Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 5, 2015

Perivascular adipose tissue, inflammation and insulin resistance: link to vascular dysfunction and cardiovascular disease

  • Guido Lastra EMAIL logo and Camila Manrique

Abstract

Obesity is a leading risk factor for the development of type 2 diabetes mellitus (DM2) and cardiovascular disease (CVD), however the underlying mechanisms still remain to be fully uncovered. It is now well accepted that dysfunctional adipose tissue in conditions of obesity is a critical source of inflammation that impacts the cardiovascular system and contributes to CVD. Although traditionally visceral adipose tissue has been linked to increased CVD risk, there is mounting interest in the role that fat accumulation around the vasculature plays in the pathogenesis of vascular dysfunction. Perivascular adipose tissue (PVAT) is in intimate contact with large, medium and small diameter arterial beds in several tissues, and has been shown to control vascular function as well as remodeling. PVAT does not merely mirror visceral adipose tissue changes seen in obesity, but has unique features that impact vascular biology. In lean individuals PVAT exerts vasodilatory and anti-inflammatory functions, however obesity results in PVAT inflammation, characterized by imbalance between pro- and anti-inflammatory cells as wells as adipokines. PVAT inflammation promotes insulin resistance in the vasculature, thus resulting in impaired insulin-mediated vasodilatory responses and vascular remodeling. In this review we address current knowledge about the mechanisms that link PVAT inflammation to insulin resistance and vascular dysfunction. Indeed, PVAT emerges as a novel type of adipose tissue that participates in the pathogenesis of CVD, independently to a large extent to visceral adipose tissue.


Corresponding author: Guido Lastra, Burns Diabetes and Cardiovascular Center, Division of Diabetes and Endocrinology, University of Missourim Columbia, Missouri, USA, E-mail:

References

1. Lastra-Gonzalez G, Manrique C, Govindarajan G, Whaley-Connell A, Sowers J. Insights into the emerging cardiometabolic prevention and management of diabetes mellitus. Expert Opin Pharmacother 2005;6:2209–21.10.1517/14656566.6.13.2209Search in Google Scholar

2. Narayan K, Boyle J, Thompson T, Sorensen S, Williamson D. Lifetime risk for diabetes mellitus in the United States. J Am Med Assoc 2003;290:1884–90.10.1001/jama.290.14.1884Search in Google Scholar

3. Tappy L, Lê K-A. Metabolic Effects of Fructose and the Worldwide Increase in Obesity. Physiol Rev 2010;90:23–46.10.1152/physrev.00019.2009Search in Google Scholar

4. Manrique C, Lastra G, Habibi J, Mugerfeld I, Garro M, Sowers J. Loss of Estrogen Receptor? Signaling Leads to Insulin Resistance and Obesity in Young and Adult Female Mice. Cardiorenal Med 2012;2:200–10.10.1159/000339563Search in Google Scholar

5. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, AlMazroa MA, Amann M, Anderson HR, Andrews KG, Aryee M, Atkinson C, Bacchus LJ, Bahalim AN, Balakrishnan K, Balmes J, Barker-Collo S, Baxter A, Bell ML, Blore JD, Blyth F, Bonner C, Borges G, Bourne R, Boussinesq M, Brauer M, Brooks P, Bruce NG, Brunekreef B, Bryan-Hancock C, Bucello C, Buchbinder R, Bull F, Burnett RT, Byers TE, Calabria B, Carapetis J, Carnahan E, Chafe Z, Charlson F, Chen H, Chen JS, Cheng AT-A, Child JC, Cohen A, Colson KE, Cowie BC, Darby S, Darling S, Davis A, Degenhardt L, Dentener F, Des Jarlais DC, Devries K, Dherani M, Ding EL, Dorsey ER, Driscoll T, Edmond K, Ali SE, Engell RE, Erwin PJ, Fahimi S, Falder G, Farzadfar F, Ferrari A, Finucane MM, Flaxman S, Fowkes FG, Freedman G, Freeman MK, Gakidou E, Ghosh S, Giovannucci E, Gmel G, Graham K, Grainger R, Grant B, Gunnell D, Gutierrez HR, Hall W, Hoek HW, Hogan A, Hosgood HD, III, Hoy D, Hu H, Hubbell BJ, Hutchings SJ, Ibeanusi SE, Jacklyn GL, Jasrasaria R, Jonas JB, Kan H, Kanis JA, Kassebaum N, Kawakami N, Khang Y-H, Khatibzadeh S, Khoo J-P, Kok C, Laden F, Lalloo R, Lan Q, Lathlean T, Leasher JL, Leigh J, Li Y, Lin JK, Lipshultz SE, London S, Lozano R, Lu Y, Mak J, Malekzadeh R, Mallinger L, Marcenes W, March L, Marks R, Martin R, McGale P, McGrath J, Mehta S, Memish ZA, Mensah GA, Merriman TR, Micha R, Michaud C, Mishra V, Hanafiah KM, Mokdad AA, Morawska L, Mozaffarian D, Murphy T, Naghavi M, Neal B, Nelson PK, Nolla JM, Norman R, Olives C, Omer SB, Orchard J, Osborne R, Ostro B, Page A, Pandey KD, Parry CD, Passmore E, Patra J, Pearce N, Pelizzari PM, Petzold M, Phillips MR, Pope D, Pope CA, III, Powles J, Rao M, Razavi H, Rehfuess EA, Rehm JT, Ritz B, Rivara FP, Roberts T, Robinson C, Rodriguez-Portales JA, Romieu I, Room R, Rosenfeld LC, Roy A, Rushton L, Salomon JA, Sampson U, Sanchez-Riera L, Sanman E, Sapkota A, Seedat S, Shi P, Shield K, Shivakoti R, Singh GM, Sleet DA, Smith E, Smith KR, Stapelberg NJC, Steenland K, Stöckl H, Stovner LJ, Straif K, Straney L, Thurston GD, Tran JH, Van Dingenen R, van Donkelaar A, Veerman JL, Vijayakumar L, Weintraub R, Weissman MM, White RA, Whiteford H, Wiersma ST, Wilkinson JD, Williams HC, Williams W, Wilson N, Woolf AD, Yip P, Zielinski JM, Lopez AD, Murray CJ, Ezzati M. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. The Lancet 2012;380:2224–60.10.1016/S0140-6736(12)61766-8Search in Google Scholar

6. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, Mullany EC, Biryukov S, Abbafati C, Abera SF, Abraham JP, Abu-Rmeileh NM, Achoki T, AlBuhairan FS, Alemu ZA, Alfonso R, Ali MK, Ali R, Guzman NA, Ammar W, Anwari P, Banerjee A, Barquera S, Basu S, Bennett DA, Bhutta Z, Blore J, Cabral N, Nonato IC, Chang J-C, Chowdhury R, Courville KJ, Criqui MH, Cundiff DK, Dabhadkar KC, Dandona L, Davis A, Dayama A, Dharmaratne SD, Ding EL, Durrani AM, Esteghamati A, Farzadfar F, Fay DF, Feigin VL, Flaxman A, Forouzanfar MH, Goto A, Green MA, Gupta R, Hafezi-Nejad N, Hankey GJ, Harewood HC, Havmoeller R, Hay S, Hernandez L, Husseini A, Idrisov BT, Ikeda N, Islami F, Jahangir E, Jassal SK, Jee SH, Jeffreys M, Jonas JB, Kabagambe EK, Khalifa SEAH, Kengne AP, Khader YS, Khang Y-H, Kim D, Kimokoti RW, Kinge JM, Kokubo Y, Kosen S, Kwan G, Lai T, Leinsalu M, Li Y, Liang X, Liu S, Logroscino G, Lotufo PA, Lu Y, Ma J, Mainoo NK, Mensah GA, Merriman TR, Mokdad AH, Moschandreas J, Naghavi M, Naheed A, Nand D, Narayan KM, Nelson EL, Neuhouser ML, Nisar MI, Ohkubo T, Oti SO, Pedroza A, Prabhakaran D, Roy N, Sampson U, Seo H, Sepanlou SG, Shibuya K, Shiri R, Shiue I, Singh GM, Singh JA, Skirbekk V, Stapelberg NJC, Sturua L, Sykes BL, Tobias M, Tran BX, Trasande L, Toyoshima H, van de Vijver S, Vasankari TJ, Veerman JL, Velasquez-Melendez G, Vlassov VV, Vollset SE, Vos T, Wang C, Wang X, Weiderpass E, Werdecker A, Wright JL, Yang YC, Yatsuya H, Yoon J, Yoon S-J, Zhao Y, Zhou M, Zhu S, Lopez AD, Murray CJ, Gakidou E. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. The Lancet 2014;384:766–81.10.1016/S0140-6736(14)60460-8Search in Google Scholar

7. Exley MA, Hand L, O’Shea D, Lynch L. Interplay between the immune system and adipose tissue in obesity. J Endocrinol 2014;223:R41–8.10.1530/JOE-13-0516Search in Google Scholar PubMed

8. Cao H. Adipocytokines in obesity and metabolic disease. J Endocrinol 2014;220:T47–T59.10.1530/JOE-13-0339Search in Google Scholar PubMed PubMed Central

9. Mathieu P, Poirier P, Pibarot P, Lemieux I, Després J-P. Visceral Obesity: The Link Among Inflammation, Hypertension, and Cardiovascular Disease. Hypertension 2009;53:577–84.10.1161/HYPERTENSIONAHA.108.110320Search in Google Scholar PubMed

10. Ashwell M, Cole TJ, Dixon AK. Obesity: new insight into the anthropometric classification of fat distribution shown by computed tomography. Br Med J (Clin Res Ed) 1985;290:1692–4.10.1136/bmj.290.6483.1692Search in Google Scholar PubMed PubMed Central

11. Shuster A, Patlas M, Pinthus JH, Mourtzakis M. The clinical importance of visceral adiposity: a critical review of methods for visceral adipose tissue analysis. The Br J Radiol 2012;85:1–10.10.1259/bjr/38447238Search in Google Scholar PubMed PubMed Central

12. Fitzgibbons TP, Czech MP. Epicardial and Perivascular Adipose Tissues and Their Influence on Cardiovascular Disease: Basic Mechanisms and Clinical Associations. J Am Heart Assoc 2014;3:e000582.10.1161/JAHA.113.000582Search in Google Scholar PubMed PubMed Central

13. Britton KA, Wang N, Palmisano J, Corsini E, Schlett CL, Hoffmann U, Larson MG, Vasan RS, Vita JA, Mitchell GF, Benjamin EJ, Hamburg NM, Fox CS. Thoracic periaortic and visceral adipose tissue and their cross-sectional associations with measures of vascular function. Obesity. 2013;21:1496–1503.10.1002/oby.20166Search in Google Scholar PubMed PubMed Central

14. Fox CS, Massaro JM, Schlett CL, Lehman SJ, Meigs JB, O’Donnell CJ, Hoffmann U, Murabito JM. Periaortic Fat Deposition Is Associated With Peripheral Arterial Disease: The Framingham Heart Study. Circ Cardiovasc Imaging 2010;3:515–9.10.1161/CIRCIMAGING.110.958884Search in Google Scholar PubMed PubMed Central

15. Briones AM, Nguyen Dinh Cat A, Callera GE, Yogi A, Burger D, He Y, Correa JW, Gagnon AM, Gomez-Sanchez CE, Gomez-Sanchez EP, Sorisky A, Ooi TC, Ruzicka M, Burns KD, Touyz RM. Adipocytes Produce Aldosterone Through Calcineurin-Dependent Signaling Pathways: Implications in Diabetes Mellitus-Associated Obesity and Vascular Dysfunction. Hypertension. 2012;59:1069–78.10.1161/HYPERTENSIONAHA.111.190223Search in Google Scholar PubMed

16. Payne GA, Borbouse L, Dincer UD, Bohlen HG, Dick GM, Tune JD. Perivascular adipose tissue impairs coronary endothelial function via protein kinase C-beta dependent phosphorylation of nitric oxide synthase. FASEB J 2008;22(1_MeetingAbstracts):743–749.10.1096/fasebj.22.1_supplement.743.9Search in Google Scholar

17. Owen MK, Witzmann FA, McKenney ML, Lai X, Berwick ZC, Moberly SP, Alloosh M, Sturek M, Tune JD. Perivascular Adipose Tissue Potentiates Contraction of Coronary Vascular Smooth Muscle: Influence of Obesity. Circulation 2013;128:9–18.10.1161/CIRCULATIONAHA.112.001238Search in Google Scholar PubMed PubMed Central

18. Meijer RI, Bakker W, Alta C-LAF, Sipkema P, Yudkin JS, Viollet B, Richter EA, Smulders YM, van Hinsbergh VWM, Serne EH, Eringa EC. Perivascular Adipose Tissue Control of Insulin-Induced Vasoreactivity in Muscle Is Impaired in db/db Mice. Diabetes. 2013;62:590–8.10.2337/db11-1603Search in Google Scholar PubMed PubMed Central

19. Galvez-Prieto B, Somoza B, Gil-Ortega M, Garcia-Prieto C, de Las Heras A, Gonzalez M, Arribas S, Aranguez I, Bolbrinker J, Kreutz R, Ruiz-Gayo M, Fernandez-Alfonso M. Anticontractile Effect of Perivascular Adipose Tissue and Leptin are Reduced in Hypertension. Front Pharmacol 2012;3:103.10.3389/fphar.2012.00103Search in Google Scholar PubMed PubMed Central

20. Brown NK, Zhou Z, Zhang J, Zeng R, Wu J, Eitzman DT, Chen YE, Chang L. Perivascular Adipose Tissue in Vascular Function and Disease: A Review of Current Research and Animal Models. Arterioscler Thromb Vasc Biol 2014;34:1621–30.10.1161/ATVBAHA.114.303029Search in Google Scholar PubMed PubMed Central

21. Wu J, Boström P, Sparks LM, Ye L, Choi JH, Giang A-H, Khandekar M, Nuutila P, Schaart G, Huang K, Tu H, van Marken Lichtenbelt WD, Hoeks J, Enerbäck S, Schrauwen P, Spiegelman BM. Beige Adipocytes are a Distinct Type of Thermogenic Fat Cell in Mouse and Human. Cell 2012;150:366–76.10.1016/j.cell.2012.05.016Search in Google Scholar PubMed PubMed Central

22. Lee P, Greenfield JR, Ho KK, Fulham MJ. A critical appraisal of the prevalence and metabolic significance of brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 2010;299:E601–6.10.1152/ajpendo.00298.2010Search in Google Scholar PubMed

23. Cypess A, Lehman S, Williams G, Tal I, Rodman D, Goldfine A, Kuo F, Palmer E, Tseng Y, Doria A, Kolodny G, Kahn C. Identification and importance of brown adipose tissue in adult humans. N Engl J Med 2009;360:1509–17.10.1056/NEJMoa0810780Search in Google Scholar PubMed PubMed Central

24. Bostrom P, Wu J, Jedrychowski M, Korde A, Ye L, Lo J, Rasbach K, Bostrom E, Choi J, Long J, Kajimura S, Zingaretti M, Vind B, Tu H, Cinti S, Hojlund K, Gygi S, Spiegelman B. A PGC1-?-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 2012;481:463–8.10.1038/nature10777Search in Google Scholar PubMed PubMed Central

25. Carriere A, Jeanson Y, Berger-Muller S, Andre M, Chenouard V, Arnaud E, Barreau C, Walther R, Galinier A, Wdziekonski B, Villageois P, Louche K, Collas P, Moro C, Dani C, Villarroya F, Casteilla L. Browning of White Adipose Cells by Intermediate Metabolites: An Adaptive Mechanism to Alleviate Redox Pressure. Diabetes 2014;63:3253–65.10.2337/db13-1885Search in Google Scholar PubMed

26. Lee P, Smith S, Linderman J, Courville AB, Brychta RJ, Dieckmann W, Werner CD, Chen KY, Celi FS. Temperature-Acclimated Brown Adipose Tissue Modulates Insulin Sensitivity in Humans. Diabetes 2014;63:3686–98.10.2337/db14-0513Search in Google Scholar PubMed PubMed Central

27. Chondronikola M, Volpi E, Borsheim E, Porter C, Annamalai P, Enerback S, Lidell ME, Saraf MK, Labbe SM, Hurren NM, Yfanti C, Chao T, Andersen CR, Cesani F, Hawkins H, Sidossis LS. Brown Adipose Tissue Improves Whole-Body Glucose Homeostasis and Insulin Sensitivity in Humans. Diabetes 2014;63:4089–99.10.2337/db14-0746Search in Google Scholar PubMed PubMed Central

28. Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med 2013;19:1252–63.10.1038/nm.3361Search in Google Scholar PubMed

29. Chang L, Villacorta L, Li R, Hamblin M, Xu W, Dou C, Zhang J, Wu J, Zeng R, Chen YE. Loss of Perivascular Adipose Tissue on Peroxisome Proliferator–Activated Receptor-γ Deletion in Smooth Muscle Cells Impairs Intravascular Thermoregulation and Enhances Atherosclerosis. Circulation 2012;126:1067–78.10.1161/CIRCULATIONAHA.112.104489Search in Google Scholar PubMed PubMed Central

30. Chatterjee TK, Stoll LL, Denning GM, Harrelson A, Blomkalns AL, Idelman G, Rothenberg FG, Neltner B, Romig-Martin SA, Dickson EW, Rudich S, Weintraub NL. Proinflammatory Phenotype of Perivascular Adipocytes: Influence of High-Fat Feeding. Circ Res 2009;104:541–9.10.1161/CIRCRESAHA.108.182998Search in Google Scholar PubMed PubMed Central

31. Withers SB, Bussey CE, Saxton SN, Melrose HM, Watkins AE, Heagerty AM. Mechanisms of Adiponectin-Associated Perivascular Function in Vascular Disease. Arterioscler Thromb Vasc Biol 2014;34:1637–42.10.1161/ATVBAHA.114.303031Search in Google Scholar PubMed

32. Gao Y, Lu C, Su L, Sharma A, Lee R. Modulation of vascular function by perivascular adipose tissue: the role of endothelium and hydrogen peroxide. Br J Pharmacol 2007;151:323–31.10.1038/sj.bjp.0707228Search in Google Scholar PubMed PubMed Central

33. Lee Y-C, Chang H-H, Chiang C-L, Liu C-H, Chen M-F, Chen P-Y, Lee TJF. Methyl palmitate is the perivascular adipose tissue-derived relaxing factor. FASEB J 2011;25(1_MeetingAbstracts):lb354.10.1096/fasebj.25.1_supplement.lb354Search in Google Scholar

34. Wojcicka G, Jamroz-Wisniewska A, Atanasova P, Chaldakov G, Chylinska-Kula B, Beltowski J. Differential effects of statins on endogenous H2S formation in perivascular adipose tissue. Pharmacol Res 2011;63:68–76.10.1016/j.phrs.2010.10.011Search in Google Scholar PubMed

35. Kohn C, Schleifenbaum J, Szijarto I, Marko L, Dubrovska G, Huang Y, Gollasch M. Differential effects of cystathionine-?-lyase-dependent vasodilatory H2S in periadventitial vasoregulation of rat and mouse aortas. PLoS One 2012;7:e41951.10.1371/journal.pone.0041951Search in Google Scholar PubMed PubMed Central

36. Gálvez-Prieto B, Bolbrinker J, Stucchi P, de las Heras AI, Merino B, Arribas S, Ruiz-Gayo M, Huber M, Wehland M, Kreutz R, Fernandez-Alfonso MS. Comparative expression analysis of the renin–angiotensin system components between white and brown perivascular adipose tissue. J Endocrinol 2008;197:55–64.10.1677/JOE-07-0284Search in Google Scholar PubMed

37. Cooper SA, Whaley-Connell A, Habibi J, Wei Y, Lastra G, Manrique C, Stas S, Sowers JR. Renin-angiotensin-aldosterone system and oxidative stress in cardiovascular insulin resistance. Am J Physiol Heart Circ Physiol 2007;293:H2009–23.10.1152/ajpheart.00522.2007Search in Google Scholar PubMed

38. Wei Y, Sowers JR, Nistala R, Gong H, Uptergrove GM-E, Clark SE, Morris EM, Szary N, Manrique C, Stump CS. Angiotensin II-induced NADPH Oxidase Activation Impairs Insulin Signaling in Skeletal Muscle Cells. J Biol Chem 2006;281:35137–46.10.1074/jbc.M601320200Search in Google Scholar PubMed

39. Lastra G, Whaley-Connell A, Manrique C, Habibi J, Gutweiler AA, Appesh L, Hayden MR, Wei Y, Ferrario C, Sowers JR. Low-dose spironolactone reduces reactive oxygen species generation and improves insulin-stimulated glucose transport in skeletal muscle in the TG(mRen2)27 rat. Am J Physiol Endocrinol Metab 2008;295:E110–6.10.1152/ajpendo.00258.2007Search in Google Scholar PubMed PubMed Central

40. Blendea MC, Jacobs D, Stump CS, McFarlane SI, Ogrin C, Bahtyiar G, Stas S, Kumar P, Sha Q, Ferrario CM, Sowers JR. Abrogation of oxidative stress improves insulin sensitivity in the Ren-2 rat model of tissue angiotensin II overexpression. Am J Physiol Endocrinol Metab 2005;288:E353–9.10.1152/ajpendo.00402.2004Search in Google Scholar PubMed

41. Deiuliis J, Shah Z, Shah N, Needleman B, Mikami D, Narula V, Perry K, Hazey J, Kampfrath T, Kollengode M, Sun Q, Satoskar A, Lumeng C, Moffatt-Bruce S, Rajagopalan S. Visceral adipose inflammation in obesity is associated with critical alterations in tregulatory cell numbers. PLoS One 2011;6:e16376.10.1371/journal.pone.0016376Search in Google Scholar PubMed PubMed Central

42. Read S, Malmstrom V, Powrie F. Cytotoxic T Lymphocyte-Associated Antigen 4 Plays an Essential Role in the Function of Cd25+Cd4+ Regulatory Cells That Control Intestinal Inflammation. J Exp Med 2000;192:295–302.10.1084/jem.192.2.295Search in Google Scholar PubMed PubMed Central

43. Eller K, Kirsch A, Wolf AM, Sopper S, Tagwerker A, Stanzl U, Wolf D, Patsch W, Rosenkranz AR, Eller P. Potential Role of Regulatory T Cells in Reversing Obesity-Linked Insulin Resistance and Diabetic Nephropathy. Diabetes 2011;60:2954–62.10.2337/db11-0358Search in Google Scholar PubMed PubMed Central

44. Ilan Y, Maron R, Tukpah A-M, Maioli TU, Murugaiyan G, Yang K, Wu HY, Weiner HL. Induction of regulatory T cells decreases adipose inflammation and alleviates insulin resistance in ob/ob mice. PNAS 2010;107:9765–70.10.1073/pnas.0908771107Search in Google Scholar PubMed PubMed Central

45. Sakaguchi S, Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T. Regulatory T cells: how do they suppress immune responses? Int Immunol 2009;21:1105–11.10.1093/intimm/dxp095Search in Google Scholar PubMed

46. Barhoumi T, Kasal DA, Li MW, Shbat L, Laurant P, Neves MF, Paradis P, Schiffrin EL. T Regulatory Lymphocytes Prevent Angiotensin II-Induced Hypertension and Vascular Injury. Hypertension 2011;57:469–76.10.1161/HYPERTENSIONAHA.110.162941Search in Google Scholar PubMed

47. Kasal DA, Barhoumi T, Li MW, Yamamoto N, Zdanovich E, Rehman A, Neves MF, Laurant P, Paradis P, Schiffrin EL. T Regulatory Lymphocytes Prevent Aldosterone-Induced Vascular Injury. Hypertension 2012;59:324–30.10.1161/HYPERTENSIONAHA.111.181123Search in Google Scholar PubMed

48. Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, Goronzy J, Weyand C, Harrison DG. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med 2007;204:2449–60.10.1084/jem.20070657Search in Google Scholar PubMed PubMed Central

49. Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 2010;11:889–96.10.1038/ni.1937Search in Google Scholar PubMed

50. Varin A, Gordon S. Alternative activation of macrophages: Immune function and cellular biology. Immunobiology 2009;214:630–41.10.1016/j.imbio.2008.11.009Search in Google Scholar PubMed

51. Xie L, Sun F, Wang J, Mao X, Xie L, Yang S-H, Su D-M, Simpkins JW, Greenberg DA, Jin K. mTOR Signaling Inhibition Modulates Macrophage/Microglia-Mediated Neuroinflammation and Secondary Injury via Regulatory T Cells after Focal Ischemia. J Immunol 2014;192:6009–19.10.4049/jimmunol.1303492Search in Google Scholar PubMed PubMed Central

52. Eguchi J, Kong X, Tenta M, Wang X, Kang S, Rosen ED. Interferon Regulatory Factor 4 Regulates Obesity-Induced Inflammation Through Regulation of Adipose Tissue Macrophage Polarization. Diabetes 2013;62:3394–403.10.2337/db12-1327Search in Google Scholar PubMed PubMed Central

53. Zhu W, Yu J, Nie Y, Shi X, Liu Y, Li F, Zhang X-l. Disequilibrium of M1 and M2 Macrophages Correlates with the Development of Experimental Inflammatory Bowel Diseases. Immunol Invest 2014;43:638–652.10.3109/08820139.2014.909456Search in Google Scholar PubMed

54. Usher MG, Duan SZ, Ivaschenko CY, Frieler RA, Berger S, Sch, xFc, tz G, xFc, nther, Lumeng CN, Mortensen RM. Myeloid mineralocorticoid receptor controls macrophage polarization and cardiovascular hypertrophy and remodeling in mice. J Clin Invest 2010;120:3350–64.10.1172/JCI41080Search in Google Scholar PubMed PubMed Central

55. Rickard AJ, Morgan J, Chrissobolis S, Miller AA, Sobey CG, Young MJ. Endothelial Cell Mineralocorticoid Receptors Regulate Deoxycorticosterone/Salt-Mediated Cardiac Remodeling and Vascular Reactivity But Not Blood Pressure. Hypertension 2014;63:1033–40.10.1161/HYPERTENSIONAHA.113.01803Search in Google Scholar PubMed

56. Henrichot E, Juge-Aubry CE, Pernin A, Pache J-C, Velebit V, Dayer J-M, Meda P, Chizzolini C, Meier CA. Production of Chemokines by Perivascular Adipose Tissue: A Role in the Pathogenesis of Atherosclerosis? Arterioscler Thromb Vasc Biol 2005;25:2594–9.10.1161/01.ATV.0000188508.40052.35Search in Google Scholar PubMed

57. Manrique C, Lastra G, Sowers JR. New insights into insulin action and resistance in the vasculature. Ann NY Acad Sci 2014;1311:138–50.10.1111/nyas.12395Search in Google Scholar PubMed PubMed Central

58. Eringa E, Bakker W, Smulders Y, Serne E, Yudkin J, Stehouwer C. Regulation of vascular function and insulin sensitivity by adipose tissue: focus on perivascular adipose tissue. Microcirculation 2007;14:389–402.10.1080/10739680701303584Search in Google Scholar PubMed

59. Bender SB, McGraw AP, Jaffe IZ, Sowers JR. Mineralocorticoid Receptor–Mediated Vascular Insulin Resistance: An Early Contributor to Diabetes-Related Vascular Disease? Diabetes 2013;62:313–9.10.2337/db12-0905Search in Google Scholar PubMed PubMed Central

60. Serne EH, de Jongh RT, Eringa EC, IJzerman RG, Stehouwer CD. Microvascular Dysfunction: A Potential Pathophysiological Role in the Metabolic Syndrome. Hypertension 2007;50:204–11.10.1161/HYPERTENSIONAHA.107.089680Search in Google Scholar PubMed

61. Kubota T, Kubota N, Kumagai H, Yamaguchi S, Kozono H, Takahashi T, Inoue M, Itoh S, Takamoto I, Sasako T, Kumagai K, Kawai T, Hashimoto S, Kobayashi T, Sato M, Tokuyama K, Nishimura S, Tsunoda M, Ide T, Murakami K, Yamazaki T, Ezaki O, Kawamura K, Masuda H, Moroi M, Sugi K, Oike Y, Shimokawa H, Yanagihara N, Tsutsui M, Terauchi Y, Tobe K, Nagai R, Kamata K, Inoue K, Kodama T, Ueki K, Kadowaki T. Impaired insulin signaling in endothelial cells reduces insulin-induced glucose uptake by skeletal muscle. Cell Metab 2011;13:294–307.10.1016/j.cmet.2011.01.018Search in Google Scholar PubMed

62. Barrett E, Eggleston E, Inyard A, Wang H, Li G, Chai W, Liu Z. The vascular actions of insulin control its delivery to muscle and regulate the rate-limiting step in skeletal muscle insulin action. Diabetologia 2009;52:752–64.10.1007/s00125-009-1313-zSearch in Google Scholar PubMed PubMed Central

63. Meijer R, Serne E, Smulders Y, van Hinsbergh VM, Yudkin J, Eringa E. Perivascular Adipose Tissue and Its Role in Type 2 Diabetes and Cardiovascular Disease. Curr Diab Rep 2011;11:211–7.10.1007/s11892-011-0186-ySearch in Google Scholar PubMed PubMed Central

64. Rittig K, Staib K, Machann J, Bottcher M, Peter A, Schick F, Claussen C, Stefan N, Fritsche A, Haring H, Balletshofer B. Perivascular fatty tissue at the brachial artery is linked to insulin resistance but not to local endothelial dysfunction. Diabetologia 2008;51:2093–9.10.1007/s00125-008-1128-3Search in Google Scholar PubMed

65. Frank A. Why Is It So Difficult to Lose Weight? Am J Lifestyle Med 2014;8:318–23.10.1177/1559827614526353Search in Google Scholar

66. Weber MB, Twombly JG, Venkat Narayan KM, Phillips LS. Lifestyle Interventions and the Prevention and Treatment of Type 2 Diabetes. Am J Lifestyle Med 2010;4:468–80.10.1177/1559827610375531Search in Google Scholar

Received: 2015-2-1
Accepted: 2015-3-25
Published Online: 2015-5-5
Published in Print: 2015-4-1

©2015 by De Gruyter

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/hmbci-2015-0010/html
Scroll to top button