Horm Metab Res 2012; 44(04): 306-311
DOI: 10.1055/s-0031-1301284
Humans, Clinical
© Georg Thieme Verlag KG Stuttgart · New York

Thiazolidinedione Response in Familial Lipodystrophy Patients with LMNA Mutations: A Case Series

A. Luedtke*
1   Departments of Medicine and Anatomy and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, USA
,
M. Boschmann*
2   Franz-Volhard Clinical Research Center at the Experimental & Clinical Research Center, University Hospital Charité Campus Buch, Berlin, Germany
,
C. Colpe
3   Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
,
S. Engeli
3   Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
,
F. Adams
2   Franz-Volhard Clinical Research Center at the Experimental & Clinical Research Center, University Hospital Charité Campus Buch, Berlin, Germany
,
A. L. Birkenfeld
4   Department of Endocrinology, Diabetes and Nutrition, Charité University Medical School, Berlin, Germany, and German Institute of Human Nutrition, Potsdam-Rehbrücke, Germany
,
S. Haufe
3   Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
,
G. Rahn
2   Franz-Volhard Clinical Research Center at the Experimental & Clinical Research Center, University Hospital Charité Campus Buch, Berlin, Germany
,
F. C. Luft
2   Franz-Volhard Clinical Research Center at the Experimental & Clinical Research Center, University Hospital Charité Campus Buch, Berlin, Germany
,
H. H.-J. Schmidt
5   Clinic for Transplant Medicine, Westfälische Wilhelms-Universität Münster, Münster, Germany
,
J. Jordan
3   Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
› Author Affiliations
Further Information

Publication History

received 18 July 2011

accepted 22 December 2011

Publication Date:
24 January 2012 (online)

Abstract

Type 2 familial partial lipodystrophy (FPLD2) patients show impaired glucose and lipid metabolism resulting from lipodystrophic ‘lipid pressure’ and an intrinsic defect in skeletal muscle metabolism. Since mutated lamin A may interfere with peroxisome proliferator activator gamma (PPARγ) expression, we hypothesized that PPARγ stimulation improves fat distribution and metabolic abnormalities in these patients. 5 nondiabetic FPLD2 patients were treated with rosiglitazone over 12 months. We assessed body composition, body fat distribution, and skinfold thickness/subcutaneous tissue thickness. We also determined venous glucose, insulin, and free fatty acid (FFA) concentrations, and respiratory quotient (RQ) before and during oral glucose tolerance testing. Adipose tissue and muscle fasting and postprandial metabolism were studied by microdialysis. Within 12 months treatment, hip circumference increased from 93.6±2.78 cm to 96.2±2.3 cm (p<0.05). Rosiglitazone reduced fasting glucose levels and liver transaminases. Baseline and postprandial FFA concentrations were significantly lower after 12 months treatment. RQ and muscle interstitial pyruvate and lactate did not respond to treatment. We conclude that PPARγ stimulation with rosiglitazone modestly improves glucose metabolism in FPLD2 patients presumably through proximal adipose tissue expansion. The intrinsic muscular metabolic defect does not respond to rosiglitazone.

* 

* These authors contributed equally to this work.


 
  • References

  • 1 Cao H, Hegele RA. Nuclear lamin A/C R482Q mutation in canadian kindreds with Dunnigan-type familial partial lipodystrophy. Hum Mol Genet 2000; 9: 109-112
  • 2 Speckman RA, Garg A, Du F, Bennett L, Veile R, Arioglu E, Taylor SI, Lovett M, Bowcock AM. Mutational and haplotype analyses of families with familial partial lipodystrophy (Dunnigan variety) reveal recurrent missense mutations in the globular C-terminal domain of lamin A/C. Am J Hum Genet 2000; 66: 1192-1198
  • 3 Shackleton S, Lloyd DJ, Jackson SN, Evans R, Niermeijer MF, Singh BM, Schmidt H, Brabant G, Kumar S, Durrington PN, Gregory S, O’Rahilly S, Trembath RC. LMNA, encoding lamin A/C, is mutated in partial lipodystrophy. Nat Genet 2000; 24: 153-156
  • 4 Garg A, Peshock RM, Fleckenstein JL. Adipose tissue distribution pattern in patients with familial partial lipodystrophy (Dunnigan variety). J Clin Endocrinol Metab 1999; 84: 170-174
  • 5 Ludtke A, Genschel J, Brabant G, Bauditz J, Taupitz M, Koch M, Wermke W, Worman HJ, Schmidt HH. Hepatic steatosis in Dunnigan-type familial partial lipodystrophy. Am J Gastroenterol 2005; 100: 2218-2224
  • 6 Spuler S, Kalbhenn T, Zabojszcza J, van Landeghem FK, Ludtke A, Wenzel K, Koehnlein M, Schuelke M, Ludemann L, Schmidt HH. Muscle and nerve pathology in Dunnigan familial partial lipodystrophy. Neurology 2007; 68: 677-683
  • 7 Boschmann M, Engeli S, Moro C, Luedtke A, Adams F, Gorzelniak K, Rahn G, Mahler A, Dobberstein K, Kruger A, Schmidt S, Spuler S, Luft FC, Smith SR, Schmidt HH, Jordan J. LMNA Mutations, Skeletal Muscle Lipid Metabolism, and Insulin Resistance. J Clin Endocrinol Metab 2010; 95: 1634-1643 Erratum 2010; 95: 2521
  • 8 Araujo-Vilar D, Lattanzi G, Gonzalez-Mendez B, Costa-Freitas AT, Prieto D, Columbaro M, Mattioli E, Victoria B, Martinez-Sanchez N, Ramazanova A, Fraga M, Beiras A, Forteza J, Dominguez-Gerpe L, Calvo C, Lado-Abeal J. Site-dependent differences in both prelamin A and adipogenic genes in subcutaneous adipose tissue of patients with type 2 familial partial lipodystrophy. J Med Genet 2009; 46: 40-48
  • 9 Boguslavsky RL, Stewart CL, Worman HJ. Nuclear lamin A inhibits adipocyte differentiation: implications for Dunnigan-type familial partial lipodystrophy. Hum Mol Genet 2006; 15: 653-663
  • 10 Capanni C, Mattioli E, Columbaro M, Lucarelli E, Parnaik VK, Novelli G, Wehnert M, Cenni V, Maraldi NM, Squarzoni S, Lattanzi G. Altered pre-lamin A processing is a common mechanism leading to lipodystrophy. Hum Mol Genet 2005; 14: 1489-1502
  • 11 Maraldi NM, Capanni C, Mattioli E, Columbaro M, Squarzoni S, Parnaik WK, Wehnert M, Lattanzi G. A pathogenic mechanism leading to partial lipodistrophy and prospects for pharmacological treatment of insulin resistance syndrome. Acta Biomed 2007; 78 (Suppl. 01) 207-215
  • 12 Ludtke A, Heck K, Genschel J, Mehnert H, Spuler S, Worman HJ, Schmidt HH. Long-term treatment experience in a subject with Dunnigan-type familial partial lipodystrophy: efficacy of rosiglitazone. Diabet Med 2005; 22: 1611-1163
  • 13 Collet-Gaudillat C, Billon-Bancel A, Beressi JP. Long-term improvement of metabolic control with pioglitazone in a woman with diabetes mellitus related to Dunnigan syndrome: a case report. Diabetes Metab 2009; 35: 151-154
  • 14 Owen KR, Donohoe M, Ellard S, Hattersley AT. Response to treatment with rosiglitazone in familial partial lipodystrophy due to a mutation in the LMNA gene. Diabet Med 2003; 20: 823-827
  • 15 DeFronzo RA, Tripathy D, Schwenke DC, Banerji M, Bray GA, Buchanan TA, Clement SC, Henry RR, Hodis HN, Kitabchi AE, Mack WJ, Mudaliar S, Ratner RE, Williams K, Stentz FB, Musi N, Reaven PD. Pioglitazone for diabetes prevention in impaired glucose tolerance. N Engl J Med 2011; 364: 1104-1115
  • 16 Mensink M, Hesselink MK, Russell AP, Schaart G, Sels JP, Schrauwen P. Improved skeletal muscle oxidative enzyme activity and restoration of PGC-1 alpha and PPAR beta/delta gene expression upon rosiglitazone treatment in obese patients with type 2 diabetes mellitus. Int J Obes (Lond) 2007; 31: 1302-1310
  • 17 Frisancho AR. New standards of weight and body composition by frame size and height for assessment of nutritional status of adults and the elderly. Am J Clin Nutr 1984; 40: 808-819
  • 18 Arioglu E, Duncan-Morin J, Sebring N, Rother KI, Gottlieb N, Lieberman J, Herion D, Kleiner DE, Reynolds J, Premkumar A, Sumner AE, Hoofnagle J, Reitman ML, Taylor SI. Efficacy and safety of troglitazone in the treatment of lipodystrophy syndromes. Ann Intern Med 2000; 133: 263-274
  • 19 Simha V, Rao S, Garg A. Prolonged thiazolidinedione therapy does not reverse fat loss in patients with familial partial lipodystrophy, Dunnigan variety. Diabetes Obes Metab 2008; 10: 1275-1276
  • 20 Mayerson AB, Hundal RS, Dufour S, Lebon V, Befroy D, Cline GW, Enocksson S, Inzucchi SE, Shulman GI, Petersen KF. The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes. Diabetes 2002; 51: 797-802
  • 21 Moreau F, Boullu-Sanchis S, Vigouroux C, Lucescu C, Lascols O, Sapin R, Ruimy D, Guerci B, Pinget M, Jeandidier N. Efficacy of pioglitazone in familial partial lipodystrophy of the Dunnigan type: a case report. Diabetes Metab 2007; 33: 385-389
  • 22 Koves TR, Ussher JR, Noland RC, Slentz D, Mosedale M, Ilkayeva O, Bain J, Stevens R, Dyck JR, Newgard CB, Lopaschuk GD, Muoio DM. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab 2008; 7: 45-56
  • 23 Consitt LA, Bell JA, Koves TR, Muoio DM, Hulver MW, Haynie KR, Dohm GL, Houmard JA. Peroxisome proliferator-activated receptor-gamma coactivator-1alpha overexpression increases lipid oxidation in myocytes from extremely obese individuals. Diabetes 2010; 59: 1407-1415