Skip to main content
Log in

Catecholamines and the Effects of Exercise, Training and Gender

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Stress hormones, adrenaline (epinephrine) and noradrenaline (norepinephrine), are responsible for many adaptations both at rest and during exercise. Since their discovery, thousands of studies have focused on these two catecholamines and their importance in many adaptive processes to different stressors such as exercise, hypoglycaemia, hypoxia and heat exposure, and these studies are now well acknowledged. In fact, since adrenaline and noradrenaline are the main hormones whose concentrations increase markedly during exercise, many researchers have worked on the effect of exercise on these amines and reported 1.5 to >20 times basal concentrations depending on exercise characteristics (e.g. duration and intensity). Similarly, several studies have shown that adrenaline and noradrenaline are involved in cardiovascular and respiratory adjustments and in substrate mobilization and utilization. Thus, many studies have focused on physical training and gender effects on catecholamine response to exercise in an effort to verify if significant differences in catecholamine responses to exercise could be partly responsible for the different performances observed between trained and untrained subjects and/or men and women. In fact, previous studies conducted in men have used different types of exercise to compare trained and untrained subjects in response to exercise at the same absolute or relative intensity. Their results were conflicting for a while.

As research progressed, parameters such as age, nutritional and emotional state have been found to influence catecholamine concentrations. As a result, most of the recent studies have taken into account all these parameters. Those studies also used very well trained subjects and/or more intense exercise, which is known to have a greater effect on catecholamine response so that differences between trained and untrained subjects are more likely to appear. Most findings then reported a higher adrenaline response to exercise in endurance-trained compared with untrained subjects in response to intense exercise at the same relative intensity as all-out exercise. This phenomenon is referred to as the ‘sports adrenal medulla’. This higher capacity to secrete adrenaline was observed both in response to physical exercise and to other stimuli such as hypoglycaemia and hypoxia. For some authors, this phenomenon can partly explain the higher physical performance observed in trained compared with untrained subjects. More recently, these findings have also been reported in anaerobic-trained subjects in response to supramaximal exercise. In women, studies remain scarce; the results are more conflicting than in men and the physical training type (aerobic or anaerobic) effects on catecholamine response remain to be specified. Conversely, the works undertaken in animals are more unanimous and suggest that physical training can increase the capacity to secrete adrenaline via an increase of the adrenal gland volume and adrenaline content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III
Table IV
Table V

Similar content being viewed by others

References

  1. Kjær M. Adrenal medulla and exercise training. Eur J Appl Physiol 1998; 77: 195–9

    Article  Google Scholar 

  2. Galbo H. The hormonal response to exercise. Diabetes Metab Rev 1986; 1 (4): 385–408

    Article  PubMed  CAS  Google Scholar 

  3. Galbo H, Holst JJ, Christensen NJ, et al. Glucagon and plasma catecholamines during beta—receptor blockade in exercising man. J Appl Physiol 1976; 40: 855–63

    PubMed  CAS  Google Scholar 

  4. Zouhal H, Rannou F, Gratas-Delamarche A, et al. Adrenal medulla responsiveness to the sympathetic nervous activity in sprinters and untrained—subjects during a supramaximal exercise. Int J Sports Med 1998; 19: 1–5

    Article  Google Scholar 

  5. Zouhal H, Jacob C, Rannou F, et al. Effect of training status on the sympatho—adrenal activity during a supramaximal exercise in human. J Sports Med Phys Fitness 2001; 41 (3): 330–6

    PubMed  CAS  Google Scholar 

  6. Moussa E, Zouhal H, Vincent S, et al. Effect of sprint duration (6 s or 30 s) on plasma glucose regulation in untrained male subjects. J Sports Med Phys Fitness 2003; 43 (4): 546–53

    PubMed  CAS  Google Scholar 

  7. Jacob C, Zouhal H, Prioux J, et al. Effect of the intensity of training on catecholamine responses to supramaximal exercise in endurance trained men. Eur J Appl Physiol 2004; 91 (1): 35–40

    Article  PubMed  CAS  Google Scholar 

  8. Botcazou M, Zouhal H, Jacob C, et al. Effect of training and detraining on catecholamine responses to sprint exercise in adolescent girls. Eur J Appl Physiol 2006; 97 (1): 68–75

    Article  PubMed  CAS  Google Scholar 

  9. Kjær M, Mikines KJ, Christensen NJ, et al. Glucose turnover and hormonal changes during insulin—induced hypoglycemia in trained humans. J Appl Physiol Respir Environ Exerc Physiol 1984; 57 (1): 21–7

    Google Scholar 

  10. Kjær M, Bangsbo J, Lortie G, et al. Hormonal response to exercise in humans: influence of hypoxia and physical training. Am J Physiol 1988; 254: 197–03

    Google Scholar 

  11. Kjær M, Galbo H. Effect of physical training on the capacity to secrete epinephrine. J Appl Physiol 1988; 64 (1): 11–6

    PubMed  Google Scholar 

  12. Leblanc J, Jobin M, Côté J, et al. Enhanced metabolic response to caffeine in exercise-trained human subjects. J Appl Physiol 1985; 59 (3): 832–7

    PubMed  CAS  Google Scholar 

  13. Euler US, von Heener S. Excretion of noradrenaline and adrenaline in muscular work. Acta Phys Scand 1952; 26: 183–91

    Article  Google Scholar 

  14. Cryer PE. Adrenaline: a physiological metabolic regulatory hormone in humans? Int J Obes Relat Metab Disord 1993; 17 Suppl. 3: S43–6

    Google Scholar 

  15. Ahlquist RP. A study of the adrenotropic receptors. Am J Physiol 1948; 153: 586–600

    PubMed  CAS  Google Scholar 

  16. Lands AM, Arnold A, Mc Auliff JP, et al. Differentiation of receptor systems activated by sympathomimetic amines. Nature 1967; 214 (88): 597–8

    Article  PubMed  CAS  Google Scholar 

  17. Gauthier C, Tavernier G, Charpentier F, et al. Functional beta3−adrenoceptor in the human heart. J Clin Invest 1996; 15: 556–2

    Article  Google Scholar 

  18. Garcia-Sainz JA. Adrenaline and its receptors: one hundred years of research. Arch Med Res 1995; 26 (3): 205–12

    PubMed  CAS  Google Scholar 

  19. Hanoune J. The adrenal medulla. In: Baulieu E-E, Kelly PA, editors. Molecules: from molecules to disease. VII. Paris: Hermann Chapman and Hall, 1990: 308–33

    Google Scholar 

  20. Laustiola K, Uusitalo A, Koivula T, et al. Divergent effects of atenolol, practolol and propranolol on the peripheral metabolic changes induced by dynamic exercise in healthy men. Eur J Clin Pharmacol 1983; 25 (3): 293–7

    Article  PubMed  CAS  Google Scholar 

  21. Richter EA, Sonne B, Christensen NJ, et al. Role of epinephrine for muscular glycogenolysis and pancreatic hormonal secretion in running rats. Am J Physiol 1981; 240: 526–32

    Google Scholar 

  22. Scheurink AJW, Steffens AB, Dreteler GH, et al. Experience affects exercise—induced changes in catecholamines, glucose, and FFA. Am J Physiol 1989; 256: 169–73

    Google Scholar 

  23. Kreisman SH, Ah Mew N, Arsenault M, et al. Epinephrine infusion during moderate intensity exercise increases glucose production and uptake. Am J Physiol 2000; 278 (5): 949–57

    Google Scholar 

  24. Kreisman SH, Ah Mew N, Halter JB, et al. Norepinephrine infusion during moderate—intensity exercise increases glucose production and uptake. J Clin Endocrinol Metab 2001; 86 (5): 2118–24

    Article  PubMed  CAS  Google Scholar 

  25. Jacob C, Zouhal H, Vincent S, et al. Training status (endurance or sprint) and catecholamine response to the Wingate—test in women. Int J Sports Med 2002; 23: 342–7

    Article  PubMed  CAS  Google Scholar 

  26. Winder WW, Hagberg JM, Hickson RC, et al. Time course of sympathoadrenal adaptation to endurance exercise training in man. J Appl Physiol 1978; 45: 370–4

    PubMed  CAS  Google Scholar 

  27. Nevill ME, Boobis LH, Brooks S, et al. Effect of training on muscle metabolism during treadmill sprinting. J Appl Physiol 1989; 67 (6): 2376–82

    PubMed  CAS  Google Scholar 

  28. Lehmann M, Dickhuth HH, Schmid P, et al. Plasma catecholamines, β—adrenergic receptors, and isoproterenol sensitivity in endurance trained and non—endurance trained volunteers. Eur J Appl Physiol 1984; 52: 362–9

    Article  CAS  Google Scholar 

  29. Kjær M, Farrell PA, Christensen NJ, et al. Increased epinephrine response and inaccurate glycoregulation in exercising athletes. J Appl Physiol 1986; 61 (5): 1693–700

    PubMed  Google Scholar 

  30. Silvermann HG, Mazzeo RS. Hormonal responses to maximal and submaximal exercise in trained and untrained men of various ages. J Gerontol A Biol Sci Med Sci 1996; 51 (1): 30–7

    Article  Google Scholar 

  31. Strobel G, Friedmann B, Siebold R, et al. Effect of severe exercise on plasma catecholamines in differently trained athletes. Med Sci Sports Exerc 1999; 31 (4): 560–5

    Article  PubMed  CAS  Google Scholar 

  32. Hagberg JM, Seals DR, Yerg JE, et al. Metabolic responses to exercise in young and older athletes and sedentary men. J Appl Physiol 1988; 65 (2): 900–8

    PubMed  CAS  Google Scholar 

  33. Greiwe JS, Hickner RC, Shah SD, et al. Norepinephrine response to exercise at the same relative intensity before and after endurance exercise training. J Appl Physiol 1999; 86 (2): 531–5

    PubMed  CAS  Google Scholar 

  34. Frankenhaeuser M, Dunne E, Lundberg U. Sex differences in sympathetic—adrenal medullary reactions induced by different stressors. Psychopharmacol 1976; 47: 1–5

    Article  CAS  Google Scholar 

  35. Brooks S, Nevill ME, Meleagros L, et al. The hormonal responses to repetitive brief maximal exercise in humans. Eur J Appl Physiol 1990; 60: 144–8

    Article  CAS  Google Scholar 

  36. Gratas-Delamarche A, Le Cam R, Delamarche P, et al. Lactate and catecholamine responses in male and female sprinters during a Wingate test. Eur J Appl Physiol 1994; 68: 362–6

    Article  CAS  Google Scholar 

  37. Pullinen T, Mero A, Huttunen P, et al. Resistance exercise induced hormonal responses in men, women, and pubescent boys. Med Sci Sports Exerc 2002; 34 (5): 806–13

    Article  PubMed  CAS  Google Scholar 

  38. Favier RJ, Pequignot JM, Desplanches D, et al. Catecholamine and metabolic responses to submaximal exercise in untrained men and women. Eur J Appl Physiol 1983; 50: 393–404

    Article  CAS  Google Scholar 

  39. Zouhal H, Gratas-Delamarche A, Bentué-Ferrer D, et al. Réponse des catécholamines plasmatiques à l’exercice supramaximal chez des endurants. Sci Sports 1998; 13: 112–8

    Article  Google Scholar 

  40. Vincent S, Gratas-Delamarche A, Berthon PM, et al. Réponse sympatho—adrénergique induite par une épreuve de Wingate chez des femmes non entraînées. Can J Appl Physiol 2003; 28 (5): 685–98

    Article  PubMed  CAS  Google Scholar 

  41. Viru A. Plasma hormones and physical exercise. Int J Sports Med 1992; 13 (3): 201–9

    Article  PubMed  CAS  Google Scholar 

  42. Galbo H. Hormonal and metabolic adaptation to exercise. New York: Thieme—Stratton, 1983

    Google Scholar 

  43. Christensen NJ, Bransberg O. The relationship between plasma catecholamine concentration and pulse rate during exercise and standing. Eur J Clin Invest 1973; 3: 299–306

    Article  PubMed  CAS  Google Scholar 

  44. Galbo H, Christensen NJ, Holst JJ. Catecholamines and pancreatic hormones during autonomic blockade in exercising man. Acta Physiol Scand 1977; 101: 428–37

    Article  PubMed  CAS  Google Scholar 

  45. Galbo H, Houston ME, Christensen NJ, et al. The effect of water temperature on the hormonal response to prolonged swimming. Acta Physiol Scand 1979; 326 (337): 105

    Google Scholar 

  46. Christensen NJ, Galbo H. Sympathetic nervous activity during exercise. Ann Rev Physiol 1983; 45: 139–53

    Article  CAS  Google Scholar 

  47. Kohrt W, Spina RJ, Ehsani AA, et al. Effects of age, adiposity, and fitness level on plasma catecholamine responses to standing and exercise. J Appl Physiol 1993; 75 (4): 1828–35

    PubMed  CAS  Google Scholar 

  48. Watson RDS, Littler WA, Eriksson BM. Changes in plasma noradrenaline and adrenaline during isometric exercise. Clin Exp Pharmacol Physiol 1980; 7: 399–402

    Article  PubMed  CAS  Google Scholar 

  49. Bloom SR, Johnson RH, Park DM, et al. Differences in the metabolic and hormonal response to exercise between racing cyclists and untrained individuals. J Physiol 1976; 258: 1–18

    PubMed  CAS  Google Scholar 

  50. Mc Crimmon DR, Cunningham DA, Rechnitzer PA, et al. Effect of training on plasma catecholamines in post myocardial in farction patients. Med Sci Sports 1976; 8: 152–6

    Google Scholar 

  51. Trap-Jensen J, Christensen NJ, Clausen JP, et al. Arterial noradrenaline and circulatory adjustment to strenuous exercise with trained and nontrained muscle groups. In: Physical fitness 1973: proceedings of a satellite symposium of the XXV International Congress of Physiological Science. Prague: Karlova Press, 1973: 414–8

    Google Scholar 

  52. Cousineau D, Ferguson RJ, Champlain J, et al. Catecholamines in coronary sinus during exercise in man before and after training. J Appl Physiol 1977; 43: 801–6

    PubMed  CAS  Google Scholar 

  53. Winder WW, Hickson RC, Hagberg JM, et al. Training—induced changes in hormonal and metabolic responses to submaximal exercise. J Appl Physiol Respir Environ Exerc Physiol 1979; 46 (4): 766–71

    CAS  Google Scholar 

  54. Winder WW, Boullier J, Fell RD. Liver glycogenolysis during exercise without a significant increase in cAMP. Am J Physiol 1979; 237: 147–52

    Google Scholar 

  55. Koivisto V, Hendler R, Nadel E, et al. Influence of physical training on the fuel—hormone response to prolonged low intensity exercise. Metabolism 1982; 31: 192–7

    Article  PubMed  CAS  Google Scholar 

  56. Davies CTM, Few J, Foster KG, et al. Plasma catecholamine concentration during dynamic exercise involving different muscle groups. Eur J Appl Physiol 1974; 32: 195–206

    Article  CAS  Google Scholar 

  57. Blomqvist CG, Lewis SF, Taylor WF, et al. Similarity of the hemodynamic responses to static and dynamic exercise of small muscle groups. Circulation Res 1981; 48 Suppl. 1: 87–92

    Google Scholar 

  58. Clausen JP. Effect of physical training on cardiovascular adjustments to exercise in man. Physiol Rev 1977; 57: 779–815

    PubMed  CAS  Google Scholar 

  59. Kjær M, Secher NH, Galbo H. Physical stress and catecholamine release. Baillieres Clin Endocrinol Metab 1987; 1 (2): 279–98

    Article  PubMed  Google Scholar 

  60. Galbo H, Holst JJ, Christensen NJ. Glucagon and plasma catecholamine responses to graded and prolonged exercise in man. J Appl Physiol 1975; 38 (1): 70–6

    PubMed  CAS  Google Scholar 

  61. Ohkuwa T, Kato Y, Katusmata K, et al. Blood lactate and glycerol after 400m and 3000m runs in sprint and long distance runners. Eur J Appl Physiol 1984; 53: 213–8

    Article  CAS  Google Scholar 

  62. Ohkuwa T, Miyamura M, Andou Y, et al. Sex differences in lactate and glycerol levels during maximal aerobic running. Eur J Appl Physiol 1988; 57: 746–52

    Article  CAS  Google Scholar 

  63. Banister EW, Griffiths J. Blood levels of adrenergic amines during exercise. J Appl Physiol 1972; 33: 674–6

    PubMed  CAS  Google Scholar 

  64. Nilsson KO, Heding LG, Hökfelt B. The influence of short term submaximal work on the plasma concentrations of catecholamines, pancreatic glucagon and growth hormone in man. Acta Endocrinol 1975; 79: 286–94

    PubMed  CAS  Google Scholar 

  65. Manhem P, Lecerof H, Hökfelt B. Plasma catecholamine levels in the coronary sinus, the left renal vein and peripheral vessels, in healthy males at rest and during exercise. Acta Physiol Scand 1978; 104: 364–9

    Article  PubMed  CAS  Google Scholar 

  66. Manetta J, Brun JF, Prefaut C, et al. Substrate oxidation during exercise at moderate and hard intensity in middle aged and young athletes vs sedentary men. Metabolism 2005; 54 (11): 1411–9

    Article  PubMed  CAS  Google Scholar 

  67. Bracken MR, Linnane DM, Brooks S. Alkalosis and the plasma catecholamine response to high—intensity exercise in man. Med Sci Sports Exerc 2005; 37 (2): 227–33

    Article  PubMed  CAS  Google Scholar 

  68. Botcazou M, Gratas-Delamarche A, Allain S, et al. Influence de la phase du cycle menstruel sur les reponses en catecholamines à l’exercice de sprint chez la femme. Appl Physiol Nutr Metab 2006; 31 (5): 604–11

    Article  PubMed  CAS  Google Scholar 

  69. Hickson RC, Hagberg JM, Conlee RK, et al. Effect of training on hormonal responses to exercise in competitive swimmers. Eur J Appl Physiol 1979; 41: 211–9

    Article  CAS  Google Scholar 

  70. Lake CR, Ziegler MG, Kopin IJ. Use of plasma norepinephrine for evaluation of sympathetic neuronal function in man. Life Sci 1976; 18: 1315–26

    Article  PubMed  CAS  Google Scholar 

  71. Vecht RJ, Graham GWS, Sever PS. Plasma noradrenaline concentrations during isometric exercise. Br Heart J 1978; 40: 1216–20

    Article  PubMed  CAS  Google Scholar 

  72. Hartley HL, Mason JW, Hogan RP, et al. Multiple hormonal responses to prolonged exercise in relation to physical training. J Appl Physiol 1972; 33: 602–6

    PubMed  CAS  Google Scholar 

  73. Sanchez J, Pequignot JM, Peyrin L, et al. Sex differences in the sympathoadrenal responses to isometric exercise. Eur J Appl Physiol 1980; 45: 147–54

    Article  CAS  Google Scholar 

  74. Whitfield L, Sowers JR, Tuck ML, et al. Dopaminergic control of plasma catecholamine and aldosterone responses to acute stimuli in normal man. J Clin Endocrinol Metab 1980; 51: 724–9

    Article  PubMed  CAS  Google Scholar 

  75. Robson RH, Fluck DC. Effect of isometric exercise on catecholamines in the coronary circulation. Eur J Appl Physiol 1977; 37: 289–95

    Article  CAS  Google Scholar 

  76. Watson RDS, Page AJF, Littler WA, et al. Plasma noradrenaline concentrations at different vascular sites during rest and isometric and dynamic exercise. Clin Sci 1979; 57: 545–7

    PubMed  CAS  Google Scholar 

  77. Lewis SF, Snell PG, Taylor WF, et al. Role of muscle mass and mode of contraction in circulatory responses to exercise. J Appl Physiol 1985; 8 (1): 146–51

    Google Scholar 

  78. Ahlborg G, Felig P. Lactate and glucose exchange across the forearm, legs and splanchnic bed during and after prolonged leg exercise. J Clin Invest 1982; 69: 45–54

    Article  PubMed  CAS  Google Scholar 

  79. Friedmann B, Kindermann W. Energy metabolism and regulatory hormones in women and men during endurance exercise. Eur J Appl Physiol 1989; 59: 1–9

    Article  CAS  Google Scholar 

  80. Horton TJ, Pagliassotti MJ, Hobbs K, et al. Fuel metabolism in men and women during and after long—duration exercise. J Appl Physiol 1998; 85 (5): 1823–32

    PubMed  CAS  Google Scholar 

  81. Caillaud C, Collomp K, Audran M, et al. Influence d’un exercice bref et intense sur les concentrations plasmatiques d’adrénaline et de noradrénaline. C R Soc Biol 1991; 185: 84–90

    CAS  Google Scholar 

  82. Häggendal J, Hartley LH, Saltin B. Arterial noradrenaline concentration during exercise in relation to the relative work levels. Scand J Clin Lab Invest 1970; 26: 337–42

    Article  PubMed  Google Scholar 

  83. Kindermann W, Schnabel A, Schmitt WM, et al. Catecholamine, growth hormone, cortisol, insulin, and sex hormones in and aerobic and aerobic exercise. Eur J Appl Physiol 1982; 49: 389–99

    Article  CAS  Google Scholar 

  84. Näveri H, Kuoppasalmi K, Härkönen M. Plasma glucagon and catecholamines during exhaustive short—term exercise. Eur J Appl Physiol 1985; 53: 308–11

    Article  Google Scholar 

  85. Galbo H. Endocrinology and metabolism in exercise. Int J Sports Med 1981; 2: 203–11

    Article  Google Scholar 

  86. Kjær M. Epinephrine and some other hormonal responses to exercise in man: with special reference to physical training. Int J Sports Med 1989; 10: 2–15

    Article  PubMed  Google Scholar 

  87. Christensen NJ, Galbo H, Hasen JF, et al. Catecholamines and exercise. Diabetes 1979; 28: 58–62

    PubMed  CAS  Google Scholar 

  88. Kjær M, Christensen NJ, Sonne B, et al. Effect of exercise on epinephrine turnover in trained and untrained male subjects. J Appl Physiol 1985; 59 (4): 1061–7

    PubMed  Google Scholar 

  89. Lavoie JM, Bonneau MC, Roy JY, et al. Effects of dietary manipulation on blood glucose and hormonal responses following supramaximal exercise. Eur J Appl Physiol 1987; 56: 109–14

    Article  CAS  Google Scholar 

  90. Lehmann M, Schmid P, Keul J. Plasma catecholamine and blood lactate accumulation during incremental exhaustive exercise. Int J Sports Med 1985; 6 (2): 78–81

    Article  PubMed  CAS  Google Scholar 

  91. Brooks S, Burrin J, Cheetham ME, et al. The responses of the catecholamines and β—endorphin to brief maximal exercise in man. Eur J Appl Physiol 1988; 57: 230–4

    Article  CAS  Google Scholar 

  92. Vincent S, Berthon P, Zouhal H, et al. Plasma glucose, insulin and catecholamine responses to a Wingate test in physically active women and men. Eur J Appl Physiol 2004; 91 (1): 15–21

    Article  PubMed  CAS  Google Scholar 

  93. Schnabel A, Kindermann W, Steinkraus V, et al. Metabolic and hormonal responses to exhaustive supra—maximal running with or not β—adrenergic blockade. Eur J Appl Physiol 1984; 52: 214–8

    Article  CAS  Google Scholar 

  94. Cheetham ME, Boobis LH, Brooks S, et al. Human muscle metabolism during sprint running. J Appl Physiol 1986; 61 (1): 54–60

    PubMed  CAS  Google Scholar 

  95. Brooks S, Cheetham ME, Williams C, et al. Endurance—training and the catecholamine response to maximal exercise [abstract]. J Physiol 1985; 361: 81P

    Google Scholar 

  96. Hagberg JM, Hickson RC, Mc Lane JA, et al. Disappearance of noradrenaline from the circulation following strenuous exercise. J Appl Physiol 1979; 47: 1311–4

    PubMed  CAS  Google Scholar 

  97. Kjær M, Mikines KJ, Linstow M, et al. Effect of 5 weeks detraining on epinephrine response to insulin induced hypoglycemia in athletes. J Appl Physiol 1992; 72: 1201–4

    PubMed  Google Scholar 

  98. Sacca L, Vigorito C, Cicala M, et al. Role of gluconeogenesis in epinephrine—stimulated hepatic glucose production in humans. Am J Physiol 1983; 245: 294–02

    Google Scholar 

  99. Warren JB, Dalton N, Turner C, et al. Adrenaline secretion during exercise. Clin Sci 1984; 66: 87–90

    PubMed  CAS  Google Scholar 

  100. Tibes U, Hemmer B, Boöning D, et al. Relation ships of femoral venous K+, H+, pO2, osmolarity and orthophosphate with heart rate, ventilation and leg blood flow during bicycle exercise in athletes and non athletes. Eur J Appl Physiol 1976; 35: 301–14

    Article  Google Scholar 

  101. Kraemer WJ, Patton JF, Knuttgen HG, et al. Effects of high intensity cycle exercise on sympathoadrenal—medullary patterns. J Appl Physiol 1991; 70 (1): 8–14

    PubMed  CAS  Google Scholar 

  102. Kraemer WJ, Fleck SJ, Maresh CM, et al. Acute hormonal responses to a single bout of heavy resistance exercise in trained power lifters and untrained men. Can J Appl Physiol 1999; 24 (6): 524–37

    Article  PubMed  CAS  Google Scholar 

  103. Schwarz L, Kindermann W. Endorphin, adrenocorticotropic hormone, cortisol and catecholamines during aerobic and anaerobic exercise. Eur J Appl Physiol 1990; 61: 165–71

    Article  CAS  Google Scholar 

  104. Pullinen T, Nicol C, Mac Donald E, et al. Plasma catecholamine responses to four resistance exercise tests in men and women. Eur J Appl Physiol 1999; 80: 125–31

    Article  CAS  Google Scholar 

  105. Péronnet F, Cleroux J, Perrault H, et al. Plasma norepinephrine response to exercise before and after training in humans. J Appl Physiol 1981; 51 (4): 812–5

    PubMed  Google Scholar 

  106. Lacour JR, Péquignot JM, Geyssant A, et al. Influence de l’entrâinement sur le taux plasmatique des catécholamines au cours de l’exercice submaximal. J Physiol Paris 1983; 78: 838–42

    CAS  Google Scholar 

  107. Lehmann M, Keul J. Free plasma catecholamines, heart rates, lactates levels, and oxygen uptake in competition weight lifters, cyclists, and control subjects. Int J Sports Med 1986; 7: 18–21

    Article  PubMed  CAS  Google Scholar 

  108. Kjær M, Farrell P, Christensen NJ, et al. Responsiveness of adrenal medullary secretion to exercise in trained and untrained humans. Clin Physiol 1985; 5 Suppl. 4: A54

    Google Scholar 

  109. Péquignot JM, Peyrin L, Favier R, et al. Réponse adrénergique a l’exercice musculaire intense chez le sujet sédentaire en fonction de l’émotivité et de l’entrâinement. Eur J Appl Physiol 1979; 40: 117–35

    Article  Google Scholar 

  110. Friedlander AL, Casazza GA, Horning NA, et al. Training induced alterations of carbohydrate metabolism in women: women respond differently from men. J Appl Physiol 1998; 85 (3): 1175–86

    PubMed  CAS  Google Scholar 

  111. Boone JB, Sherraden T, Pierzchala JR, et al. Plasma Metenkephalin and catecholamine responses to intense exercise in humans. J Appl Physiol 1992; 73 (1): 388–92

    PubMed  CAS  Google Scholar 

  112. Guezennec CY, Leger L, Lhoste F, et al. Hormone and metabolite response to weight—lifting training sessions. Int J Sports Med 1986; 7: 100–5

    Article  PubMed  CAS  Google Scholar 

  113. Botcazou M, Zouhal H, Jacob C, et al. Effect of sprint training and detraining on catecholamine responses to sprint exercise in adolescent boys. Reprod Nutr Dev 2006; 42 (3): 291

    Google Scholar 

  114. Östman J, Sjöstrand NO. Effect of heavy physical training on the catecholamine levels of the heart and the adrenals of the rat. Acta Physiol Scand 1971; 82: 202–8

    Article  PubMed  Google Scholar 

  115. Stallknecht B, Kjær M, Ploug T, et al. Training—induced enlargement of the adrenal medulla in rats [abstract]. Acta Physiol Scand 1987; 129 (3): 50A

    Google Scholar 

  116. Stallknecht B, Kjær M, Ploug T, et al. Diminished epinephrine response to hypoglycemia despite enlarged adrenal medulla in trained rats. Am J Physiol 1990; 259: 998–03

    Google Scholar 

  117. Schmidt KN, Gosselin LE, Stanley WC. Endurance exercise training causes adrenal medullary hypertrophy in young and old Fisher 344 rats. Horm Metab Res 1992; 24: 511–5

    Article  PubMed  CAS  Google Scholar 

  118. Williams RS, Schaible TF, Bishop T, et al. Effects of endurance training on cholinergic and adrenergic receptors of rat heart. J Mol Cell Cardiol 1984; 16: 395–403

    Article  PubMed  CAS  Google Scholar 

  119. Martin WH, Murphree SS, Saffitz JE. β—adrenergic receptor distribution among muscle fiber types and resistance arterioles of white, red and intermediate skeletal muscle. Circ Res 1989; 64: 1096–105

    Article  PubMed  CAS  Google Scholar 

  120. Buckenmeyer PJ, Goldfarb AH, Partilla JS, et al. Endurance training, not acute exercise, differentially alters β—receptors and cyclase in skeletal fiber types. Am J Physiol 1990; 258: 71–7

    Google Scholar 

  121. Sable DL, Brammell HL, Sheehan MW, et al. Attenuation of exercise conditioning by beta—adrenergic blockade. Circulation 1982; 65: 679–84

    Article  PubMed  CAS  Google Scholar 

  122. Ji LL, Lennon DLF, Kochan RG, et al. Enzymatic adaptation to physical training under beta—blokade in the rat: evidence of a beta—adrenergic mechanism in skeletal muscle. J Clin Invest 1986; 78: 771–8

    Article  PubMed  CAS  Google Scholar 

  123. Sullivan MJ, Binkley PF, Unverfeth DV, et al. Prevention of bed rest—induced physical deconditioning by daily dobutamine infusions: implications for drug—induced physical conditioning. J Clin Invest 1985; 76: 1632–42

    Article  PubMed  CAS  Google Scholar 

  124. Plourde G, Rousseau-Migneron S, Nadeau A. Effect of endurance training on β—adrenergic system in three different skeletal muscles. J Appl Physiol 1993; 74: 1641–6

    PubMed  CAS  Google Scholar 

  125. Fell RD, Lizzo FH, Cervoni P, et al. Effect of contractile activity on rat skeletal muscle β—adrenoceptors properties. Proc Soc Exp Biol Med 1985; 180: 527–32

    PubMed  CAS  Google Scholar 

  126. Jost J, Weiss M, Weicker H. Comparison of sympatho—adrenergic regulation at rest and of the adrenoceptor system in swimmers, long—distance runners, weight lifters, wrestlers and untrained men. Eur J Appl Physiol 1989; 58 (6): 596–04

    Article  CAS  Google Scholar 

  127. Issekutz B. Role of beta—adrenergic receptors in mobilization of energy sources in exercising dogs. J Appl Physiol 1978; 44: 869–76

    PubMed  Google Scholar 

  128. Crampes F, Beauville M, Rivière D, et al. Effect of physical training in humans on the response of isolated fat cells to epinephrine. J Appl Physiol 1986; 61 (1): 25–9

    PubMed  CAS  Google Scholar 

  129. Rivière D, Crampes F, Beauville M, et al. Lipolytic response of fat cells to catecholamines in sedentary and exercise—trained women. J Appl Physiol 1989; 66 (1): 330–5

    PubMed  Google Scholar 

  130. Libonati JR. Myocardial diastolic function and exercise. Rev Med Sci Sports Exerc 1999; 31 (12): 1741–7

    Article  CAS  Google Scholar 

  131. Roth DA, White CD, Podolin DA, et al. Alterations in myocardial signal transduction due to aging and chronic dynamic exercise. J Appl Physiol 1998; 84 (1): 177–84

    PubMed  CAS  Google Scholar 

  132. Favret F, Henderson KK, Clancy RL, et al. Exercise training alters the effect of chronic hypoxia on myocardial adrenergic and muscarinic receptor number. J Appl Physiol 2001; 91 (3): 1283–8

    PubMed  CAS  Google Scholar 

  133. Favret F, Henderson KK, Richalet JP, et al. Effects of exercise training on acclimatization to hypoxia: systemic O2 transport during maximal exercise. J Appl Physiol 2003; 95 (4): 1531–41

    PubMed  Google Scholar 

  134. Werle EO, Strobel G, Weicker H. Decrease in rat cardiac beta 1 and beta 2−adrenoceptors by training and endurance exercise. Life Sci 1990; 46 (1): 9–17

    Article  PubMed  CAS  Google Scholar 

  135. Plourde G, Rousseau-Mogneron S, Nadeau A. β—adrenoceptor adenylate cyclase system adaptation to physical training in rat ventricular tissue. J Appl Physiol 1991; 70 (4): 1633–8

    PubMed  CAS  Google Scholar 

  136. Scarpace PJ, Shu Y, Tumer N. Influence of exercise training on myocardial beta—adrenergic signal transduction: differential regulation with age. J Appl Physiol 1994; 77 (2): 737–41

    PubMed  CAS  Google Scholar 

  137. Lenz T, Michel G, Weicker H. Increased β—;adrenoreceptors and catecholamine sensitivity in isolated rat heart and fat cells after intensive swim training [abstract]. Can J Sport Sc 1988; 13: 23

    Google Scholar 

  138. Barbier J, Rannou-Bekono F, Marchais J, et al. Effect of training on beta1 beta2 beta3 adrenergic and M2 muscarinic receptors in rat heart. Med Sci Sports Exerc 2004; 36 (6): 949–54

    Article  PubMed  CAS  Google Scholar 

  139. Jost J, Weiss M, Weicker H. Sympathoadrenergic regulation and the adrenoceptor system. J Appl Physiol 1990; 68 (3): 897–04

    PubMed  CAS  Google Scholar 

  140. Williams RS, Eden RS, Moll ME, et al. Autonomics mechanisms of training bradycardia: β—adrenergic receptors in humans. J Appl Physiol 1981; 51: 1232–7

    PubMed  CAS  Google Scholar 

  141. Tarnopolsky LJ, Mac Dougall JD, Atkinson SA, et al. Gender differences in substrate for endurance exercise. J Appl Physiol 1990; 68 (1): 302–8

    PubMed  CAS  Google Scholar 

  142. Marliss EB, Kreisman SH, Manzon A, et al. Gender differences in glucoregulatory responses to intense exercise. J Appl Physiol 2000; 88: 457–66

    PubMed  CAS  Google Scholar 

  143. Carter SL, Rennie C, Tarnopolsky MA. Substrate utilization during endurance exercise in men and women after endurance training. Am J Physiol Endocrinol Metab 2001; 280 (6): 898–907

    Google Scholar 

  144. Lehmann M, Berg A, Keul J. Sex—related differences in free plasma catecholamines in individuals of similar performance ability during graded ergometric exercise. Eur J Appl Physiol 1986; 55: 54–8

    Article  CAS  Google Scholar 

  145. Hoeldtke RD, Cilmi KM. Effects of aging on catecholamine metabolism. J Clin Endocrinol Metab 1985; 60: 479–84

    Article  PubMed  CAS  Google Scholar 

  146. Morrow LA, Linares OA, Hill TJ, et al. Age differences in the plasma clearance mechanisms for epinephrine and norepinephrine in humans. J Clin Endocrinol Metab 1987; 65 (3): 508–11

    Article  PubMed  CAS  Google Scholar 

  147. Mazzeo RS, Grantham PA. Sympathetic response to exercise in various tissues with advancing age. J Appl Physiol 1989; 66: 1506–8

    PubMed  CAS  Google Scholar 

  148. Mazzeo RS, Rajkumar C, Jennings G, et al. Norepinephrine spillover at rest and during submaximal exercise in young and old subjects. J Appl Physiol 1997; 82: 1869–74

    PubMed  CAS  Google Scholar 

  149. Young JB, Rowe JW, Pallotta JA, et al. Enhanced plasma norepinephrine response to upright posture and oral glucose administration in elderly human subjects. Metabolism 1980; 29: 532–9

    Article  PubMed  CAS  Google Scholar 

  150. Lehmann M, Keul J, Huber G, et al. Alters—und belastungsbedingtes Verhalten der Plasmakate—cholamine. Klin Wochenschr 1981; 59: 19–25

    Article  PubMed  CAS  Google Scholar 

  151. Zouhal H, Gratas-Delamarche A, Bentué—Ferrer D, et al. Between 21 and 34 years of age, aging alters the catecholamine responses to supramaximal exercise in endurance trained athletes. Int J Sports Med 1999; 20: 343–8

    Article  PubMed  CAS  Google Scholar 

  152. Ziegler MG, Lake CR, Kopin IJ. Plasma noradrenaline increases with age. Nature 1976; 261: 333–5

    Article  PubMed  CAS  Google Scholar 

  153. Forsman L. Habitual catecholamine excretion and its relation to habitual distress. Biol Psychol 1980; 11 (2): 83–97

    Article  PubMed  CAS  Google Scholar 

  154. Péquignot JM, Peyrin L, Peres G. Catecholamine—fuel interrelationships during exercise in fasting men. J Appl Physiol 1980; 48: 109–13

    PubMed  Google Scholar 

  155. Langfort JL, Zarzeczny R, Nazar K, et al. The effect of low—carbohydrate diet on the pattern of hormonal changes during incremental, graded exercise in young men. Int J Sport Nutr Exerc Metab 2001; 11 (2): 248–57

    PubMed  CAS  Google Scholar 

  156. Collomp K, Ahmaidi S, Audran M, et al. Effects of caffeine ingestion on performance and anaerobic metabolism during the Wingate test. Int J Sports Med 1991; 12 (5): 439–43

    Article  PubMed  CAS  Google Scholar 

  157. Young JB, Macdonald IA. Sympathoadrenal activity in human obesity: heterogeneity of findings since 1980. Int J Obes Relat Metab Disord 1992; 16 (12): 959–67

    PubMed  CAS  Google Scholar 

  158. De Glisezinski I, Moro C, Pillard F, et al. Aerobic training improves exercise—induced lipolysis in SCAT and lipid utilization in overweight men. Am J Physiol Endocrinol Metab 2003; 285 (5): E984–90

    Google Scholar 

  159. Stich V, de Glisezinski I, Galitzky J, et al. Endurance training increases the beta—adrenergic lipolytic response in subcutaneous adipose tissue in obese subjects. Int J Obes Relat Metab Disord 1999; 23 (4): 374–81

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassane Zouhal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zouhal, H., Jacob, C., Delamarche, P. et al. Catecholamines and the Effects of Exercise, Training and Gender. Sports Med 38, 401–423 (2008). https://doi.org/10.2165/00007256-200838050-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200838050-00004

Keywords

Navigation