Skip to main content
main-content
Top

06-13-2018 | Neonatal diabetes | Review | Article

Congenital Diabetes: Comprehensive Genetic Testing Allows for Improved Diagnosis and Treatment of Diabetes and Other Associated Features

Journal: Current Diabetes Reports

Authors: Lisa R. Letourneau, Siri Atma W. Greeley

Publisher: Springer US

share
SHARE

Abstract

Purpose of Review

The goal of this review is to provide updates on congenital (neonatal) diabetes from 2011 to present, with an emphasis on publications from 2015 to present.

Recent Findings

There has been continued worldwide progress in uncovering the genetic causes of diabetes presenting within the first year of life, including the recognition of nine new causes since 2011. Management has continued to be refined based on underlying molecular cause, and longer-term experience has provided better understanding of the effectiveness, safety, and sustainability of treatment. Associated conditions have been further clarified, such as neurodevelopmental delays and pancreatic insufficiency, including a better appreciation for how these “secondary” conditions impact quality of life for patients and their families.

Summary

While continued research is essential to understand all forms of congenital diabetes, these cases remain a compelling example of personalized genetic medicine.
Literature
1.
Greeley SAW, Naylor RN, Philipson LH, Bell GI. Neonatal diabetes: an expanding list of genes allows for improved diagnosis and treatment. Curr Diab Rep. 2011;11(6):519–32. CrossRefPubMedPubMedCentral
2.
Mackay DJG, Callaway JLA, Marks SM, White HE, Acerini CL, Boonen SE, et al. Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. Nat Genet[Internet]. 2008;40(8):949–51. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​18622393
3.
Mackay DJG, Coupe AM, Shield JPH, Storr JNP, Temple IK, Robinson DO. Relaxation of imprinted expression of ZAC and HYMAI in a patient with transient neonatal diabetes mellitus. Hum Genet. 2002;110(2):139–44. CrossRefPubMed
4.
Docherty LE, Kabwama S, Lehmann A, Hawke E, Harrison L, Flanagan SE, et al. Clinical presentation of 6q24 transient neonatal diabetes mellitus (6q24 TNDM) and genotype-phenotype correlation in an international cohort of patients. Diabetologia[Internet]. 2013;56(4):758–62. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​23385738
5.
Cao BY, Gong CX, Wu D, Li XQ. Permanent neonatal diabetes caused by abnormalities in chromosome 6q24. Diabet Med [Internet]. 2017;34(12):1800–4. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​29048742 CrossRef
6.
Yorifuji T, Matsubara K, Sakakibara A, Hashimoto Y, Kawakita R, Hosokawa Y, et al. Abnormalities in chromosome 6q24 as a cause of early-onset, non-obese, non-autoimmune diabetes mellitus without history of neonatal diabetes. Diabet Med [Internet]. 2015;32(7):963–7. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​25809823 CrossRef
7.
Carmody D, Beca FA, Bell CD, Hwang JL, Dickens JT, Devine NA, et al. Role of noninsulin therapies alone or in combination in chromosome 6q24-related transient neonatal diabetes: sulfonylurea improves but does not always normalize insulin secretion. Diabetes Care [Internet]. 2015;38(6):e86–7. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​25998302 CrossRef
8.
Neumann U, Bührer C, Blankenstein O, Kühnen P, Raile K. Primary sulphonylurea therapy in a newborn with transient neonatal diabetes attributable to a paternal uniparental disomy 6q24 (UPD6). Diabetes Obes Metab [Internet]. 2017 ; Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​28817249
9.
Garcin L, Kariyawasam D, Busiah K, Fauret-Amsellem AL, Le Bourgeois F, Vaivre-Douret L, et al. Successful off-label sulfonylurea treatment of neonatal diabetes mellitus due to chromosome 6 abnormalities. Pediatr Diabetes. 2018;19(4):663–9. CrossRefPubMed
10.
Pearson ER, Flechtner I, Njølstad PR, Malecki MT, Flanagan SE, Larkin B, et al. Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. N Engl J Med [Internet]. 2006;355(5):467–77. Available from: http://​eutils.​ncbi.​nlm.​nih.​gov/​entrez/​eutils/​elink.​fcgi?​dbfrom=​pubmed&​id=​16885550&​retmode=​ref&​cmd=​prlinks%5Cnpapers2://publication/. https://​doi.​org/​10.​1056/​NEJMoa061759. CrossRef
11.
• Thurber BW, Carmody D, Tadie EC, Pastore AN, Dickens JT, Wroblewski KE, et al. Age at the time of sulfonylurea initiation influences treatment outcomes in KCNJ11-related neonatal diabetes. Diabetologia. 2015;58(7):1430–5. Thurber and colleagues found a positive correlation between age at sulfonylurea initiation and dose required at follow-up in a cohort of patients with KCNJ11 mutations ( r= 0.8), emphasizing the need for early genetic testing and personalized treatment. CrossRefPubMedPubMedCentral
12.
Babiker T, Vedovato N, Patel K, Thomas N, Finn R, Männikkö R, et al. Successful transfer to sulfonylureas in KCNJ11 neonatal diabetes is determined by the mutation and duration of diabetes. Diabetologia. 2016;59(6):1162–6. CrossRefPubMedPubMedCentral
13.
Støy J, Greeley SAW, Paz VP, Ye H, Pastore AN, Skowron KB, et al. Diagnosis and treatment of neonatal diabetes: a United States experience. Pediatr Diabetes [Internet]. 2008;9(5):450–9. Available from: http://​www.​scopus.​com/​inward/​record.​url?​eid=2-s2.0-52649099443&partnerID=tZOtx3y1 CrossRef
14.
•• Lanning MS, Carmody D, Szczerbiński Ł, Letourneau LR, Naylor RN, Greeley SAW. Hypoglycemia in sulfonylurea-treated KCNJ11-neonatal diabetes: mild-moderate symptomatic episodes occur infrequently but none involving unconsciousness or seizures. Pediatr Diabetes[Internet] . 2017 ; Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​29205704. No episodes of severe hypoglycemia were found in this study of 30 participants with KCNJ11 -related diabetes despite requiring high doses of sulfonylureas.
15.
Shah RP, Spruyt K, Kragie BC, Greeley SAW, Msall ME. Visuomotor performance in KCNJ11-related neonatal diabetes is impaired in children with DEND-associated mutations and may be improved by early treatment with sulfonylureas. Diabetes Care. 2012;35(10):2086–8. CrossRefPubMedPubMedCentral
16.
• Carmody D, Pastore AN, Landmeier KA, Letourneau LR, Martin R, Hwang JL, et al. Patients with KCNJ11-related diabetes frequently have neuropsychological impairments compared with sibling controls. Diabet Med. 2016;33:1380–6. Comparisons to sibling controls revealed neurodevelopmental deficiencies even in KCNJ11 patients without global developmental delay in this study. CrossRefPubMedPubMedCentral
17.
Bowman P, Hattersley AT, Knight BA, Broadbridge E, Pettit L, Reville M, et al. Neuropsychological impairments in children with KCNJ11 neonatal diabetes. Diabet Med [Internet]. 2017;34(8):1171–3. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​28477417 CrossRef
18.
Landmeier KA, Lanning M, Carmody D, Greeley SAW, Msall ME. ADHD, learning difficulties and sleep disturbances associated with KCNJ11-related neonatal diabetes. Pediatr Diabetes [Internet]. 2016 Aug; Available from: doi: https://​doi.​org/​10.​1111/​pedi.​12428
19.
• Bowman P, Broadbridge E, Knight BA, Pettit L, Flanagan SE, Reville M, et al. Psychiatric morbidity in children with KCNJ11 neonatal diabetes. Diabet Med [Internet]. 2016;33(10):1387–91. Available from: http://​www.​ncbi.​nlm.​pubmed/​pubmed/​27086753. Bowman and colleagues screened patients with KCNJ11 mutations for psychiatric conditions and frequently identified disorders such as anxiety and autism. CrossRef
20.
• Beltrand J, Elie C, Busiah K, Fournier E, Boddaert N, Bahi-Buisson N, et al. Sulfonylurea therapy benefits neurological and psychomotor functions in patients with neonatal diabetes owing to potassium channel mutations. Diabetes Care. 2015;38(11):2033–41. This study reported improvements in neuropsychomotor impairments with sulfonylurea therapy in patients with KCNJ11 or ABCC8 mutations. CrossRefPubMed
21.
• Lahmann C, Kramer HB, Ashcroft FM. Systemic administration of glibenclamide fails to achieve therapeutic levels in the brain and cerebrospinal fluid of rodents. PLoS One. 2015;10(7):e0134476. This study suggests that glibenclamide may have a limited ability to affect KATP channel function within the brain of mice. CrossRefPubMedPubMedCentral
22.
Støy J, Edghill EL, Flanagan SE, Ye H, Paz VP, Pluzhnikov A, et al. Insulin gene mutations as a cause of permanent neonatal diabetes. Proc Natl Acad Sci U S A. 2007;104(38):15040–4. CrossRefPubMedPubMedCentral
23.
Park S-Y, Ye H, Steiner DF, Bell GI. Mutant proinsulin proteins associated with neonatal diabetes are retained in the endoplasmic reticulum and not efficiently secreted. Biochem Biophys Res Commun [Internet]. 2010;391(3):1449–54. Available from: http://​www.​ncbi.​nlm.​pubmed/​pubmed/​20034470 CrossRef
24.
Carmody D, Park S-Y, Ye H, Perrone ME, Alkorta-Aranburu G, Highland HM, et al. Continued lessons from the INS gene: an intronic mutation causing diabetes through a novel mechanism. J Med Genet [Internet]. 2015;52(9):612–6. Available from: http://​www.​ncbi.​nlm.​pubmed/​pubmed/​26101329 CrossRef
25.
Molven A, Ringdal M, Nordbø AM, Raeder H, Støy J, Lipkind GM, et al. Mutations in the insulin gene can cause MODY and autoantibody-negative type 1 diabetes. Diabetes [Internet]. 2008;57(4):1131–5. Available from: http://​www.​ncbi.​nlm.​pubmed/​pubmed/​18192540 CrossRef
26.
Letourneau LR, Carmody D, Philipson LH, Greeley SAW. Early intensive insulin use may preserve β-cell function in neonatal diabetes due to mutations in the proinsulin gene. J Endocr Soc [Internet]. 2018;2(1):1–8. Available from: http://​academic.​oup.​com/​jes/​article/​2/​1/​1/​4657103 CrossRef
27.
Gupta S, McGrath B, Cavener DR. PERK (EIF2AK3) regulates proinsulin trafficking and quality control in the secretory pathway. Diabetes. 2010;59(8):1937–47. CrossRefPubMedPubMedCentral
28.
Rubio-Cabezas O, Patch AM, Minton JAL, Flanagan SE, Edghill EL, Hussain K, et al. Wolcott-Rallison syndrome is the most common genetic cause of permanent neonatal diabetes in consanguineous families. J Clin Endocrinol Metab. 2009;94(11):4162–70. CrossRefPubMedPubMedCentral
29.
Abbasi F, Habibi M, Enayati S, Bitarafan F, Razzaghy-Azar M, Sotodeh A, et al. A genotype-first approach for clinical and genetic evaluation of Wolcott-Rallison syndrome in a large cohort of Iranian patients with neonatal diabetes. Can J diabetes [Internet]. 2017; Available from: http://​www.​ncbi.​nlm.​pubmed/​pubmed/​28843469
30.
Collardeau-Frachon S, Vasiljevic A, Jouvet A, Bouvier R, Senée V, Nicolino M. Microscopic and ultrastructural features in Wolcott-Rallison syndrome, a permanent neonatal diabetes mellitus: about two autopsy cases. Pediatr Diabetes [Internet]. 2015;16(7):510–20. https://​doi.​org/​10.​1111/​pedi.​12201. CrossRef
31.
Rubio-Cabezas O, Minton JAL, Caswell R, Shield JP, Deiss D, Sumnik Z, et al. Clinical heterogeneity in patients with FOXP3 mutations presenting with permanent neonatal diabetes. Diabetes Care[Internet]. 2009;32(1):111–6. Available from: http://​www.​ncbi.​nlm.​pubmed/​pubmed/​18931102 CrossRef
32.
Hwang JL, Park S-Y, Ye H, Sanyoura M, Pastore AN, Carmody D, et al. FOXP3 mutations causing early-onset insulin-requiring diabetes but without other features of immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome. Pediatr Diabetes [Internet]. 2017 Nov 29; Available from: http://​www.​ncbi.​nlm.​pubmed/​pubmed/​29193502
33.
Njølstad PR, Søvik O, Cuesta-Muñoz A, Bjørkhaug L, Massa O, Barbetti F, et al. Neonatal diabetes mellitus due to complete glucokinase deficiency. N Engl J Med [Internet]. 2001;344(21):1588–92. Available from: http://​www.​ncbi.​nlm.​pubmed/​pubmed/​11372010 CrossRef
34.
Al Senani A, Hamza N, Al Azkawi H, Al Kharusi M, Al Sukaiti N, Al Badi M, et al. Genetic mutations associated with neonatal diabetes mellitus in Omani patients. J Pediatr Endocrinol Metab [Internet]. 2018;31(2):195–204. Available from: http://​www.​ncbi.​nlm.​pubmed/​pubmed/​29329106 CrossRef
35.
Raimondo A, Chakera AJ, Thomsen SK, Colclough K, Barrett A, De Franco E, et al. Phenotypic severity of homozygous GCK mutations causing neonatal or childhood-onset diabetes is primarily mediated through effects on protein stability. Hum Mol Genet. 2014;23(24):6432–40. CrossRefPubMedPubMedCentral
36.
Osbak KK, Colclough K, Saint-Martin C, Beer NL, Bellanné-Chantelot C, Ellard S, et al. Update on mutations in glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. Hum Mutat. 2009;30:1512–26. CrossRefPubMed
37.
Steele AM, Shields BM, Wensley KJ, Colclough K, Ellard S, Hattersley AT. Prevalence of vascular complications among patients with glucokinase mutations and prolonged, mild hyperglycemia. JAMA [Internet]. 2014;311(3):279–86. Available from: http://​www.​ncbi.​nlm.​pubmed/​pubmed/​24430320 CrossRef
38.
Thomas IH, Saini NK, Adhikari A, Lee JM, Kasa-Vubu JZ, Vazquez DM, et al. Neonatal diabetes mellitus with pancreatic agenesis in an infant with homozygous IPF-1 Pro63fsX60 mutation. Pediatr Diabetes [Internet]. 2009;10(7):492–6. Available from: http://​www.​ncbi.​nlm.​pubmed/​pubmed/​19496967 CrossRef
39.
De Franco E, Shaw-Smith C, Flanagan SE, Edghill EL, Wolf J, Otte V, et al. Biallelic PDX1 (insulin promoter factor 1) mutations causing neonatal diabetes without exocrine pancreatic insufficiency. Diabet Med. 2013;30(5):e197–200. CrossRefPubMedPubMedCentral
40.
Fajans SS, Bell GI, Paz VP, Below JE, Cox NJ, Martin C, et al. Obesity and hyperinsulinemia in a family with pancreatic agenesis and MODY caused by the IPF1 mutation Pro63fsX60. Transl Res. 2010;156(1):7–14. CrossRefPubMedPubMedCentral
41.
Edghill EL, Khamis A, Weedon MN, Walker M, Hitman GA, McCarthy MI, et al. Sequencing PDX1 (insulin promoter factor 1) in 1788 UK individuals found 5% had a low frequency coding variant, but these variants are not associated with Type 2 diabetes. Diabet Med [Internet]. 2011;28(6):681–4. Available from: http://​www.​ncbi.​nlm.​pubmed/​pubmed/​21569088 CrossRef
42.
Sellick GS, Barker KT, Stolte-Dijkstra I, Fleischmann C, Coleman RJ, Garrett C, et al. Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat Genet [Internet]. 2004;36(12):1301–5. Available from: http://​www.​ncbi.​nlm.​pubmed/​pubmed/​15543146 CrossRef
43.
Houghton JAL, Swift GH, Shaw-Smith C, Flanagan SE, De Franco E, Caswell R, et al. Isolated pancreatic aplasia due to a hypomorphic PTF1A mutation. Diabetes. 2016;65(9):2810–5. CrossRefPubMedPubMedCentral
44.
Malecki MT, Jhala US, Antonellis A, Fields L, Doria A, Orban T, et al. Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus. Nat Genet[Internet]. 1999;23(november):323–8. Available from: http://​www.​ncbi.​nlm.​pubmed/​htbin-post/​Entrez/​query?​db=m&form=6&dopt=r&uid= 10545951 CrossRef
45.
Rubio-Cabezas O, Minton JAL, Kantor I, Williams D, Ellard S, Hattersley AT. Homozygous mutations in NEUROD1 are responsible for a novel syndrome of permanent neonatal diabetes and neurological abnormalities. Diabetes. 2010;59(9):2326–31. CrossRefPubMedPubMedCentral
46.
Rubio-Cabezas O, Jensen JN, Hodgson MI, Codner E, Ellard S, Serup P, et al. Permanent neonatal diabetes and enteric anendocrinosis associated with biallelic mutations in NEUROG3. Diabetes. 2011;60(4):1349–53. CrossRefPubMedPubMedCentral
47.
Rubio-Cabezas O, Gómez JL, Gleisner A, Hattersley AT, Codner E. Hypogonadotropic hypogonadism and short stature in patients with diabetes due to neurogenin 3 deficiency. J Clin Endocrinol Metab. 2016;101(10):3555–8. CrossRefPubMedPubMedCentral
48.
Rubio-Cabezas O, Codner E, Flanagan SE, Gómez JL, Ellard S, Hattersley AT. Neurogenin 3 is important but not essential for pancreatic islet development in humans. Diabetologia. 2014;57:2421–4. CrossRefPubMedPubMedCentral
49.
Smith SB, Qu H-Q, Taleb N, Kishimoto NY, Scheel DW, Lu Y, et al. Rfx6 directs islet formation and insulin production in mice and humans. Nature [Internet]. 2010;463(7282):775–80. Available from: http://​www.​ncbi.​nlm.​pubmed/​pubmed/​20148032 CrossRef
50.
Concepcion JP, Reh CS, Daniels M, Liu X, Paz VP, Ye H, et al. Neonatal diabetes, gallbladder agenesis, duodenal atresia, and intestinal malrotation caused by a novel homozygous mutation in RFX6. Pediatr Diabetes. 2014;15(1):67–72. CrossRefPubMed
51.
Sansbury FH, Kirel B, Caswell R, Lango Allen H, Flanagan SE, Hattersley AT, et al. Biallelic RFX6 mutations can cause childhood as well as neonatal onset diabetes mellitus. Eur J Hum Genet[Internet]. 2015;23(12):1744–8. https://​doi.​org/​10.​1038/​ejhg.​2015.​161. CrossRef
52.
• Patel KA, Kettunen J, Laakso M, Stančáková A, Laver TW, Colclough K, et al. Heterozygous RFX6 protein truncating variants are associated with MODY with reduced penetrance. Nat Commun. 2017;8(1):888. A novel presentation of dysfunction in RFX6 , heterozygous mutations, is reported here. CrossRefPubMedPubMedCentral
53.
Shalev SA, Tenenbaum-Rakover Y, Horovitz Y, Paz VP, Ye H, Carmody D, et al. Microcephaly, epilepsy, and neonatal diabetes due to compound heterozygous mutations in IER3IP1: insights into the natural history of a rare disorder. Pediatr Diabetes. 2014;15(3):252–6. CrossRefPubMed
54.
Yorifuji T, Kurokawa K, Mamada M, Imai T, Kawai M, Nishi Y, et al. Neonatal diabetes mellitus and neonatal polycystic, dysplastic kidneys: phenotypically discordant recurrence of a mutation in the hepatocyte nuclear factor-1beta gene due to germline mosaicism. J Clin Endocrinol Metab [Internet]. 2004;89(6):2905–8. Available from: http://​www.​ncbi.​nlm.​pubmed/​pubmed/​15181075 CrossRef
55.
Edghill EL, Bingham C, Slingerland AS, Minton JA, Noordam C, Ellard S, et al. Hepatocyte nuclear factor-1 beta mutations cause neonatal diabetes and intrauterine growth retardation: support for a critical role of HNF-1beta in human pancreatic development. Diabet Med [Internet]. 2006;23(12):1301–6. Available from: http://​www.​ncbi.​nlm.​pubmed/​pubmed/​17116179 CrossRef
56.
Senée V, Chelala C, Duchatelet S, Feng D, Blanc H, Cossec JC, et al. Mutations in GLIS3 are responsible for a rare syndrome with neonatal diabetes mellitus and congenital hypothyroidism. Nat Genet. 2006;38(6):682–7. CrossRefPubMed
57.
Dimitri P, De Franco E, Habeb AM, Gurbuz F, Moussa K, Taha D, et al. An emerging, recognizable facial phenotype in association with mutations in GLI-similar 3 ( GLIS3). Am J Med Genet Part A [Internet]. 2016;170(7):1918–23. https://​doi.​org/​10.​1002/​ajmg.​a.​37680. CrossRef
58.
Dimitri P, Warner JT, Minton JAL, Patch AM, Ellard S, Hattersley AT, et al. Novel GLIS3 mutations demonstrate an extended multisystem phenotype. Eur J Endocrinol. 2011;164(3):437–43. CrossRefPubMed
59.
Wen X, Yang Y. Emerging roles of GLIS3 in neonatal diabetes, type 1 and type 2 diabetes. J Mol Endocrinol. 2017;58:R73–85. CrossRefPubMed
60.
Nishi M, Sasahara M, Shono T, Saika S, Yamamoto Y, Ohkawa K, et al. A case of novel de novo paired box gene 6 (PAX6) mutation with early-onset diabetes mellitus and aniridia. Diabet Med. 2005;22(5):641–4. CrossRefPubMed
61.
Solomon BD, Pineda-Alvarez DE, Balog JZ, Hadley D, Gropman AL, Nandagopal R, et al. Compound heterozygosity for mutations in PAX6 in a patient with complex brain anomaly, neonatal diabetes mellitus, and microophthalmia. Am J Med GenetPart A [Internet]. 2009;149A(11):2543–6. Available from: http://​www.​ncbi.​nlm.​pubmed/​pubmed/​19876904%0A. https://​doi.​org/​10.​1002/​ajmg.​a.​33081. CrossRef
62.
Inoue H, Tanizawa Y, Wasson J, Behn P, Kalidas K, Bernal-Mizrachi E, et al. A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat Genet [Internet]. 1998;20(2):143–8. Available from: http://​www.​nature.​com.​gate2.​inist.​fr/​ng/​journal/​v20/​n2/​full/​ng1098_​143.​html CrossRef
63.
Cryns K, Sivakumaran TA, Van den Ouweland JMW, Pennings RJE, Cremers CWRJ, Flothmann K, et al. Mutational spectrum of the WFS1 gene in Wolfram syndrome, nonsyndromic hearing impairment, diabetes mellitus, and psychiatric disease. Hum Mutat. 2003;22:275–87. CrossRefPubMed
64.
De Franco E, Flanagan SE, Yagi T, Abreu D, Mahadevan J, Johnson MB, et al. Dominant ER stress-inducing WFS1 mutations underlie a genetic syndrome of neonatal/infancy-onset diabetes, congenital sensorineural deafness, and congenital cataracts. Diabetes [Internet]. 2017;66(7):2044–53. Available from: http://​www.​ncbi.​nlm.​pubmed/​pubmed/​28468959 CrossRef
65.
Bergmann AK, Sahai I, Falcone JF, Fleming J, Bagg A, Borgna-Pignati C, et al. Thiamine-responsive megaloblastic anemia: identification of novel compound heterozygotes and mutation update. J Pediatr. 2009;155(6):888–892.e1. CrossRefPubMed
66.
Yoo HW, Shin YL, Seo EJ, Kim GH. Identification of a novel mutation in the GLUT2 gene in a patient with Fanconi-Bickel syndrome presenting with neonatal diabetes mellitus and galactosaemia. Eur J Pediatr. 2002;161(6):351–3. CrossRefPubMed
67.
Johnson MB, De Franco E, Lango Allen H, Al Senani A, Elbarbary N, Siklar Z, et al. Recessively inherited LRBA mutations cause autoimmunity presenting as neonatal diabetes. Diabetes [Internet]. 2017;66(8):2316–22. Available from: http://​www.​ncbi.​nlm.​pubmed/​pubmed/​28473463 CrossRef
68.
Caudy AA, Reddy ST, Chatila T, Atkinson JP, Verbsky JW. CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome, and defective IL-10 expression from CD4 lymphocytes. J Allergy Clin Immunol [Internet]. 2007;119(2):482–7. Available from: http://​www.​ncbi.​nlm.​pubmed/​pubmed/​17196245 CrossRef
69.
Uzel G, Sampaio EP, Lawrence MG, Hsu AP, Hackett M, Dorsey MJ, et al. Dominant gain-of-function STAT1 mutations in FOXP3 wild-type immune dysregulation-polyendocrinopathy-enteropathy-X-linked-like syndrome. J Allergy Clin Immunol [Internet]. 2013;131(6):1611–23. Available from: http://​www.​ncbi.​nlm.​pubmed/​pubmed/​23534974 CrossRef
70.
• Flanagan SE, Haapaniemi E, Russell MA, Caswell R, Allen HL, De Franco E, et al. Activating germline mutations in STAT3 cause early-onset multi-organ autoimmune disease. Nat Genet [Internet]. 2014;46(8):812–4. Available from: http://​www.​ncbi.​nlm.​pubmed/​pubmed/​25038750. A new form of monogenic polyautoimmunity, mutations in STAT3 , is reported here by Flanagan and colleagues. CrossRef
71.
Flanagan SE, De Franco E, Lango Allen H, Zerah M, Abdul-Rasoul MM, Edge JA, et al. Analysis of transcription factors key for mouse pancreatic development establishes NKX2-2 and MNX1 mutations as causes of neonatal diabetes in man. Cell Metab [Internet]. 2014;19(1):146–54. Available from: http://​www.​ncbi.​nlm.​pubmed/​pubmed/​24411943 CrossRef
72.
Bonnefond A, Vaillant E, Philippe J, Skrobek B, Lobbens S, Yengo L, et al. Transcription factor gene MNX1 is a novel cause of permanent neonatal diabetes in a consanguineous family. Diabetes Metab. 2013;39(3):276–80. CrossRefPubMed
73.
Allen HL, Flanagan SE, Shaw-Smith C, De Franco E, Akerman I, Caswell R, et al. GATA6 haploinsufficiency causes pancreatic agenesis in humans. Nat Genet[Internet]. 2011;44(1):20–2. Available from: http://​www.​ncbi.​nlm.​pubmed/​pubmed/​22158542 CrossRef
74.
Bonnefond A, Sand O, Guerin B, Durand E, De Graeve F, Huyvaert M, et al. GATA6 inactivating mutations are associated with heart defects and, inconsistently, with pancreatic agenesis and diabetes. Diabetologia. 2012;55:2845–7. CrossRefPubMed
75.
Yorifuji T, Kawakita R, Hosokawa Y, Fujimaru R, Yamaguchi E, Tamagawa N. Dominantly inherited diabetes mellitus caused by GATA6 haploinsufficiency: variable intrafamilial presentation. J Med Genet. 2012;49(10):642–3. CrossRefPubMed
76.
De Franco E, Shaw-Smith C, Flanagan SE, Shepherd MH, International NDM Consortium, Hattersley AT, et al. GATA6 mutations cause a broad phenotypic spectrum of diabetes from pancreatic agenesis to adult-onset diabetes without exocrine insufficiency. Diabetes [Internet]. 2013;62(3):993–7. Available from: http://​www.​ncbi.​nlm.​pubmed/​pubmed/​23223019 CrossRef
77.
Shaw-Smith C, De Franco E, Lango Allen H, Batlle M, Flanagan SE, Borowiec M, et al. GATA4 mutations are a cause of neonatal and childhood-onset diabetes. Diabetes [Internet]. 2014;63(8):2888–94. Available from: http://​www.​ncbi.​nlm.​pubmed/​pubmed/​24696446 CrossRef
78.
Iafusco D, Massa O, Pasquino B, Colombo C, Iughetti L, Bizzarri C, et al. Minimal incidence of neonatal/infancy onset diabetes in Italy is 1:90,000 live births. Acta Diabetol. 2012;49(5):405–8. CrossRefPubMed
79.
Slingerland A, Shields B, Flanagan S, Bruining G, Noordam K, Gach A, et al. Referral rates for diagnostic testing support an incidence of permanent neonatal diabetes in three European countries of at least 1 in 260,000 live births. Diabetologia. 2009;52(8):1683–5. CrossRefPubMedPubMedCentral
80.
•• De Franco E, Flanagan SE, Houghton JAL, Lango Allen H, Mackay DJG, Temple IK, et al. The effect of early, comprehensive genomic testing on clinical care in neonatal diabetes: an international cohort study. Lancet (London, England) [Internet]. 2015;386(9997):957–63. Available from: http://​www.​ncbi.​nlm.​pubmed/​pubmed/​26231457. De Franco and colleagues report a large cohort of patients with various forms of infancy-onset diabetes and highlight the differences between consanguineous and non-consanguineous families. CrossRef
81.
Habeb AM, Al-Magamsi MSF, Eid IM, Ali MI, Hattersley AT, Hussain K, et al. Incidence, genetics, and clinical phenotype of permanent neonatal diabetes mellitus in northwest Saudi Arabia. Pediatr Diabetes. 2012;13(6):499–505. CrossRefPubMed
82.
Kanakatti Shankar R, Pihoker C, Dolan LM, Standiford D, Badaru A, Dabelea D, et al. Permanent neonatal diabetes mellitus: prevalence and genetic diagnosis in the SEARCH for Diabetes in Youth Study. Pediatr Diabetes. 2013;14(3):174–80. PubMed
83.
Bowman P, Sulen A, Barbetti F, Beltrand J, Svalastoga P, Codner E, et al. Effectiveness and safety of long-term treatment with sulphonylureas in neonatal diabetes due to KCNJ11 mutations: an international cohort study. Lancet Diabetes Endocrinol 2018
84.
Perrone ME, Carmody D, Philipson LH, Greeley SA. An online monogenic diabetes discussion group: supporting families and fueling new research. Transl Res. 2015 Nov;166(5):425–31. CrossRefPubMedPubMedCentral
85.
Greeley SAW, Naylor RN, Cook LS, Tucker SE, Lipton RB, Philipson LH. Creation of the web-based University of Chicago Monogenic Diabetes Registry: using technology to facilitate longitudinal study of rare subtypes of diabetes. J Diabetes Sci Technol [Internet]. 2011;5(4):879–86. Available from: http://​www.​ncbi.​nlm.​pubmed/​pubmed/​21880229%5Cn http://​www.​pubmedcentral.​pubmed/​articlerender.​fcgi?​artid=​PMC3192593
86.
Rabbone I, Barbetti F, Marigliano M, Bonfanti R, Piccinno E, Ortolani F, et al. Successful treatment of young infants presenting neonatal diabetes mellitus with continuous subcutaneous insulin infusion before genetic diagnosis. Acta Diabetol. 2016;53(4):559–65. CrossRefPubMed
87.
• Kapellen TM, Heidtmann B, Lilienthal E, Rami-Merhar B, Engler-Schmidt C, Holl RW. Continuous subcutaneous insulin infusion in neonates and infants below 1 year: analysis of initial bolus and basal rate based on the experiences from the German Working Group for Pediatric Pump Treatment. Diabetes Technol Ther [Internet]. 2015;17(12):872–9. Available from: http://​search.​ebscohost.​com/​login.​aspx?​direct=​true&​db=​c8h&​AN=​113072738&​amp%5Cnlang=​ja&​site=​ehost-live. Kapellen and colleagues provide a comprehensive discussion of CSII use in neonates and infancy, as well as suggested dosing guidelines. CrossRef
88.
Rabbone I, Barbetti F, Gentilella R, Mossetto G, Bonfanti R, Maffeis C, et al. Insulin therapy in neonatal diabetes mellitus: a review of the literature. Diabetes Res Clin Pract [Internet]. 2017;129:126–35. Available from: http://​www.​ncbi.​nlm.​pubmed/​pubmed/​28527303 CrossRef
89.
Sanyoura M, Jacobsen L, Carmody D, Del Gaudio D, Alkorta-Aranburu G, Arndt K, et al. Pancreatic histopathology of human monogenic diabetes due to causal variants in KCNJ11, HNF1A, GATA6, and LMNA. J Clin Endocrinol Metab [Internet]. 2018;103(1):35–45. Available from: http://​www.​ncbi.​nlm.​pubmed/​pubmed/​28938416 CrossRef
90.
Weedon MN, Cebola I, Patch AM, Flanagan SE, De Franco E, Caswell R, et al. Recessive mutations in a distal PTF1A enhancer cause isolated pancreatic agenesis. Nat Genet. 2014;46(1):61–4. CrossRefPubMed
91.
Gabbay M, Ellard S, De Franco E, Moisés RS. Pancreatic agenesis due to compound heterozygosity for a novel enhancer and truncating mutation in the PTF1A gene. J Clin Res Pediatr Endocrinol [Internet]. 2017;9(3):274–7. Available from: http://​www.​ncbi.​nlm.​pubmed/​pubmed/​28663161 CrossRef
92.
Sun C, Pei Z, Zhang M, Sun B, Yang L, Zhao Z, et al. Recovered insulin production after thiamine administration in permanent neonatal diabetes mellitus with a novel solute carrier family 19 member 2 (SLC19A2) mutation. J Diabetes. 2018;10(1):50–8. CrossRefPubMed
93.
Santer R, Schneppenheim R, Dombrowski A, Götze H, Steinmann B, Schaub J. Mutations in GLUT2, the gene for the liver-type glucose transporter, in patients with Fanconi-Bickel syndrome. Nat Genet. 1997;17(3):324–6. CrossRefPubMed
94.
Taha D, Al-Harbi N, Al-Sabban E. Hyperglycemia and hypoinsulinemia in patients with Fanconi-Bickel syndrome. J Pediatr Endocrinol Metab [Internet]. 2008;21(6):581–6. Available from: http://​www.​ncbi.​nlm.​pubmed/​entrez/​query.​fcgi?​cmd=​Retrieve&​db=​PubMed&​dopt=​Citation&​list_​uids=​18717244
95.
Khandelwal P, Sinha A, Jain V, Houghton J, Hari P, Bagga A. Fanconi syndrome and neonatal diabetes: phenotypic heterogeneity in patients with GLUT2 defects. CEN Case Reports [Internet]. 2017;7:1–4. https://​doi.​org/​10.​1007/​s13730-017-0278-x. CrossRef
96.
Finnish-German APECED Consortium. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat Genet [Internet]. 1997;17(4):399–403. Available from: http://​www.​ncbi.​nlm.​pubmed/​pubmed/​9398840 CrossRef
97.
Fierabracci A. Type 1 diabetes in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome (APECED): a “rare” manifestation in a “rare” disease. Int J Mol Sci [Internet]. 2016;17(7). Available from: http://​www.​ncbi.​nlm.​pubmed/​pubmed/​27420045
98.
Johnson MB, Patel KA, De Franco E, Houghton JAL, McDonald TJ, Ellard S, et al. A type 1 diabetes genetic risk score can discriminate monogenic autoimmunity with diabetes from early-onset clustering of polygenic autoimmunity with diabetes. Diabetologia [Internet]. 2018 Available from: http://​www.​ncbi.​nlm.​pubmed/​pubmed/​29417186;61:862–9. CrossRef
99.
• Letourneau LR, Carmody D, Wroblewski K, Denson AM, Sanyoura M, Naylor RN, et al. Diabetes presentation in infancy: high risk of diabetic ketoacidosis. Diabetes Care [Internet]. 2017;40:e147–8. Available from: http://​www.​ncbi.​nlm.​pubmed/​pubmed/​28779000. This study reveals a strikingly high frequency of DKA at diagnosis (66.2%) in infancy-onset cases, emphasizing the need for correctly identifying diabetes in very young children. CrossRef
100.
Carmody D, Bell CD, Hwang JL, Dickens JT, Sima DI, Felipe DL, et al. Sulfonylurea treatment before genetic testing in neonatal diabetes: pros and cons. J Clin Endocrinol Metab. 2014;99(12):E2709–14. CrossRefPubMedPubMedCentral
101.
Greeley SAW, John PM, Winn AN, Ornelas J, Lipton RB, Philipson LH, et al. The cost-effectiveness of personalized genetic medicine: the case of genetic testing in neonatal diabetes. Diabetes Care. 2011;34(3):622–7. CrossRefPubMedPubMedCentral
102.
Naylor RN, John PM, Winn AN, Carmody D, Greeley SAW, Philipson LH, et al. Cost-effectiveness of MODY genetic testing: translating genomic advances into practical health applications. Diabetes Care. 2014;37(1):202–9. CrossRefPubMed
103.
Alkorta-Aranburu G, Sukhanova M, Carmody D, Hoffman T, Wysinger L, Keller-Ramey J, et al. Improved molecular diagnosis of patients with neonatal diabetes using a combined next-generation sequencing and MS-MLPA approach. J Pediatr Endocrinol Metab [Internet]. 2016 May 1;29(5):523–531. Available from: http://​www.​ncbi.​nlm.​pubmed/​pubmed/​26894574