Skip to main content
Log in

Clinical Pharmacokinetics and Pharmacodynamics of Vildagliptin

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Vildagliptin is an orally active, potent and selective dipeptidyl peptidase-4 (DPP-4) inhibitor, shown to be effective and well tolerated in patients with type 2 diabetes mellitus (T2DM) as either monotherapy or in combination with other anti-diabetic agents. Vildagliptin possesses several desirable pharmacokinetic properties that contribute to its lower variability and low potential for drug interaction. Following oral administration, vildagliptin is rapidly and well absorbed with an absolute bioavailability of 85%. An approximately dose-proportional increase in exposure to vildagliptin over the dose range of 25–200 mg has been reported. Food does not have a clinically relevant impact on the pharmacokinetics of vildagliptin, and it can be taken without regard to food. Vildagliptin is minimally bound to plasma proteins (9.3%) and, on the basis of a volume of distribution of 71 L, it is considered to distribute extensively into extra vascular spaces. Renal clearance of vildagliptin (13L/h) accounts for 33% of the total body clearance after intravenous administration (41 L/h). The primary elimination pathway is hydrolysis by multiple tissues/organs. The DPP-4 enzyme contributes to the formation of the major hydrolysis metabolite, LAY 151; therefore, vildagliptin is also a substrate of DPP-4. Vildagliptin has a low potential for drug interactions, as cytochrome P450 (CYP) enzymes are minimally (<1.6%) involved in the overall metabolism. Clinical pharmacokinetic studies have reported the lack of drug interaction with several drugs (metformin, pioglitazone, glyburide, simvastatin, amlodipine, valsartan, ramipril, digoxin and warfarin) that are likely to be frequently co-administered to patients with T2DM. In particular, vildagliptin does not affect the pharmacokinetics of pioglitazone, glyburide, warfarin and simvastatin; therefore, it is not expected to affect the pharmacokinetics of a drug that is a substrate for CYP2C8, CYP2C9 or CYP3A4. In the elderly, vildagliptin exposure increases by approximately 30%, which is considered to be mostly attributable to compromised renal function in the elderly population and is not considered to be clinically relevant. Vildagliptin has been demonstrated to be efficacious, safe and well tolerated in elderly patients with T2DM without dose adjustment. In subjects with varying degrees of renal impairment, vildagliptin exposure increases by approximately 2-fold; however, the increase in the exposure does not correlate with the severity of renal impairment. The lack of a clear correlation between the increased exposure and the severity of renal impairment is considered to be attributable to the fact that the kidneys contribute to both the excretion and the hydrolysis metabolism of vildagliptin. Hepatic impairment, gender, body mass index (BMI) and ethnicity do not have an influence on the pharmacokinetics of vildagliptin. These findings suggest that vildagliptin can be used in a diverse patient population without dose adjustment.

Oral administration of vildagliptin to patients with T2DM completely inhibits DPP-4 activity at a variety of doses. The onset of DPP-4 inhibition is rapid, and the duration of DPP-4 inhibition is dose dependent. Vildagliptin is a potent inhibitor of the DPP-4 enzyme, with a concentration required to achieve 50% DPP-4 inhibition (IC50) of 4.5 nmol/L in patients with T2DM. Similar potency of DPP-4 inhibition by vildagliptin has been reported in different ethnic groups, indicating that ethnicity does not affect the pharmacodynamics of vildagliptin. Vildagliptin significantly increases the active glucagon-like peptide 1 (GLP-1) levels by approximately 2- to 3-fold and glucose-dependent insulinotropic polypeptide (GIP) levels by approximately 5-fold, and significantly suppresses the postprandial glucagon levels in response to a meal or following an oral glucose tolerance test (OGTT) in patients with T2DM. Vildagliptin significantly reduces both fasting and postprandial glucose levels over the dose range of 50–100 mg daily (administered either once daily or twice daily), and there are no substantial additional benefits of doses greater than 50 mg twice daily. The primary clinical dosing regimen is 50 mg twice daily as monotherapy or in combination with metformin. Vildagliptin increases the insulin levels following an OGTT and an intravenous glucose tolerance test (IVGTT), and the stimulation of insulin secretion is glucose dependent. Vildagliptin has been shown to improve beta-cell function on the basis of pharmacodynamic modelling taking the reduced glucose levels into account. The improvement of beta-cell function by vildagliptin has been confirmed after chronic treatment with vildagliptin for up to 2 years. Reduction of the endogenous glucose production appears to contribute to the glucose-lowering effects. Unlike the GLP-1 receptor agonists, vildagliptin does not affect gastric emptying, and this is consistent with the favourable gastrointestinal safety profile. Vildagliptin improves the sensitivity of the alpha cell to glucose in patients with T2DM by enhancing the alpha-cell responsiveness to both suppressive effects of hyperglycaemia and stimulatory effects of hypoglycaemia. Consistently, a lower incidence of hypoglycaemic events with vildagliptin is reported when it is used as either monotherapy or in combination with other anti-diabetic agents, such as metformin or insulin, as compared with a sulphonylurea. Numerous long-term clinical trials of up to 2 years have demonstrated that vildagliptin 50 mg once daily or twice daily is effective, safe and well tolerated in patients with T2DM as either monotherapy or in combination with a variety of other anti-diabetic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nathan DM, Buse JB, Davidson MB, et al. American Diabetes Association; European Association for Study of Diabetes. Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2009; 32(1): 193–203

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Elliott RM, Morgan LM, Tredger JA, et al. Glucagon-like peptide-1 (7-36) amide and glucose-dependent insulintropic polypeptide secretion in response to nutrient ingestion in man: acute postprandial and 24-h secretion patterns. J Endocrinol 1993; 138: 159–66

    CAS  PubMed  Google Scholar 

  3. Kreymann B, Williams G, Ghatei MA, et al. Glucagon-like peptide-17–36: a physiological incretin in man. Lancet 1987; 2: 1300–4

    CAS  PubMed  Google Scholar 

  4. Nauck MA, Bartels E, Orskov C, et al. Additive insulinotropic effects of exogenous synthetic human gastric inhibitory polypeptide and glucagon-like peptide-1-(7-36) amide infused at near-physiological insulinotropic hormone and glucose concentrations. J Clin Endocrinol Metab 1993; 76(4): 912–7

    CAS  PubMed  Google Scholar 

  5. Nauck MA, Bartels E, Orskov C, et al. Influence of glucagon-like peptide 1 on fasting glycemia in type 2 diabetic patients treated with insulin after sulfonylurea secondary failure. Diabetes Care 1998; 21(11): 1925–31

    CAS  PubMed  Google Scholar 

  6. Nauck MA, Kleine N, Orskov C, et al. Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7–36 amide) in type 2 (non-insulin-dependent) diabetic patients. Diabetologia 1993; 36(8): 741–4

    CAS  PubMed  Google Scholar 

  7. Deacon CF. What do we know about the secretion and degradation of incretin hormones? Regul Pept 2005 Jun 15; 128(2): 117–24

    CAS  PubMed  Google Scholar 

  8. Naslund E, Bogefors J, Skogar S, et al. GLP-1 slows solid gastric emptying and inhibits insulin, glucagon, and PYY release in humans. Am J Physiol 1999; 277(3 Pt 2): R910–6

    CAS  PubMed  Google Scholar 

  9. Delgado-Aros S, Kim DY, Burton DD, et al. Effect of GLP-1 on gastric volume, emptying, maximum volume ingested, and postprandial symptoms in humans. Am J Physiol Gastrointest Liver Physiol 2002; 282(3): G424–31

    CAS  PubMed  Google Scholar 

  10. Zander M, Madsbad S, Madsen JL, et al. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet 2002; 359(9309): 824–30

    CAS  PubMed  Google Scholar 

  11. Holst JJ. Therapy of type 2 diabetes mellitus based on the actions of glucagon-like peptide-1. Diabetes Metab Res Rev 2002; 18(6): 430–41

    CAS  PubMed  Google Scholar 

  12. Nystrom T, Gutniak MK, Zhang Q, et al. Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease. Am J Physiol Endocrinol Metab 2004 Dec; 287(6): E1209–15

    PubMed  Google Scholar 

  13. Gutniak MK, Linde B, Holst JJ, et al. Subcutaneous injection of the incretin hormone glucagon-like peptide 1 abolishes postprandial glycemia in NIDDM. Diabetes Care 1994; 17(9): 1039–44

    CAS  PubMed  Google Scholar 

  14. Deacon CF. Circulation and degradation of GIP and GLP-1. Horm Metab Res 2004; 36(11–12): 761–5

    CAS  PubMed  Google Scholar 

  15. Mentlein R, Gallwitz B, Schmidt WE. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1 (7–36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur J Biochem 1993; 214(3): 829–35

    CAS  PubMed  Google Scholar 

  16. Deacon CF, Johnsen AH, Holst JJ. Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo. J Clin Endocrinol Metab 1995; 80(3): 952–7

    CAS  PubMed  Google Scholar 

  17. Abbott CA, Baker E, Sutherland GR, et al. Genomic organization, exact localization, and tissue expression of the human CD26 (dipeptidyl peptidase IV) gene. Immunogenetics 1994; 40(5): 331–8

    CAS  PubMed  Google Scholar 

  18. Deacon CF, Nauck MA, Toft-Nielsen M, et al. Both subcutaneously and intravenously administered glucagon-like peptide I are rapidly degraded from the NH2-terminus in type II diabetic patients and in healthy subjects. Diabetes 1995 Sep; 44(9): 1126–31

    CAS  PubMed  Google Scholar 

  19. Deacon CF. Therapeutic strategies based on glucagon-like peptide 1. Diabetes 2004; 53(9): 2181–9

    CAS  PubMed  Google Scholar 

  20. Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 2006; 368(9548): 1696–705

    CAS  PubMed  Google Scholar 

  21. Scheen AJ. Pharmacokinetics of dipeptidylpeptidase-4 inhibitors. Diabetes Obes Metab 2010; 12(8): 648–58

    CAS  PubMed  Google Scholar 

  22. Baetta R, Corsini A. Pharmacology of dipeptidyl peptidase-4 inhibitors: similarities and differences. Drugs 2011; 71(11): 1441–67

    CAS  PubMed  Google Scholar 

  23. Matthews DR, Dejager S, Ahren B, et al. Vildagliptin add-on to metformin produces similar efficacy and reduced hypoglycaemic risk compared with glimepiride, with no weight gain: results from a 2-year study. Diabetes Obes Metab 2010; 12(9): 780–9

    CAS  PubMed  Google Scholar 

  24. Fonseca V, Schweizer A, Albrecht D, et al. Addition of vildagliptin to insulin improves glycaemic control in type 2 diabetes. Diabetologia 2007; 50(6): 1148–55

    CAS  PubMed  Google Scholar 

  25. Ahren B, Pacini G, Foley JE, et al. Improved meal-related beta-cell function and insulin sensitivity by the dipeptidyl peptidase-IV inhibitor vildagliptin in metformin-treated patients with type 2 diabetes over 1 year. Diabetes Care 2005; 28: 1936–40

    CAS  PubMed  Google Scholar 

  26. Bosi E, Camisasca RP, Collober C, et al. Effects of vildagliptin on glucose control over 24 weeks in patients with type 2 diabetes inadequately controlled with metformin. Diabetes Care 2007; 30(4): 890–5

    CAS  PubMed  Google Scholar 

  27. Ahrén B, Foley JE, Bosi E. Clinical evidence and mechanistic basis for vildagliptin’s action when added to metformin. Diabetes Obes Metab 2011; 13(3): 193–203

    PubMed  Google Scholar 

  28. Pratley RE, Jauffret-Kamel S, Galbreath E, et al. Twelve-week monotherapy with the DPP-4 inhibitor vildagliptin improves glycemic control in subjects with type 2 diabetes. Horm Metab Res 2006; 38(6): 423–8

    CAS  PubMed  Google Scholar 

  29. Ahren B, Gomis R, Standl E, et al. Twelve- and 52-week efficacy of the dipeptidyl peptidase IV inhibitor LAF237 in metformin-treated patients with type 2 diabetes. Diabetes Care 2004; 27(12): 2874–80

    CAS  PubMed  Google Scholar 

  30. Ristic S, Byiers S, Foley J, et al. Improved glycaemic control with dipeptidyl peptidase-4 inhibition in patients with type 2 diabetes: vildagliptin (LAF237) dose response. Diabetes Obes Metab 2005; 7: 692–8

    CAS  PubMed  Google Scholar 

  31. Dejager S, Razac S, Foley JE, et al. Vildagliptin in drug-naive patients with type 2 diabetes: a 24-week, double-blind, randomized, placebo-controlled, multiple-dose study. Horm Metab Res 2007; 39(3): 218–23

    CAS  PubMed  Google Scholar 

  32. Rosenstock J, Baron MA, Dejager S, et al. Comparison of vildagliptin and rosiglitazone monotherapy in patients with type 2 diabetes: a 24-week, double-blind, randomized trial. Diabetes Care 2007; 30(2): 217–23

    CAS  PubMed  Google Scholar 

  33. Pi-Sunyer FX, Schweizer A, Mills D, et al. Efficacy and tolerability of vildagliptin monotherapy in drug-naive patients with type 2 diabetes. Diabetes Res Clin Pract 2007 Apr; 76(1): 132–8

    CAS  PubMed  Google Scholar 

  34. Schweizer A, Dejager S, Foley JE, et al. Clinical experience with vildagliptin in the management of type 2 diabetes in a patient population ≥75 years: a pooled analysis from a database of clinical trials. Diabetes Obes Metab 2011; 13(1): 55–64

    CAS  PubMed  Google Scholar 

  35. Iwamoto Y, Kashiwagi A, Yamada N, et al. Efficacy and safety of vildagliptin and voglibose in Japanese patients with type 2 diabetes: a 12-week, randomized, double-blind, active-controlled study. Diabetes Obes Metab 2010; 12(8): 700–8

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Pan C, Yang W, Barona JP, et al. Comparison of vildagliptin and acarbose monotherapy in patients with type 2 diabetes: a 24-week, double-blind, randomized trial. Diabet Med 2008; 25(4): 435–41

    PubMed  Google Scholar 

  37. Rosenstock J, Baron MA, Camisasca RP, et al. Efficacy and tolerability of initial combination therapy with vildagliptin and pioglitazone compared with component monotherapy in patients with type 2 diabetes. Diabetes Obes Metab 2007; 9(2): 175–85

    CAS  PubMed  Google Scholar 

  38. Garber AJ, Schweizer A, Baron MA, et al. Vildagliptin in combination with pioglitazone improves glycaemic control in patients with type 2 diabetes failing thiazolidinedione monotherapy: a randomized, placebo-controlled study. Diabetes Obes Metab 2007; 9(2): 166–74

    CAS  PubMed  Google Scholar 

  39. Derosa G, Maffioli P, Ferrari I, et al. Effects of one year treatment of vildagliptin added to pioglitazone or glimepiride in poorly controlled type 2 diabetic patients. Horm Metab Res 2010; 42(9): 663–9

    CAS  PubMed  Google Scholar 

  40. He YL, Barilla D, Ligureos-Saylan M, et al. The pharmacokinetics and DPP-4 inhibition of LAF237 in healthy volunteers [abstract]. J Clin Pharmacol 2004; 44: 1212

    Google Scholar 

  41. Sunkara G, Sabo R, He YL, et al. Dose proportionality and the effect of food on vildagliptin, a novel dipeptidyl peptidase IV inhibitor, in healthy volunteers. J Clin Pharmacol 2007; 47(9): 1152–8

    CAS  PubMed  Google Scholar 

  42. He YL, Serra D, Wang Y, et al. Pharmacokinetics and pharmacodynamics of vildagliptin in patients with type 2 diabetes mellitus. Clin Pharmacokinet 2007; 46(7): 577–88

    CAS  PubMed  Google Scholar 

  43. He YL, Sabo R, Sunkara G, et al. Evaluation of pharmacokinetic interactions between vildagliptin and digoxin in healthy volunteers. J Clin Pharmacol 2007; 47(8): 998–1004

    CAS  PubMed  Google Scholar 

  44. He YL, Sabo R, Riviere GJ, et al. Effect of the novel oral dipeptidyl peptidase IV inhibitor vildagliptin on the pharmacokinetics and pharmacodynamics of warfarin in healthy subjects. Curr Med Res Opin 2007; 23: 1131–8

    CAS  PubMed  Google Scholar 

  45. He YL, Sadler BM, Sabo R, et al. The absolute oral bioavailability and population-based pharmacokinetic modelling of a novel dipeptidylpeptidase-IV inhibitor, vildagliptin, in healthy volunteers. Clin Pharmacokinet 2007; 46(9): 787–802

    CAS  PubMed  Google Scholar 

  46. Karlsson J, Ungell A, Grasjo J, et al. Paracellular drug transport across intestinal epithelia: influence of charge and induced water flux. Eur J Pharm Sci 1999; 9(1): 47–56

    CAS  PubMed  Google Scholar 

  47. Ungell AL, Nylander S, Bergstrand S, et al. Membrane transport of drugs in different regions of the intestinal tract of the rat. J Pharm Sci 1998; 87(3): 360–6

    CAS  PubMed  Google Scholar 

  48. Piyapolrungroj N, Zhou YS, Li C, et al. Cimetidine absorption and elimination in rat small intestine. Drug Metab Dispos 2000; 28(1): 65–72

    CAS  PubMed  Google Scholar 

  49. He H, Tran P, Yin H, et al. Absorption, metabolism, and excretion of [14C]vildagliptin, a novel dipeptidyl peptidase 4 inhibitor, in humans. Drug Metab Dispos 2009; 37(3): 536–44

    CAS  PubMed  Google Scholar 

  50. He H, Tran P, Yin H, et al. Disposition of vildagliptin, a novel dipeptidyl peptidase 4 inhibitor, in rats and dogs. Drug Metab Dispos 2009; 37(3): 545–54

    CAS  PubMed  Google Scholar 

  51. He YL, Wang Y, Bullock JM, et al. Pharmacodynamics of vildagliptin in patients with type 2 diabetes during OGTT. J Clin Pharmacol 2007; 47(5): 633–41

    CAS  PubMed  Google Scholar 

  52. He YL, Sabo R, Picard F, et al. Study of the pharmacokinetic interaction of vildagliptin and metformin in patients with type 2 diabetes. Curr Med Res Opin 2009; 25(5): 1265–72

    CAS  PubMed  Google Scholar 

  53. Serra D, He YL, Bullock J, et al. Evaluation of pharmacokinetic and pharmacodynamic interaction between the dipeptidyl peptidase IV inhibitor vildagliptin, glyburide and pioglitazone in patients with type 2 diabetes. Int J Clin Pharmacol Ther 2008; 46(7): 349–64

    CAS  PubMed  Google Scholar 

  54. Jaakkola T, Laitila J, Neuvonen PJ, et al. Pioglitazone is metabolised by CYP2C8 and CYP3A4 in vitro: potential for interactions with CYP2C8 inhibitors. Basic Clin Pharmacol Toxicol 2006; 99: 44–51

    CAS  PubMed  Google Scholar 

  55. Rendell M. The role of sulphonylureas in the management of type 2 diabetes mellitus. Drugs 2004; 64: 1339–58

    CAS  PubMed  Google Scholar 

  56. Niemi M, Backman JT, Neuvonen M, et al. Effects of rifampin on the pharmacokinetics and pharmacodynamics of glyburide and glipizide. Clin Pharmacol Ther 2001; 69: 400–6

    CAS  PubMed  Google Scholar 

  57. Niemi M, Cascorbi I, Timm R, et al. Glyburide and glimepiride pharmacokinetics in subjects with different CYP2C9 genotypes. Clin Pharmacol Ther 2002; 72: 326–32

    CAS  PubMed  Google Scholar 

  58. Kirchheiner J, Brockmoller J, Meineke I, et al. Impact of CYP2C9 amino acid polymorphisms on glyburide kinetics and on the insulin and glucose response in healthy volunteers. Clin Pharmacol Ther 2002; 71: 286–96

    CAS  PubMed  Google Scholar 

  59. Sowers JR, Epstein M, Frohlich ED. Diabetes, hypertension, and cardiovascular disease: an update. Hypertension 2001; 37: 1053–9

    CAS  PubMed  Google Scholar 

  60. Turnbull F, Neal B, Algert C, et al. Effects of different blood pressure-lowering regimens on major cardiovascular events in individuals with and without diabetes mellitus: results of prospectively designed overviews of randomized trials. Arch Intern Med 2005; 165: 1410–9

    PubMed  Google Scholar 

  61. Heart Outcomes Prevention Evaluation Study Investigators. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Heart Outcomes Prevention Evaluation Study Investigators. Lancet 2000; 355: 253–9

    Google Scholar 

  62. ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA 2002; 288: 2981–97

    Google Scholar 

  63. UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ 1998; 317: 703–13

    PubMed Central  Google Scholar 

  64. Johnson ML, Singh H. Patterns of antihypertensive therapy among patients with diabetes. J Gen Intern Med 2005; 20: 842–6

    PubMed Central  PubMed  Google Scholar 

  65. He YL, Ligueros-Saylan M, Sunkara G, et al. Vildagliptin, a novel dipeptidyl peptidase IV inhibitor, has no pharmacokinetic interactions with the antihypertensive agents amlodipine, valsartan, and ramipril in healthy subjects. J Clin Pharmacol 2008; 48(1): 85–95

    CAS  PubMed  Google Scholar 

  66. Meredith PA, Elliott HL. Clinical pharmacokinetics of amlodipine. Clin Pharmacokinet 1992 Jan; 22(1): 22–31

    CAS  PubMed  Google Scholar 

  67. Mistry NB, Westheim AS, Kjeldsen SE. The angiotensin receptor antagonist valsartan: a review of the literature with a focus on clinical trials. Expert Opin Pharmacother 2006; 7(5): 575–81

    CAS  PubMed  Google Scholar 

  68. Anderson VR, Perry CM, Robinson DM. Ramipril: a review of its use in preventing cardiovascular outcomes in high-risk patients. Am J Cardiovasc Drugs 2006; 6(6): 417–32

    CAS  PubMed  Google Scholar 

  69. DREAM Trial Investigators; Bosch J, Yusuf S, Gerstein HC, et al. Effect of ramipril on the incidence of diabetes. N Engl J Med 2006 Oct 12; 355(15): 1551–62

    Google Scholar 

  70. Meisel S, Shamiss A, Rosenthal T. Clinical pharmacokinetics of ramipril. Clin Pharmacokinet 1994 Jan; 26(1): 7–15

    CAS  PubMed  Google Scholar 

  71. Vickers S, Duncan CA, Chen IW, et al. Metabolic disposition studies on simvastatin, a cholesterol lowering prodrug. Drug Metab Disp 1990; 18: 138–45

    CAS  Google Scholar 

  72. Prueksaritanont T, Gorham LM, Bennett MA, et al. In vitro metabolism of simvastatin in humans: identification of metabolizing enzymes and effect of the drug on hepatic P450s. Drug Metab Dispos 1997; 25: 1191–9

    CAS  PubMed  Google Scholar 

  73. Prueksaritoanont T, Ma B, Yu N. The human hepatic metabolism of simvastatin hydroxyl acid is mediated primarily by CYP3A and not CYP2D6. Br J Clin Pharmacol 2003; 56: 120–4

    Google Scholar 

  74. Ayalasomayajula SP, Dole K, He YL, et al. Evaluation of the potential for steady-state pharmacokinetic interaction between vildagliptin and simvastatin in healthy subjects. Curr Med Res Opin 2007; 23(12): 2913–20

    CAS  PubMed  Google Scholar 

  75. Neuvonen PJ, Niemi M, Backman JT. Drug interactions with lipid-lowering drugs: mechanisms and clinical relevance. Clin Pharmacol Ther 2006; 80(6): 565–81

    CAS  PubMed  Google Scholar 

  76. Gruer PJ, Vega JM, Mercuri MF, et al. Concomitant use of cytochrome P450 3A4 inhibitors and simvastatin. Am J Cardiol 1999; 84(7): 811–5

    CAS  PubMed  Google Scholar 

  77. Williams D, Feely J. Pharmacokinetic-pharmacodynamic drug interactions with HMG-CoA reductase inhibitors. Clin Pharmacokinet 2002; 41(5): 343–70

    CAS  PubMed  Google Scholar 

  78. Eichhorn EJ, Gheorghiade M. Digoxin. Prog Cardiovasc Dis 2002; 44: 251–66

    CAS  PubMed  Google Scholar 

  79. Gheorghiade M, van Veldhuisen DJ, Colucci WS. Contemporary use of digoxin in the management of cardiovascular disorders. Circulation 2006; 113: 2556–64

    PubMed  Google Scholar 

  80. Ostgren CJ, Merlo J, Rastam L, et al. Atrial fibrillation and its association with type 2 diabetes and hypertension in a Swedish community. Diabetes Obes Metab 2004; 6: 367–74

    CAS  PubMed  Google Scholar 

  81. Lip GY, Varughese GI. Diabetes mellitus and atrial fibrillation: perspectives on epidemiological and pathophysiological links. Int J Cardiol 2005; 105: 319–21

    PubMed  Google Scholar 

  82. Movahed MR, Hashemzadeh M, Jamal MM. Diabetes mellitus is a strong, independent risk for atrial fibrillation and flutter in addition to other cardiovascular disease. Int J Cardiol 2005; 105: 315–8

    PubMed  Google Scholar 

  83. Greiner B, Eichelbaum M, Fritz P, et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Invest 1999; 104: 147–53

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Tanigawara Y, Okamura N, Hirai M, et al. Transport of digoxin by human P-glycoprotein expressed in a porcine kidney epithelial cell line (LLC-PK1). J Pharmacol Exp Ther 1992; 263: 840–5

    CAS  PubMed  Google Scholar 

  85. Fromm MF, Kim RB, Stein CM, et al. Inhibition of P-glycoprotein-mediated drug transport: a unifying mechanism to explain the interaction between digoxin and quinidine. Circulation 1999; 99: 552–7

    CAS  PubMed  Google Scholar 

  86. Hirsh J. Oral anticoagulant drugs. N Engl J Med 1991; 324: 1865–75

    CAS  PubMed  Google Scholar 

  87. Ufer M. Comparative pharmacokinetics of vitamin K antagonists: warfarin, phenprocoumon and acenocoumarol. Clin Pharmacokinet 2005; 44: 1227–46

    CAS  PubMed  Google Scholar 

  88. Takahashi H, Echizen H. Pharmacogenetics of warfarin elimination and its clinical implications. Clin Pharmacokinet 2001; 40: 587–603

    CAS  PubMed  Google Scholar 

  89. Black DJ, Kunze KL, Wienkers LC, et al. Warfarin-fluconazole: II. A metabolically based drug interaction: in vivo studies. Drug Metab Dispos 1996; 24: 422–8

    CAS  PubMed  Google Scholar 

  90. Rettie AE, Korzekwa KR, Kunze KL, et al. Hydroxylation of warfarin by human cDNA-expressed cytochrome P-450: a role for P-4502C9 in the etiology of (S)-warfarin-drug interactions. Chem Res Toxicol 1992; 5: 54–9

    CAS  PubMed  Google Scholar 

  91. Serlin MJ, Breckenridge AM. Drug interactions with warfarin. Drugs 1983; 25: 610–20

    CAS  PubMed  Google Scholar 

  92. He YL, Sabo R, Riviere GJ, et al. Effect of the novel oral dipeptidyl peptidase IV inhibitor vildagliptin on the pharmacokinetics and pharmacodynamics of warfarin in healthy subjects. Curr Med Res Opin 2007; 23(5): 1131–8

    CAS  PubMed  Google Scholar 

  93. O’Reilly RA, Goulart DA, Kunze KL, et al. Mechanisms of the stereoselective interaction between miconazole and racemic warfarin in human subjects. Clin Pharmacol Ther 1992; 51: 656–67

    PubMed  Google Scholar 

  94. Cropp JS, Bussey HI. A review of enzyme induction of warfarin metabolism with recommendations for patient management. Pharmacotherapy 1997; 17: 917–28

    CAS  PubMed  Google Scholar 

  95. He YL, Sabo R, Campestrini J, et al. The effect of age, gender, and body mass index on the pharmacokinetics and pharmacodynamics of vildagliptin in healthy volunteers. Br J Clin Pharmacol 2008; 65(3): 338–46

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Cusack BJ. Pharmacokinetics in older persons. Am J Geriatr Pharmacother 2004; 2: 274–302

    CAS  PubMed  Google Scholar 

  97. Muhlberg W, Platt D. Age-dependent changes of the kidneys: pharmacological implications. Gerontology 1999; 45: 243–53

    CAS  PubMed  Google Scholar 

  98. He YL, Flannery B, Wang Y, et al. The influence of renal impairment on the pharmacokinetics of vildagliptin [abstract]. Clin Pharmacol Ther 2007; 81 Suppl. 1: S113

    Google Scholar 

  99. Lukashevich V, Schweizer A, Shao Q, et al. Safety and efficacy of vildagliptin versus placebo in patients with type 2 diabetes and moderate or severe renal impairment: a prospective 24-week randomized placebo-controlled trial. Diabetes Obes Metab 2011; 13(10): 947–54

    CAS  PubMed  Google Scholar 

  100. Morgan DJ, McLean AJ. Clinical pharmacokinetic and pharmacodynamic considerations in patients with liver disease: an update. Clin Pharmacokinet 1995; 29: 370–91

    CAS  PubMed  Google Scholar 

  101. Rodighiero V. Effects of liver disease on pharmacokinetics: an update. Clin Pharmacokinet 1999; 37: 399–431

    CAS  PubMed  Google Scholar 

  102. Williams RL, Mamelok RD. Hepatic disease and drug pharmacokinetics. Clin Pharmacokinet 1980; 5: 528–47

    CAS  PubMed  Google Scholar 

  103. He YL, Sabo R, Campestrini J, et al. The influence of hepatic impairment on the pharmacokinetics of the dipeptidyl peptidase IV (DPP-4) inhibitor vildagliptin. Eur J Clin Pharmacol 2007; 63(7): 677–86

    CAS  PubMed  Google Scholar 

  104. Hu P, Yin Q, Deckert F, et al. Pharmacokinetics and pharmacodynamics of vildagliptin in healthy Chinese volunteers. J Clin Pharmacol 2009; 49(1): 39–49

    PubMed  Google Scholar 

  105. He YL, Yamaguchi M, Ito H, et al. Pharmacokinetics and pharmacodynamics of vildagliptin in Japanese patients with type 2 diabetes. Int J Clin Pharmacol Ther 2010; 48(9): 582–95

    CAS  PubMed  Google Scholar 

  106. Ahren B, Simonsson E, Larsson H, et al. Inhibition of dipeptidyl peptidase IV improves metabolic control over a 4-week study period in type 2 diabetes. Diabetes Care 2002; 25(5): 869–75

    CAS  PubMed  Google Scholar 

  107. Villhauer EB, Brinkman JA, Naderi GB, et al. 1-[[(3-Hydroxy-1-adamantyl)-amino]acetyl]-2-cyano-(S)-pyrrolidine: a potent, selective, and orally bio-available dipeptidyl peptidase IV inhibitor with antihyperglycemic properties. J Med Chem 2003; 46(13): 2774–89

    CAS  PubMed  Google Scholar 

  108. Burkey BF, Russell M, Wang K, et al. Vildagliptin displays slow tight-binding to dipeptidyl peptidase (DPP)-4, but not DPP-8 or DPP-9 [abstract]. Diabetologia 2006; 49 Suppl. 1: 477–8

    Google Scholar 

  109. Marfella R, Barbieri M, Grella R, et al. Effects of vildagliptin twice daily vs. sitagliptin once daily on 24-hour acute glucose fluctuations. J Diabetes Complications 2010; 24(2): 79–83

    PubMed  Google Scholar 

  110. Mari A, Sallas WM, He YL, et al. Vildagliptin, a dipeptidyl peptidase-IV inhibitor, improves model-assessed beta-cell function in patients with type 2 diabetes. J Clin Endocrinol Metab 2005; 90: 4888–94

    CAS  PubMed  Google Scholar 

  111. Ahren B, Landin-Olsson M, Jansson P-A, et al. Inhibition of dipeptidyl peptidase-4 reduces glycemia, sustains insulin levels and reduces glucagon levels in type 2 diabetes. J Clin Endocrinol Metab 2004; 89(5): 2078–84

    CAS  PubMed  Google Scholar 

  112. Azuma K, Rádiková Z, Mancino J, et al. Measurements of islet function and glucose metabolism with the dipeptidyl peptidase 4 inhibitor vildagliptin in patients with type 2 diabetes. J Clin Endocrinol Metab 2008; 93(2): 459–64

    CAS  PubMed  Google Scholar 

  113. Balas B, Baig MR, Watson C, et al. The dipeptidyl peptidase IV inhibitor vildagliptin suppresses endogenous glucose production and enhances islet function after single-dose administration in type 2 diabetic patients. J Clin Endocrinol Metab 2007; 92(4): 1249–55

    CAS  PubMed  Google Scholar 

  114. Meier JJ, Nauck MA. GIP as a potential therapeutic agent? Horm Metab Res 2004; 36(11–12): 859–66

    CAS  PubMed  Google Scholar 

  115. Meier JJ, Gallwitz B, Kask B, et al. Stimulation of insulin secretion by intravenous bolus injection and continuous infusion of gastric inhibitory polypeptide in patients with type 2 diabetes and healthy control subjects. Diabetes 2004 Dec; 53 Suppl. 3: S220–4

    CAS  PubMed  Google Scholar 

  116. Nauck MA, Baller B, Meier JJ. Gastric inhibitory polypeptide and glucagon-like peptide-1 in the pathogenesis of type 2 diabetes. Diabetes 2004 Dec; 53 Suppl. 3: S190–6

    CAS  PubMed  Google Scholar 

  117. Meier JJ, Gallwitz B, Siepmann N, et al. Gastric inhibitory polypeptide (GIP) dose-dependently stimulates glucagon secretion in healthy human subjects at euglycaemia. Diabetologia 2003 Jun; 46(6): 798–801

    CAS  PubMed  Google Scholar 

  118. Nauck MA, Heimesaat MM, Behle K, et al. Effects of glucagon-like peptide 1 on counterregulatory hormone responses, cognitive functions, and insulin secretion during hyperinsulinemic, stepped hypoglycemic clamp experiments in healthy volunteers. J Clin Endocrinol Metab 2002 Mar; 87(3): 1239–46

    CAS  PubMed  Google Scholar 

  119. Schirra J, Wank U, Arnold R, et al. Effects of glucagon-like peptide-1 (7–36)amide on motility and sensation of the proximal stomach in humans. Gut 2002; 50(3): 341–8

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Vella A, Bock G, Giesler PD, et al. Effects of dipeptidyl peptidase-4 inhibition on gastrointestinal function, meal appearance, and glucose metabolism in type 2 diabetes. Diabetes 2007; 56(5): 1475–80

    CAS  PubMed  Google Scholar 

  121. D’Alessio DA, Denney AM, Hermiller LM, et al. Treatment with the dipeptidyl peptidase-4 inhibitor vildagliptin improves fasting islet-cell function in subjects with type 2 diabetes. J Clin Endocrinol Metab 2009 Jan; 94(1): 81–8

    PubMed Central  PubMed  Google Scholar 

  122. Mari A, Schmitz O, Gastaldelli A, et al. Meal and oral glucose tests for assessment of b-cell function: modeling analysis in normal subjects. Am J Physiol Endocrinol Metab 2002; 283: E1159–66

    CAS  PubMed  Google Scholar 

  123. Bonadonna RC, Stumvoll M, Fritsche A, et al. Altered homeostatic adaptation of first- and second- phase b-cell secretion in the offspring of patients with type 2 diabetes: studies with a minimal model to assess b-cell function. Diabetes 2003; 52: 470–80

    CAS  PubMed  Google Scholar 

  124. Jackson RA, Blix PM, Matthews JA, et al. Comparison of peripheral glucose uptake after oral glucose loading and a mixed meal. Metabolism 1983; 32(7): 706–10

    CAS  PubMed  Google Scholar 

  125. Mari A, Scherbaum WA, Nilsson PM, et al. Characterization of the influence of vildagliptin on model-assessed beta-cell function in patients with type 2 diabetes and mild hyperglycemia. J Clin Endocrinol Metab 2008 Jan; 93(1): 103–9

    CAS  PubMed  Google Scholar 

  126. Scherbaum WA, Schweizer A, Mari A, et al. Evidence that vildagliptin attenuates deterioration of glycaemic control during 2-year treatment of patients with type 2 diabetes and mild hyperglycaemia. Diabetes Obes Metab 2008 Nov; 10(11): 1114–24

    CAS  PubMed  Google Scholar 

  127. Foley JE, Ligueros-Saylan M, He YL, et al. Effect of vildagliptin on glucagon concentration during meals in patients with type 1 diabetes. Horm Metab Res 2008; 40(10): 727–30

    CAS  PubMed  Google Scholar 

  128. Muller WA, Faloona GR, Aguilar-Parada E, et al. Abnormal alpha-cell function in diabetes: response to carbohydrate and protein ingestion. N Engl JMed 1970; 283(3): 109–15

    CAS  Google Scholar 

  129. Aronoff SL, Bennett PH, Unger RH. Immunoreactive glucagon (IRG) responses to intravenous glucose in prediabetes and diabetes among Pima Indians and normal Caucasians. J Clin Endocrinol Metab 1977; 44(5): 968–72

    CAS  PubMed  Google Scholar 

  130. Ohneda A, Watanabe K, Horigome K, et al. Abnormal response of pancreatic glucagon to glycemic changes in diabetes mellitus. J Clin Endocrinol Metab 1978; 46(3): 504–10

    CAS  PubMed  Google Scholar 

  131. Ahrén B, Schweizer A, Dejager S, et al. Vildagliptin enhances islet responsiveness to both hyper- and hypoglycemia in patients with type 2 diabetes. J Clin Endocrinol Metab 2009; 94(4): 1236–43

    PubMed  Google Scholar 

Download references

Acknowledgements

Dr Yan-Ling He is an employee of Novartis Institutes for Biomedical Research, Inc. (Cambridge, MA, USA), and holds stocks in Novartis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Ling He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, YL. Clinical Pharmacokinetics and Pharmacodynamics of Vildagliptin. Clin Pharmacokinet 51, 147–162 (2012). https://doi.org/10.2165/11598080-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11598080-000000000-00000

Keywords

Navigation