Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-07T00:26:57.035Z Has data issue: false hasContentIssue false

Effects of undernutrition and exercise during late pregnancy on uterine, fetal and uteroplacental metabolism in the ewe

Published online by Cambridge University Press:  24 July 2007

K. D. Chandler
Affiliation:
School of Agriculture, La Trobe University, Bundoora, Victoria 3083, Australia
B. J Leury
Affiliation:
School of Agriculture, La Trobe University, Bundoora, Victoria 3083, Australia
A. R. Bird
Affiliation:
School of Agriculture, La Trobe University, Bundoora, Victoria 3083, Australia
A. W. Bell
Affiliation:
School of Agriculture, La Trobe University, Bundoora, Victoria 3083, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Uterine, umbilical and, by difference, uteroplacental net uptakes of oxygen, glucose, lactate and 3-hydroxybutyrate (uterine uptake only) were measured in single-pregnant ewes which were either well-fed throughout, or severely undernourished for 8–20 d during late pregnancy. All animals were studied while standing at rest and then while walking on a treadmill at 0.7 m/s on a 10° slope for 60 min.

2. Undernutrition did not significantly affect fetal or placental weights at 143 d gestation but caused a 14% decrease in maternal live weight. Uterine blood flow was decreased by 32% and was associated with a significant decrease in uteroplacental oxygen uptake; neither umbilical blood flow nor fetal O2, uptake were affected by maternal plane of nutrition. Maternal and fetal hypoglycaemia in underfed ewes was accompanied by 46–63 % decreases in uterine, umbilical and uteroplacental net uptakes of glucose, and similar declines in uterine and umbilical glucose/O, quotients. Moderate maternal hyperketonaemia was associated with 2.5-fold and 3-fold increases in uterine net uptake of 3-hydroxybutyrate and 3-hydroxybutyrate/O2 quotient respectively.

3. Exercise caused significant decreases in uterine blood flow in fed and underfed ewes but did not affect uterine or umbilical O2 uptakes; uterine net glucose uptake increased in most ewes but umbilical uptake was not significantly affected. Umbilical net uptake of lactate was significantly reduced. In underfed ewes, the extent of hyperketonaemia was significantly reduced by exercise.

4. Contrary to earlier proposals, the ovine pregnant uterus is sensitive and adaptable to long- and short-term alterations in maternal energy balance, as achieved by chronic undernutrition and exercise respectively. Thus, the fetus and placenta significantly add to, but do not necessarily have priority over the energy demands of other tissues of the ewe.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1985

References

Agricultural Research Council. (1980). The Nutrient Requirements of Ruminant Livestock. Slough: Commonwealth Agriculture Bureaux.Google Scholar
Alexander, G. (1974). In Size at Birth. Ciba Foundation Symposium no. 27 (new series), pp. 215239 [Elliott, K. and Knight, J. editors]. Amsterdam: Elsevier.CrossRefGoogle Scholar
Barcroft, J. (1946). Researches on Prenatal Life. Oxford: Blackwell.Google Scholar
Battaglia, F. C. & Meschia, G. (1978). Physiological Reviews 58, 499527.CrossRefGoogle Scholar
Bell, A. W., Bassett, J. M., Chandler, K. D. & Boston, R. C. (1983). Journal of Developmental Physiology 5, 129141.Google Scholar
Bell, A. W., Chandler, K. D. & Leury, B. J. (1982). In Energy Metabolism of Farm Animals, pp. 5861 [Ekern, A. and Sundstol, F., editors]. Aas: Agricultural University of Norway.Google Scholar
Bergmeyer, H. V. & Bernt, E. (1974). In Methods of Enzymatic Analysis, pp. 12051215 [Bergmeyer, H. U., editor]. Weinheim: Verlag Chemie.Google Scholar
Boyd, R. D. H., Morriss, F. H., Meschia, G., Makowski, E. L. & Battaglia, F. C. (1973). American Journal of Physiology 225, 897902.Google Scholar
Brodie, B. B., Axelrod, J., Soberman, R. & Levy, B. B. (1949). Journal of Biological Chemistry 197, 2531.Google Scholar
Chandler, K. D. (1983). Fetal and maternal responses to exercise in the pregnant ewe. M. Agr. Sci. Thesis, La Trobe University.Google Scholar
Chandler, K. D. & Bell, A. W. (1981). Journal of Developmental Physiology 3, 161176.Google Scholar
Chandler, K. D., Hemphill, P. McN., Bird, A. R. & Bell, A. W. (1983). Proceedings of the Nutrition Society 42, 41A.Google Scholar
Clapp, J. F. (1980). American Journal of Obstetrics and Gynecology 136, 489494.Google Scholar
Faichney, G. J. (1981). Proceedings of the Nutrition Society of Australia 6, 4853.Google Scholar
Greiss, F. C. Jr, Anderson, S.G. & King, L. C. (1972). American Journal of Obstetrics and Gynecology 113, 10571064.CrossRefGoogle Scholar
Gutmann, I. & Wahlefeld, A. W. (1974). In Methods of Enzymatic Analysis, pp. 14641468 [Bergmeyer, H. U., editor]. Weinheim: Verlag Chemie.Google Scholar
Hay, W. W. Jr, Sparks, J. W., Gilbert, M., Battaglia, F. C. & Meschia, G. (1984 a).Journal of Endocrinology 100, 119124.CrossRefGoogle Scholar
Hay, W. W. Jr, Sparks, J. W., Wilkening, R. B., Battaglia, F. C. & Meschia, G. (1983). American Journal of Physiology 245, E347–E350.Google Scholar
Hay, W. W. Jr, Sparks, J. W., Wilkening, R. B., Battaglia, F. C. & Meschia, G. (1984 b). American Journal of Physiology 246, E237–E242.Google Scholar
Hohimer, A. R., Bissonnette, J. M., Metcalfe, J. & McKean, T. A. (1984). American Journal of Physiology 246, H207–H212.Google Scholar
Jarrett, I. G., Filsell, O. H. & Ballard, F. J. (1976). Metabolism 25, 523532.CrossRefGoogle Scholar
Jones, C. T., Ritchie, J. W. & Walker, D. (1983). Journal of Developmental Physiology 5, 223235.Google Scholar
Lemons, J. A. & Schreiner, R. L. (1983). American Journal of Physiology 244, E459–E466.Google Scholar
Lotgering, F. K., Gilbert, R. D. & Longo, L. D. (1983 a). Journal of Applied Physiology 55, 834841.CrossRefGoogle Scholar
Lotgering, F. K., Gilbert, R. D. & Longo, L. D. (1983 b). Journal of Applied Physiology 55, 842850.Google Scholar
Makowski, E. L., Hertz, R. H. & Meschia, G. (1973). American Journal of Obstetrics and Gynecology 115, 624631.Google Scholar
Mellor, D. J. (1983). British Veterinary Journal 139, 307324.CrossRefGoogle Scholar
Meschia, G., Battaglia, F. C., Hay, W. W. Jr. & Sparks, J. W. (1980). Federation Proceedings 39, 245249.Google Scholar
Meschia, G., Cotter, J. R., Makowski, E. L. & Barron, D. H. (1967). Quarterly Journal of Experimental Physiology 52, 118.Google Scholar
Meschia, G., Makowski, E. L. & Battaglia, F. C. (1969). Yale Journal of Biology and Medicine 42, 154165.Google Scholar
Morriss, F. H., Boyd, R. D. H., Makowski, E. L., Meschia, G. & Battaglia, F. C. (1974). Proceedings of the Society for Experimental Biology and Medicine 145, 879883.CrossRefGoogle Scholar
Morriss, F. H., Rosenfeld, C. R., Crandell, S. S. & Adcock, E. W. (1980). Journal of Nutrition 110, 24332443.CrossRefGoogle Scholar
Patterson, D. S. P. (1963). Research in Veterinary Science 4, 230237.CrossRefGoogle Scholar
Pethick, D. W. & Lindsay, D. B. (1982). British Journal of Nutrition 48, 549563.CrossRefGoogle Scholar
Radford, H. M., Watson, R. H. & Wood, G. F. (1960). Australian Veterinary Journal 36, 5766.CrossRefGoogle Scholar
Reid, R. L. (1968). Advances in Veterinary Science 12, 163238.Google Scholar
Russel, A. J. F., Doney, J. M. & Reid, R. L. (1967). Journal of Agricultural Science, Cambridge 68, 351358.CrossRefGoogle Scholar
Russel, A. J. F., Foot, J. Z., White, I. R. & Davies, G. J. (1981). Journal of Agricultural Science, Cambridge 97, 723729.CrossRefGoogle Scholar
Schreiner, R. L., Burd, L. I., Jones, M. D. Jr, Lemons, J. A., Sheldon, R. F., Simmons, M. A., Battaglia, F. C. & Meschia, G. (1978). In Circulation of the Fetus and Newborn, vol. 2, pp. 197222 [Longo, L. D. and Reneau, D. D., editors]. New York: Raven.Google Scholar
Simmons, M. A., Meschia, G., Makowski, E. L. & Battaglia, F. C. (1974). Pediatric Research 8, 830836.CrossRefGoogle Scholar
Thompson, G. E., Bassett, J. M., Samson, D. E. & Slee, J. (1982). British Journal of Nutrition 48, 5964.CrossRefGoogle Scholar
Wilkening, R. B. & Meschia, G. (1983). American Journal of Physiology 244, H749–H755.Google Scholar
Williamson, D.H. & Mcllanby, J. (1974). In Methods of Enzymatic Analysis, pp. 18361839 lsqb;Bergmeyer, H.U., editor]. Weinheim: Verlag Chemie.Google Scholar