, D. M. et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N. Engl. J. Med. 353, 2643–2653 (2005).PubMedCrossRef
93.
El-Osta, A. et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J. Exp. Med. 205, 2409–2417 (2008).PubMedPubMedCentralCrossRef
94.
Reddy, M. A., Zhang, E. & Natarajan, R. Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia 58, 443–455 (2015).PubMedCrossRef
95.
Friso, S. & Choi, S. W. Gene-nutrient interactions in one-carbon metabolism. Curr. Drug Metab. 6, 37–46 (2005).PubMedCrossRef
96.
Junien, C. Impact of diets and nutrients/drugs on early epigenetic programming. J. Inherit. Metab. Dis. 29, 359–365 (2006).PubMedCrossRef
97.
Grahammer, F. et al. mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress. Proc. Natl Acad. Sci. USA 111, E2817–E2826 (2014).PubMedPubMedCentralCrossRef
98.
Zhong, X. et al. miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia 56, 663–674 (2013).PubMedCrossRef
99.
Fantus, D., Rogers, N. M., Grahammer, F., Huber, T. B. & Thomson, A. W. Roles of mTOR complexes in the kidney: implications for renal disease and transplantation. Nat. Rev. Nephrol. 12, 587–609 (2016).PubMedCrossRef
100.
Godel, M. et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J. Clin. Invest. 121, 2197–2209 (2011).PubMedPubMedCentralCrossRef
101.
Zschiedrich, S. et al. Targeting mTOR signaling can prevent the progression of FSGS. J. Am. Soc. Nephrol. 28, 2144–2157 (2017).PubMedCrossRefPubMedCentral
102.
Qi, W. et al. Pyruvate kinase M2 activation may protect against the progression of diabetic glomerular pathology and mitochondrial dysfunction. Nat. Med. 23, 753–762 (2017).PubMedPubMedCentralCrossRef
103.
D’Agati, V. D. et al. Obesity-related glomerulopathy: clinical and pathologic characteristics and pathogenesis. Nat. Rev. Nephrol 12, 453–471 (2016).PubMedCrossRef
104.
Wiles, K. S., Nelson-Piercy, C. & Bramham, K. Reproductive health and pregnancy in women with chronic kidney disease. Nat. Rev. Nephrol. https://​doi.​org/​10.​1038/​nrneph.​2017.​187 (2018).
105.
Wilke, T. et al. Epidemiology of urinary tract infections in type 2 diabetes mellitus patients: An analysis based on a large sample of 456,586 German T2DM patients. J. Diabetes Compl. 29, 1015–1023 (2015).CrossRef
106.
Haider, D. G. et al. Kidney biopsy in patients with diabetes mellitus. Clin. Nephrol. 76, 180–185 (2011).PubMedCrossRef
107.
Mayer-Davis, E. J. et al. Incidence trends of type 1 and type 2 diabetes among youths, 2002–2012. N. Engl. J. Med. 376, 1419–1429 (2017).PubMedPubMedCentralCrossRef
108.
Zhuo, L., Ren, W., Li, W., Zou, G. & Lu, J. Evaluation of renal biopsies in type 2 diabetic patients with kidney disease: a clinicopathological study of 216 cases. Int. Urol. Nephrol. 45, 173–179 (2013).PubMedCrossRef
109.
Sharif, A. et al. Proceedings from an international consensus meeting on posttransplantation diabetes mellitus: recommendations and future directions. Am. J. Transplant. 14, 1992–2000 (2014).
110.
Steinke, J. M. & Mauer, M., International Diabetic Nephropathy Study. Lessons learned from studies of the natural history of diabetic nephropathy in young type 1 diabetic patients. Pediatr. Endocrinol. Rev. 5(Suppl. 4), 958–963 (2008). G..PubMed
111.
Tsai, C. W., Grams, M. E., Inker, L. A., Coresh, J. & Selvin, E. Cystatin C- and creatinine-based estimated glomerular filtration rate, vascular disease, and mortality in persons with diabetes in the U.S. Diabetes Care 37, 1002–1008 (2014).PubMedPubMedCentralCrossRef
112.
Romagnani, P. et al. Chronic kidney disease. Nat. Rev. Dis. Primer 3, 17088 (2017).CrossRef
113.
Nair, V. et al. A molecular morphometric approach to diabetic kidney disease can link structure to function and outcome. Kidney Int. 93, 439–449 (2018).PubMedCrossRef
114.
Weil, E. J. et al. Effect of losartan on prevention and progression of early diabetic nephropathy in American Indians with type 2 diabetes. Diabetes 62, 3224–3231 (2013).PubMedPubMedCentralCrossRef
115.
Denic, A. et al. Single-nephron glomerular filtration rate in healthy adults. N. Engl. J. Med. 376, 2349–2357 (2017).PubMedPubMedCentralCrossRef
116.
Helal, I., Fick-Brosnahan, G. M., Reed-Gitomer, B. & Schrier, R. W. Glomerular hyperfiltration: definitions, mechanisms and clinical implications. Nat. Rev. Nephrol. 8, 293–300 (2012).PubMedCrossRef
117.
Preisig, P. What makes cells grow larger and how do they do it? Renal hypertrophy revisited. Exp. Nephrol. 7, 273–283 (1999).PubMedCrossRef
118.
Iwai, T. et al. Diabetes mellitus as a cause or comorbidity of chronic kidney disease and its outcomes: the Gonryo study. Clin. Exp. Nephrol. https://​doi.​org/​10.​1007/​s10157-017-1451-4 (2017).PubMedCrossRef
119.
Chang, T. I. et al. Renal outcomes in patients with type 2 diabetes with or without coexisting non-diabetic renal disease. Diabetes Res. Clin. Pract. 92, 198–204 (2011).PubMedCrossRef
120.
Anguiano Gomez, L., Lei, Y., Devarapu, S. K. & Anders, H. J. The diabetes pandemic suggests unmet needs for ‘CKD with diabetes’ in addition to ‘diabetic nephropathy’. Implications for pre-clinical research and drug testing. Nephrol. Dial. Transplant. https://​doi.​org/​10.​1093/​ndt/​gfx219 (2017).PubMedCrossRef
121.
Hodgin, J. B. et al. Identification of cross-species shared transcriptional networks of diabetic nephropathy in human and mouse glomeruli. Diabetes 62, 299–308 (2013).PubMedCrossRef
122.
Pollock, C. et al. The establishment and validation of novel therapeutic targets to retard progression of chronic kidney disease. Kidney Int. Suppl. 7, 130–137 (2017).CrossRef
123.
Anders, H. J., Jayne, D. R. & Rovin, B. H. Hurdles to the introduction of new therapies for immune-mediated kidney diseases. Nat. Rev. Nephrol. 12, 205–216 (2016).PubMedCrossRef
124.
Xu, D. M., Chen, M., Zhou, F. D. & Zhao, M. H. Risk factors for severe bleeding complications in percutaneous renal biopsy. Am. J. Med. Sci. 353, 230–235 (2017).PubMedCrossRef
125.
Camara, N. O., Iseki, K., Kramer, H., Liu, Z. H. & Sharma, K. Kidney disease and obesity: epidemiology, mechanisms and treatment. Nat. Rev. Nephrol. 13, 181–190 (2017).PubMedCrossRef
126.
Brosius, F. C. et al. Mouse models of diabetic nephropathy. J. Am. Soc. Nephrol. 20, 2503–2512 (2009).PubMedPubMedCentralCrossRef
127.
Nzerue, C. M. et al. Prevalence of non-diabetic renal disease among African-American patients with type II diabetes mellitus. Scand. J. Urol. Nephrol. 34, 331–335 (2000).PubMedCrossRef
128.
Pham, T. T., Sim, J. J., Kujubu, D. A., Liu, I. L. & Kumar, V. A. Prevalence of nondiabetic renal disease in diabetic patients. Am. J. Nephrol. 27, 322–328 (2007).PubMedCrossRef
129.
Mazzucco, G. et al. Different patterns of renal damage in type 2 diabetes mellitus: a multicentric study on 393 biopsies. Am. J. Kidney Dis. 39, 713–720 (2002).PubMedCrossRef
130.
Biesenbach, G., Bodlaj, G., Pieringer, H. & Sedlak, M. Clinical versus histological diagnosis of diabetic nephropathy — is renal biopsy required in type 2 diabetic patients with renal disease? QJM 104, 771–774 (2011).PubMedCrossRef
131.
Richards, N. T. et al. Increased prevalence of renal biopsy findings other than diabetic glomerulopathy in type II diabetes mellitus. Nephrol. Dial Transplant 7, 397–399 (1992).PubMed
132.
Cordonnier, D. J. et al. Expansion of cortical interstitium is limited by converting enzyme inhibition in type 2 diabetic patients with glomerulosclerosis. J. Am. Soc. Nephrol. 10, 1253–1263 (1999).PubMed
133.
Parving, H. H. et al. Prevalence and causes of albuminuria in non-insulin-dependent diabetic patients. Kidney Int. 41, 758–762 (1992).PubMedCrossRef
134.
Christensen, P. K., Larsen, S., Horn, T., Olsen, S. & Parving, H. H. Causes of albuminuria in patients with type 2 diabetes without diabetic retinopathy. Kidney Int. 58, 1719–1731 (2000).PubMedCrossRef
135.
Izzedine, H., Fongoro, S., Pajot, O., Beaufils, H. & Deray, G. Retinopathy, hematuria, and diabetic nephropathy. Nephron 88, 382–383 (2001).PubMedCrossRef
136.
Bermejo, S. et al. Predictive factors for non-diabetic nephropathy in diabetic patients. The utility of renal biopsy. Nefrologia 36, 535–544 (2016).PubMed
137.
Serra, A., Romero, R., Bayes, B., Lopez, D. & Bonet, J. Is there a need for changes in renal biopsy criteria in proteinuria in type 2 diabetes? Diabetes Res. Clin. Pract. 58, 149–153 (2002).PubMedCrossRef
138.
Castellano, I., Covarsi, A., Novillo, R., Gomez-Martino, J. R. & Ferrando, L. Renal histological lesions in patients with type II diabetes mellitus [Spanish]. Nefrologia 22, 162–169 (2002).PubMed
139.
Rychlik, I. et al. The Czech registry of renal biopsies. Occurrence of renal diseases in the years 1994–2000. Nephrol. Dial. Transplant. 19, 3040–3049 (2004).PubMedCrossRef
140.
Mami, I. et al. Nondiabetic renal disease in patients with type 2 diabetes. Saudi J. Kidney Dis. Transpl. 28, 842–850 (2017).PubMed
141.
Kharrat, M. et al. Renal biopsy findings in diabetes mellitus [French]. Tunis Med. 85, 216–219 (2007).PubMed
142.
Ghani, A. A., Al Waheeb, S., Al Sahow, A. & Hussain, N. Renal biopsy in patients with type 2 diabetes mellitus: indications and nature of the lesions. Ann. Saudi Med. 29, 450–453 (2009).PubMedPubMedCentralCrossRef
143.
Hashim Al-Saedi, A. J. Pathology of nondiabetic glomerular disease among adult Iraqi patients from a single center. Saudi J. Kidney Dis. Transpl. 20, 858–861 (2009).PubMed
144.
Soni, S. S., Gowrishankar, S., Kishan, A. G. & Raman, A. Non diabetic renal disease in type 2 diabetes mellitus. Nephrology 11, 533–537 (2006).PubMedCrossRef
145.
Moger, V. et al. Rapidly progressive renal failure in type 2 diabetes in the tropical environment: a clinico-pathological study. Ren. Fail. 27, 595–600 (2005).PubMedCrossRef
146.
Prakash, J. et al. Diabetic retinopathy is a poor predictor of type of nephropathy in proteinuric type 2 diabetic patients. J. Assoc. Physicians India 55, 412–416 (2007).PubMed
147.
Premalatha, G. et al. Prevalence of non-diabetic renal disease in type 2 diabetic patients in a diabetes centre in Southern India. J. Assoc. Physicians India 50, 1135–1139 (2002).PubMed
148.
Arif, M., Arif, M. K. & Arif, M. S. An evaluation of renal biopsy in type-II diabetic patients. J. Coll. Physicians Surg. Pak 19, 627–631 (2009).PubMed
149.
Yaqub, S., Kashif, W. & Hussain, S. A. Non-diabetic renal disease in patients with type-2 diabetes mellitus. Saudi J. Kidney Dis. Transpl 23, 1000–1007 (2012).PubMedCrossRef
150.
Chong, Y. B. et al. Clinical predictors of non-diabetic renal disease and role of renal biopsy in diabetic patients with renal involvement: a single centre review. Ren. Fail. 34, 323–328 (2012).PubMedCrossRef
151.
Liu, S. et al. Clinicopathological characteristics of non-diabetic renal disease in patients with type 2 diabetes mellitus in a northeastern Chinese medical center: a retrospective analysis of 273 cases. Int. Urol. Nephrol. 48, 1691–1698 (2016).PubMedPubMedCentralCrossRef
152.
Bi, H. et al. Nondiabetic renal disease in type 2 diabetic patients: a review of our experience in 220 cases. Ren. Fail. 33, 26–30 (2011).PubMedCrossRef
153.
Zhang, P. P. et al. Renal biopsy in type 2 diabetes: timing of complications and evaluating of safety in Chinese patients. Nephrology 16, 100–105 (2011).PubMedCrossRef
154.
Mou, S. et al. Prevalence of non-diabetic renal disease in patients with type 2 diabetes. Diabetes Res. Clin. Pract. 87, 354–359 (2010).PubMedCrossRef
155.
Wong, T. Y. et al. Renal outcome in type 2 diabetic patients with or without coexisting nondiabetic nephropathies. Diabetes Care 25, 900–905 (2002).PubMedCrossRef
156.
Huang, F. et al. Renal pathological change in patients with type 2 diabetes is not always diabetic nephropathy: a report of 52 cases. Clin. Nephrol. 67, 293–297 (2007).PubMedCrossRef
157.
Mak, S. K. et al. Clinical predictors of non-diabetic renal disease in patients with non-insulin dependent diabetes mellitus. Nephrol. Dial. Transplant. 12, 2588–2591 (1997).PubMedCrossRef
158.
Lin, Y. L., Peng, S. J., Ferng, S. H., Tzen, C. Y. & Yang, C. S. Clinical indicators which necessitate renal biopsy in type 2 diabetes mellitus patients with renal disease. Int. J. Clin. Pract. 63, 1167–1176 (2009).PubMedCrossRef
159.
Harada, K. et al. Significance of renal biopsy in patients with presumed diabetic nephropathy. J. Diabetes Investig. 4, 88–93 (2013).PubMedCrossRef
160.
Hironaka, K., Makino, H., Ikeda, S., Haramoto, T. & Ota, Z. Nondiabetic renal disease complicating diabetic nephropathy. J. Diabet Compl. 5, 148–149 (1991).CrossRef
161.
Tone, A. et al. Clinical features of non-diabetic renal diseases in patients with type 2 diabetes. Diabetes Res. Clin. Pract. 69, 237–242 (2005).PubMedCrossRef
162.
Akimoto, T. et al. Microscopic hematuria and diabetic glomerulosclerosis—clinicopathological analysis of type 2 diabetic patients associated with overt proteinuria. Nephron Clin. Pract. 109, c119 (2008).PubMedCrossRef
163.
Lee, E. Y., Chung, C. H. & Choi, S. O. Non-diabetic renal disease in patients with non-insulin dependent diabetes mellitus. Yonsei Med. J. 40, 321–326 (1999).PubMedCrossRef

Be confident that your patient care is up to date

Medicine Matters is being incorporated into Springer Medicine, our new medical education platform. 

Alongside the news coverage and expert commentary you have come to expect from Medicine Matters diabetes, Springer Medicine's complimentary membership also provides access to articles from renowned journals and a broad range of Continuing Medical Education programs. Create your free account »