Skip to main content
Log in

Insulin Analog Preparations and Their Use in Children and Adolescents with Type 1 Diabetes Mellitus

  • Review Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Standard or ‘traditional’ human insulin preparations such as regular soluble insulin and neutral protamine Hagedorn (NPH) insulin have shortcomings in terms of their pharmacokinetic and pharmacodynamic properties that limit their clinical efficacy. Structurally modified insulin molecules or insulin ‘analogs’ have been developed with the aim of delivering insulin replacement therapy in a more physiological manner. In the last 10 years, five insulin analog preparations have become commercially available for clinical use in patients with type 1 diabetes mellitus: three ‘rapid’ or fast-acting analogs (insulin lispro, aspart, and glulisine) and two long-acting analogs (insulin glargine and detemir). This review highlights the specific pharmacokinetic properties of these new insulin analog preparations and focuses on their potential clinical advantages and disadvantages when used in children and adolescents with type 1 diabetes mellitus.

The fast-acting analogs specifically facilitate more flexible insulin injection timing with regard to meals and activities, whereas the long-acting analogs have a more predictable profile of action and lack a peak effect. To date, clinical trials in children and adolescents have been few in number, but the evidence available from these and from other studies carried out in adults with type 1 diabetes suggest that they offer significant benefits in terms of reduced frequency of nocturnal hypoglycemia, better postprandial blood glucose control, and improved quality of life when compared with traditional insulins. In addition, insulin detemir therapy is unique in that patients may benefit from reduced risk of excessive weight, particularly during adolescence. Evidence for sustained long-term improvements in glycosylated hemoglobin, on the other hand, is modest. Furthermore, alterations to insulin/insulin-like growth factor I receptor binding characteristics have also raised theoretical concerns that insulin analogs may have an increased mitogenic potential and risk of tumor development, although evidence from both in vitro and in vivo animal studies do not support this assertion. Long-term surveillance has been recommended and further carefully designed prospective studies are needed to evaluate the overall benefits and clinical efficacy of insulin analog therapy in children and adolescents with type 1 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Fig. 1
Fig. 2
Table II
Table III

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Mosekilde E, Jensen KS, Binder C, et al. Modeling absorption kinetics of subcutaneous injected soluble insulin. J Pharmacokinet Biopharm 1989 Feb; 17(1): 67–87

    PubMed  CAS  Google Scholar 

  2. Homko C, Deluzio A, Jimenez C, et al. Comparison of insulin aspart and lispro: pharmacokinetic and metabolic effects. Diabetes Care 2003 Jul; 26(7): 2027–31

    Article  PubMed  CAS  Google Scholar 

  3. Becker RH, Frick AD, Burger F, et al. Insulin glulisine, a new rapid-acting insulin analogue, displays a rapid time-action profile in obese non-diabetic subjects. Exp Clin Endocrinol Diabetes 2005 Sep; 113(8): 435–43

    Article  PubMed  CAS  Google Scholar 

  4. Plank J, Wutte A, Brunner G, et al. A direct comparison of insulin aspart and insulin lispro in patients with type 1 diabetes. Diabetes Care 2002 Nov; 25(11): 2053–7

    Article  PubMed  Google Scholar 

  5. Lindholm A, Jacobsen LV. Clinical pharmacokinetics and pharmacodynamics of insulin aspart. Clin Pharmacokinet 2001; 40(9): 641–59

    Article  PubMed  CAS  Google Scholar 

  6. Howey DC, Bowsher RR, Brunelle RL, et al. [Lys(B28), Pro(B29)]-human insulin: a rapidly absorbed analogue of human insulin. Diabetes 1994 Mar; 43(3): 396–402

    Article  PubMed  CAS  Google Scholar 

  7. Home PD, Barriocanal L, Lindholm A. Comparative pharmacokinetics and pharmacodynamics of the novel rapid-acting insulin analogue, insulin aspart, in healthy volunteers. Eur J Clin Pharmacol 1999 May; 55(3): 199–203

    Article  PubMed  CAS  Google Scholar 

  8. Danne T, Becker RH, Heise T, et al. Pharmacokinetics, prandial glucose control, and safety of insulin glulisine in children and adolescents with type 1 diabetes. Diabetes Care 2005 Sep; 28(9): 2100–5

    Article  PubMed  CAS  Google Scholar 

  9. ter Braak EW, Woodworth JR, Bianchi R, et al. Injection site effects on the pharmacokinetics and glucodynamics of insulin lispro and regular insulin. Diabetes Care 1996 Dec; 19(12): 1437–40

    Article  PubMed  Google Scholar 

  10. Mudaliar SR, Lindberg FA, Joyce M, et al. Insulin aspart (B28 Asp-insulin): a fast-acting analog of human insulin: absorption kinetics and action profile compared with regular human insulin in healthy nondiabetic subjects. Diabetes Care 1999 Sep; 22(9): 1501–6

    Article  PubMed  CAS  Google Scholar 

  11. Gardner DF, Arakaki RF, Podet EJ, et al. The pharmacokinetics of subcutaneous regular insulin in type I diabetic patients: assessment using a glucose clamp technique. J Clin Endocrinol Metab 1986; 63(3): 689–94

    Article  PubMed  CAS  Google Scholar 

  12. Mortensen HB, Lindholm A, Olsen BS, et al. Rapid appearance and onset of action of insulin aspart in paediatric subjects with type 1 diabetes. Eur J Pediatr 2000 Jul; 159(7): 483–8

    Article  PubMed  CAS  Google Scholar 

  13. Rutledge KS, Chase HP, Klingensmith GJ, et al. Effectiveness of postprandial Humalog in toddlers with diabetes. Pediatrics 1997 Dec; 100(6): 968–72

    Article  PubMed  CAS  Google Scholar 

  14. Kamoi K, Miyakoshi M, Maruyama R. A quality-of-life assessment of intensive insulin therapy using insulin lispro switched from short-acting insulin and measured by an ITR-QOL questionnaire: a prospective comparison of multiple daily insulin injections and continuous subcutaneous insulin infusion. Diabetes Res Clin Pract 2004 Apr; 64(1): 19–25

    Article  PubMed  CAS  Google Scholar 

  15. Grey M, Boland EA, Tamborlane WV. Use of lispro insulin and quality of life in adolescents on intensive therapy. Diabetes Educ 1999 Nov–Dec; 25(6): 934–41

    Article  PubMed  CAS  Google Scholar 

  16. Deja G, Jarosz-Chobot P, Muchacka-Bianga M, et al. Insulin lispro in treatment of children and adolescents with type 1 diabetes and its effect on quality of life. Diabetologia Polska 2002; 9(2): 52–6

    Google Scholar 

  17. Bott U, Ebrahim S, Hirschberger S, et al. Effect of the rapid-acting insulin analogue insulin aspart on quality of life and treatment satisfaction in patients with type 1 diabetes. Diabet Med 2003 Aug; 20(8): 626–34

    Article  PubMed  CAS  Google Scholar 

  18. Anderson Jr JH, Brunelle RL, Koivisto VA, et al. Reduction of postprandial hyperglycemia and frequency of hypoglycemia in IDDM patients on insulin-analog treatment. Multicenter Insulin Lispro Study Group. Diabetes 1997 Feb; 46(2): 265–70

    Article  PubMed  CAS  Google Scholar 

  19. Home PD, Lindholm A, Hylleberg B, et al. Improved glycemic control with insulin aspart: a multicenter randomized double-blind crossover trial in type 1 diabetic patients. UK Insulin Aspart Study Group. Diabetes Care 1998 Nov; 21(11): 1904–9

    Article  PubMed  CAS  Google Scholar 

  20. Gough SC. A review of human and analogue insulin trials. Diabetes Res Clin Pract 2007; 77(1): 1–15

    Article  PubMed  CAS  Google Scholar 

  21. American Diabetes Association. Postprandial blood glucose. Diabetes Care 2001 Apr; 24(4): 775–8

    Article  Google Scholar 

  22. Ceriello A, Davidson J, Hanefeld M, et al. Postprandial hyperglycaemia and cardiovascular complications of diabetes: an update. Nutr Metab Cardiovasc Dis 2006 Oct; 16(7): 453–6

    Article  PubMed  CAS  Google Scholar 

  23. Amin R, Ross K, Acerini CL, et al. Hypoglycemia prevalence in prepubertal children with type 1 diabetes on standard insulin regimen: use of continuous glucose monitoring system. Diabetes Care 2003 Mar; 26(3): 662–7

    Article  PubMed  Google Scholar 

  24. Mohn A, Strang S, Wernicke-Panten K, et al. Nocturnal glucose control and free insulin levels in children with type 1 diabetes by use of the long-acting insulin HOE 901 as part of a three-injection regimen. Diabetes Care 2000 Apr; 23(4): 557–9

    Article  PubMed  CAS  Google Scholar 

  25. Ford-Adams ME, Murphy NP, Moore EJ, et al. Insulin lispro: a potential role in preventing nocturnal hypoglycaemia in young children with diabetes mellitus. Diabet Med 2003 Aug; 20(8): 656–60

    Article  PubMed  CAS  Google Scholar 

  26. Brunelle BL, Llewelyn J, Anderson Jr JH, et al. Meta-analysis of the effect of insulin lispro on severe hypoglycemia in patients with type 1 diabetes. Diabetes Care 1998 Oct; 21(10): 1726–31

    Article  PubMed  CAS  Google Scholar 

  27. Hermansen K, Fontaine P, Kukolja KK, et al. Insulin analogues (insulin detemir and insulin aspart) versus traditional human insulins (NPH insulin and regular human insulin) in basal-bolus therapy for patients with type 1 diabetes. Diabetologia 2004 Apr; 47(4): 622–9

    Article  PubMed  CAS  Google Scholar 

  28. Home PD, Hallgren P, Usadel KH, et al. Pre-meal insulin aspart compared with pre-meal soluble human insulin in type 1 diabetes. Diabetes Res Clin Pract 2006 Feb; 71(2): 131–9

    Article  PubMed  CAS  Google Scholar 

  29. Raskin P, Guthrie RA, Leiter L, et al. Use of insulin aspart, a fast-acting insulin analog, as the mealtime insulin in the management of patients with type 1 diabetes. Diabetes Care 2000 May; 23(5): 583–8

    Article  PubMed  CAS  Google Scholar 

  30. Plank J, Siebenhofer A, Berghold A, et al. Systematic review and meta-analysis of short-acting insulin analogues in patients with diabetes mellitus. Arch Intern Med 2005 Jun 27; 165(12): 1337–44

    Article  PubMed  CAS  Google Scholar 

  31. Garcia L, Lamas C, Tuset MJ, et al. Treatment with the insulin analogue lispro in children and adolescents with type 1 diabetes mellitus: evaluation over a 3-year period. Diabetes Nutr Metab 2002 Feb; 15(1): 7–13

    PubMed  CAS  Google Scholar 

  32. Raskin P, Holcombe JH, Tamborlane WV, et al. A comparison of insulin lispro and buffered regular human insulin administered via continuous subcutaneous insulin infusion pump. J Diabetes Complications 2001 Nov–Dec; 15(6): 295–300

    Article  PubMed  CAS  Google Scholar 

  33. Bode B, Weinstein R, Bell D, et al. Comparison of insulin aspart with buffered regular insulin and insulin lispro in continuous subcutaneous insulin infusion: a randomized study in type 1 diabetes. Diabetes Care 2002 Mar; 25(3): 439–44

    Article  PubMed  CAS  Google Scholar 

  34. Tubiana-Rufi N, Coutant R, Bloch J, et al. Special management of insulin lispro in continuous subcutaneous insulin infusion in young diabetic children: a randomized cross-over study. Horm Res 2004; 62(6): 265–71

    Article  PubMed  CAS  Google Scholar 

  35. Della Manna T, Steinmetz L, Campos PR, et al. Subcutaneous use of a fast-acting insulin analog: an alternative treatment for pediatric patients with diabetic ketoacidosis. Diabetes Care 2005 Aug; 28(8): 1856–61

    Article  PubMed  Google Scholar 

  36. Dunger DB, Sperling MA, Acerini CL, et al. European Society for Paediatric Endocrinology/Lawson Wilkins Pediatric Endocrine Society consensus statement on diabetic ketoacidosis in children and adolescents. Pediatrics 2004 Feb; 113(2): e133–40

    Article  PubMed  Google Scholar 

  37. Mohn A, Matyka KA, Harris DA, et al. Lispro or regular insulin for multiple injection therapy in adolescence. Differences in free insulin and glucose levels overnight. Diabetes Care 1999 Jan; 22(1): 27–32

    Article  PubMed  CAS  Google Scholar 

  38. Hansen BF, Danielsen GM, Drejer K, et al. Sustained signalling from the insulin receptor after stimulation with insulin analogues exhibiting increased mitogenic potency. Biochem J 1996 Apr 1; 315 (Pt 1): 271–9

    PubMed  CAS  Google Scholar 

  39. Slieker LJ, Brooke GS, DiMarchi RD, et al. Modifications in the B10 and B26-30 regions of the B chain of human insulin alter affinity for the human IGF-I receptor more than for the insulin receptor. Diabetologia 1997 Jul; 40Suppl. 2: S54–61

    Article  PubMed  CAS  Google Scholar 

  40. Bolli GB, Di Marchi RD, Park GD, Insulin analogues and their potential in the management of diabetes mellitus. Diabetologia 1999 Oct; 42(10): 1151–67

    Article  PubMed  CAS  Google Scholar 

  41. Heinemann L, Linkeschova R, Rave K, et al. Time-action profile of the long-acting insulin analog insulin glargine (HOE901) in comparison with those of NPH insulin and placebo. Diabetes Care 2000 May; 23(5): 644–9

    Article  PubMed  CAS  Google Scholar 

  42. Lepore M, Pampanelli S, Fanelli C, et al. Pharmacokinetics and pharmacodynamics of subcutaneous injection of long-acting human insulin analog glargine, NPH insulin, and ultralente human insulin and continuous subcutaneous infusion of insulin lispro. Diabetes 2000 Dec; 49(12): 2142–8

    Article  PubMed  CAS  Google Scholar 

  43. Pieber TR, Eugene-Jolchine I, Derobert E. Efficacy and safety of HOE 901 versus NPH insulin in patients with type 1 diabetes. The European Study Group of HOE 901 in type 1 diabetes. Diabetes Care 2000 Feb; 23(2): 157–62

    Article  PubMed  CAS  Google Scholar 

  44. Owens DR, Coates PA, Luzio SD, et al. Pharmacokinetics of 125I-labeled insulin glargine (HOE 901) in healthy men: comparison with NPH insulin and the influence of different subcutaneous injection sites. Diabetes Care 2000 Jun; 23(6): 813–9

    Article  PubMed  CAS  Google Scholar 

  45. Heise T, Bott S, Rave K, et al. No evidence for accumulation of insulin glargine (LANTUS): a multiple injection study in patients with type 1 diabetes. Diabet Med 2002 Jun; 19(6): 490–5

    Article  PubMed  CAS  Google Scholar 

  46. Kurtzhals P, Havelund S, Jonassen I, et al. Albumin binding of insulins acylated with fatty acids: characterization of the ligand-protein interaction and correlation between binding affinity and timing of the insulin effect in vivo. Biochem J 1995 Dec 15; 312 (Pt 3): 725–31

    PubMed  CAS  Google Scholar 

  47. Whittingham JL, Havelund S, Jonassen I. Crystal structure of a prolonged-acting insulin with albumin-binding properties. Biochemistry 1997 Mar 11; 36(10): 2826–31

    Article  PubMed  CAS  Google Scholar 

  48. Home P, Kurtzhals P. Insulin detemir: from concept to clinical experience. Expert Opin Pharmacother 2006 Feb; 7(3): 325–43

    Article  PubMed  CAS  Google Scholar 

  49. Bott S, Tusek C, Jacobsen LV, et al. Insulin detemir under steady-state conditions: no accumulation and constant metabolic effect over time with twice daily administration in subjects with type 1 diabetes. Diabet Med 2006 May; 23(5): 522–8

    Article  PubMed  CAS  Google Scholar 

  50. Havelund S, Plum A, Ribel U, et al. The mechanism of protraction of insulin detemir, a long-acting, acylated analog of human insulin. Pharm Res 2004 Aug; 21(8): 1498–504

    Article  PubMed  CAS  Google Scholar 

  51. Dea MK, Hamilton-Wessler M, Ader M, et al. Albumin binding of acylated insulin (NN304) does not deter action to stimulate glucose uptake. Diabetes 2002 Mar; 51(3): 762–9

    Article  PubMed  CAS  Google Scholar 

  52. Hordern SV, Wright JE, Umpleby AM, et al. Comparison of the effects on glucose and lipid metabolism of equipotent doses of insulin detemir and NPH insulin with a 16-h euglycaemic clamp. Diabetologia 2005 Mar; 48(3): 420–6

    Article  PubMed  CAS  Google Scholar 

  53. Plank J, Bodenlenz M, Sinner F, et al. A double-blind, randomized, dose-response study investigating the pharmacodynamic and pharmacokinetic properties of the long-acting insulin analog detemir. Diabetes Care 2005 May; 28(5): 1107–12

    Article  PubMed  CAS  Google Scholar 

  54. Danne T, Lupke K, Walte K, et al. Insulin detemir is characterized by a consistent pharmacokinetic profile across age-groups in children, adolescents, and adults with type 1 diabetes. Diabetes Care 2003 Nov; 26(11): 3087–92

    Article  PubMed  CAS  Google Scholar 

  55. Heise T, Nosek L, Rønn BB, et al. Lower within-subject variability of insulin detemir in comparison to NPH insulin and insulin glargine in people with type 1 diabetes. Diabetes 2004; 53: 1614–1620

    Article  PubMed  CAS  Google Scholar 

  56. Kurtzhals P, Havelund S, Jonassen I, et al. Effect of fatty acids and selected drugs on the albumin binding of a long-acting, acylated insulin analogue. J Pharm Sci 1997 Dec; 86(12): 1365–8

    Article  PubMed  CAS  Google Scholar 

  57. Matyka KA. Sweet dreams? Nocturnal hypoglycemia in children with type 1 diabetes. Pediatr Diabetes 2002 Jun; 3(2): 74–81

    Article  PubMed  Google Scholar 

  58. Murphy NP, Keane SM, Ong KK, et al. Randomized cross-over trial of insulin glargine plus lispro or NPH insulin plus regular human insulin in adolescents with type 1 diabetes on intensive insulin regimens. Diabetes Care 2003 Mar; 26(3): 799–804

    Article  PubMed  CAS  Google Scholar 

  59. Tan CY, Wilson DM, Buckingham B. Initiation of insulin glargine in children and adolescents with type 1 diabetes. Pediatr Diabetes 2004 Jun; 5(2): 80–6

    Article  PubMed  Google Scholar 

  60. Chase HP, Dixon B, Pearson J, et al. Reduced hypoglycemic episodes and improved glycemic control in children with type 1 diabetes using insulin glargine and neutral protamine Hagedorn insulin. J Pediatr 2003 Dec; 143(6): 737–40

    Article  PubMed  CAS  Google Scholar 

  61. Colino E, Lopez-Capape M, Golmayo L, et al. Therapy with insulin glargine (Lantus) in toddlers, children and adolescents with type 1 diabetes. Diabetes Res Clin Pract 2005 Oct; 70(1): 1–7

    Article  PubMed  CAS  Google Scholar 

  62. Jackson A, Ternand C, Brunzell C, et al. Insulin glargine improves hemoglobin A1c in children and adolescents with poorly controlled type 1 diabetes. Pediatr Diabetes 2003 Jun; 4(2): 64–9

    Article  PubMed  Google Scholar 

  63. Dixon B, Chase HP, Burdick J, et al. Use of insulin glargine in children under age 6 with type 1 diabetes. Pediatr Diabetes 2005 Sep; 6(3): 150–4

    Article  PubMed  Google Scholar 

  64. Rovet JF, Ehrlich RM. The effect of hypoglycemic seizures on cognitive function in children with diabetes: a 7-year prospective study. J Pediatr 1999 Apr; 134(4): 503–6

    Article  PubMed  CAS  Google Scholar 

  65. Robertson KJ, Schoenle E, Gucev Z, et al. Insulin detemir compared with NPH insulin in children and adolescents with type 1 diabetes. Diabet Med 2007 Jan; 24(1): 27–34

    Article  PubMed  CAS  Google Scholar 

  66. De Leeuw I, Vague P, Selam JL, et al. Insulin detemir used in basal-bolus therapy in people with type 1 diabetes is associated with a lower risk of nocturnal hypoglycaemia and less weight gain over 12 months in comparison to NPH insulin. Diabetes Obes Metab 2005 Jan; 7(1): 73–82

    Article  PubMed  Google Scholar 

  67. Home P, Bartley P, Russell-Jones D, et al. Insulin detemir offers improved glycemic control compared with NPH insulin in people with type 1 diabetes: a randomized clinical trial. Diabetes Care 2004 May; 27(5): 1081–7

    Article  PubMed  CAS  Google Scholar 

  68. Bryden KS, Neil A, Mayou RA, et al. Eating habits, body weight, and insulin misuse. A longitudinal study of teenagers and young adults with type 1 diabetes. Diabetes Care 1999 Dec; 22(12): 1956–60

    Article  PubMed  CAS  Google Scholar 

  69. Amiel SA, Caprio S, Sherwin RS, et al. Insulin resistance of puberty: a defect restricted to peripheral glucose metabolism. J Clin Endocrinol Metab 1991 Feb; 72(2): 277–82

    Article  PubMed  CAS  Google Scholar 

  70. Standl E, Lang H, Roberts A. The 12-month efficacy and safety of insulin detemir and NPH insulin in basal-bolus therapy for the treatment of type 1 diabetes. Diabetes Technol Ther 2004 Oct; 6(5): 579–88

    Article  PubMed  CAS  Google Scholar 

  71. Russell-Jones D, Khan R. Insulin-associated weight gain in diabetes: causes, effects, and coping strategies. Diabetes Obes Metab 2007 Nov; 9(6): 799–812

    Article  PubMed  CAS  Google Scholar 

  72. Fiallo-Scharer R, Horner B, McFann K, et al. Mixing rapid-acting insulin analogues with insulin glargine in children with type 1 diabetes mellitus. J Pediatr 2006 Apr; 148(4): 481–4

    Article  PubMed  CAS  Google Scholar 

  73. Kurtzhals P, Schaffer L, Sorensen A, et al. Correlations of receptor binding and metabolic and mitogenic potencies of insulin analogs designed for clinical use. Diabetes 2000 Jun; 49(6): 999–1005

    Article  PubMed  CAS  Google Scholar 

  74. Ciaraldi TP, Carter L, Seipke G, et al. Effects of the long-acting insulin analog insulin glargine on cultured human skeletal muscle cells: comparisons to insulin and IGF-I. J Clin Endocrinol Metab 2001 Dec; 86(12): 5838–47

    Article  PubMed  CAS  Google Scholar 

  75. Stammberger I, Bube A, Durchfeld-Meyer B, et al. Evaluation of the carcinogenic potential of insulin glargine (LANTUS) in rats and mice. Int J Toxicol 2002 May–Jun; 21(3): 171–9

    Article  PubMed  CAS  Google Scholar 

  76. Slawik M, Schories M, Busse Grawitz A, et al. Treatment with insulin glargine does not suppress serum IGF-1. Diabet Med 2006 Jul; 23(7): 814–7

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

No sources of funding were used to assist in the preparation of this review. Carlo Acerini has received speaking/lecture honoraria and educational and research grant support for independent investigator-led research from Novo Nordisk. Harriet Miles has no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo L. Acerini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miles, H.L., Acerini, C.L. Insulin Analog Preparations and Their Use in Children and Adolescents with Type 1 Diabetes Mellitus. Pediatr-Drugs 10, 163–176 (2008). https://doi.org/10.2165/00148581-200810030-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00148581-200810030-00005

Keywords

Navigation