Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Blood pressure reduction in diabetes: lessons from ACCORD, SPRINT and EMPA-REG OUTCOME

Key Points

  • In the 2000s, international guidelines suggested a goal blood pressure (BP) of <130/80 mmHg in patients with diabetes mellitus, based mostly on observational data and trials randomizing to diastolic BP targets

  • The results of the ACCORD-BP trial suggested no benefit in reducing cardiovascular events in patients with type 2 diabetes mellitus (T2DM) randomly assigned to a systolic BP (SBP) of <120 mmHg compared with <140 mmHg, with the exception of stroke, but this trial might be limited by low statistical power

  • New guidelines have moved the target BP for patients with diabetes mellitus to a less strict target of <140/85 mmHg or <140/90 mmHg. In the SPRINT trial of patients with hypertension, lower cardiovascular events and mortality were seen in patients randomized to SBP <120 mmHg compared with <140 mmHg, which questioned appropriate BP targets

  • The EMPA-REG OUTCOME trial showed major reductions in cardiovascular events and mortality in patients with T2DM who were treated with empagliflozin; concomitant SBP reduction from 135.3 mmHg to 131.3 mmHg might also question current guidelines

Abstract

In patients with diabetes mellitus, the presence of hypertension substantially increases the risk of cardiovascular events, and reductions in blood pressure (BP) can reduce cardiovascular morbidity and mortality. Following evidence from trials randomizing patients to diastolic BP levels, previous guidelines recommended an office BP target of <130/80 mmHg in individuals with diabetes mellitus. However, the evidence for this systolic BP (SBP) target was derived from observational studies. When the results of the ACCORD-BP study showed that those individuals with diabetes mellitus and a target BP of <120 mmHg had a cardiovascular risk that is similar to those with <140 mmHg, all guidelines returned to a recommended SBP of <140 mmHg. However, the ACCORD-BP trial was limited by the low number of cardiovascular events observed, whereas the mean SBP in the 'conventional' arm was 133 mmHg. The SPRINT study, showing cardiovascular benefits in hypertensive patients without diabetes mellitus randomized to SBP <120 mmHg versus those randomized to <140 mmHg, came in contrast with the ACCORD-BP, but a detailed evaluation reveals many similarities between the two trials. Finally, the EMPA-REG OUTCOME study, with impressive cardiovascular mortality reduction with empagliflozin, suggested that reduction of SBP to around 130 mmHg is safe and might explain part of these beneficial results. In this Review, we evaluate the implications of the ACCORD-BP, SPRINT and EMPA-REG OUTCOME trials and previous studies for the optimal BP target in diabetes mellitus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. World Health Organization. Global Report on Diabetes (WHO, 2016).

  2. IDF Diabetes Atlas Group. Update of mortality attributable to diabetes for the IDF Diabetes Atlas: estimates for the year 2013. Diabetes Res. Clin. Pract. 109, 461–465 (2015).

  3. Emerging Risk Factors Collaboration et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 375, 2215–2222 (2010).

  4. Caro, J. J., Ward, A. J. & O'Brien, J. A. Lifetime costs of complications resulting from type 2 diabetes in the U.S. Diabetes Care 25, 476–478 (2002).

    Article  PubMed  Google Scholar 

  5. Mancia, G. et al. 2013 ESH/ESC practice guidelines for the management of arterial hypertension. Blood Press. 23, 3–16 (2014).

    Article  PubMed  Google Scholar 

  6. Perkovic, V., Huxley, R., Wu, Y., Prabhakaran, D. & MacMahon, S. The burden of blood pressure-related disease: a neglected priority for global health. Hypertension 50, 991–997 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Kearney, P. M. et al. Global burden of hypertension: analysis of worldwide data. Lancet 365, 217–223 (2005).

    Article  PubMed  Google Scholar 

  8. Sarafidis, P. A. & Nilsson, P. M. The metabolic syndrome: a glance at its history. J. Hypertens. 24, 621–626 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Kabakov, E. et al. Prevalence of hypertension in type 2 diabetes mellitus: impact of the tightening definition of high blood pressure and association with confounding risk factors. J. Cardiometab. Syndr. 1, 95–101 (2006).

    Article  PubMed  Google Scholar 

  10. Stamler, J., Vaccaro, O., Neaton, J. D. & Wentworth, D. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care 16, 434–444 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Haffner, S. M., Lehto, S., Rönnemaa, T., Pyörälä, K. & Laakso, M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N. Engl. J. Med. 339, 229–234 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Mancia, G. et al. 2007 Guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur. Heart J. 28, 1462–1536 (2007).

    PubMed  Google Scholar 

  13. Adler, A. I. et al. Association of systolic blood pressure with macrovascular and microvascular complications of type 2 diabetes (UKPDS 36): prospective observational study. BMJ 321, 412–419 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ 317, 703–713 (1998).

    Article  PubMed Central  Google Scholar 

  15. Hansson, L. et al. Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomized trial. HOT Study Group. Lancet. 351, 1755–1762 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. [No authors listed.] The Sixth Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Arch. Intern. Med. 157, 2413–2446 (1997).

  17. Chalmers, J. et al. 1999 World Health Organization-International Society of Hypertension Guidelines for the management of hypertension. Clin. Exp. Hypertens. 21, 1009–1060 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Ramsay, L. et al. Guidelines for management of hypertension: report of the third working party of the British Hypertension Society. J. Hum. Hypertens. 13, 569–592 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Feldman, R. D. et al. 1999 Canadian recommendations for the management of hypertension. Task Force for the Development of the 1999 Canadian Recommendations for the Management of Hypertension. CMAJ 161, S1–S17 (1999).

    PubMed  PubMed Central  Google Scholar 

  20. Bakris, G. L. et al. Preserving renal function in adults with hypertension and diabetes: a consensus approach. National Kidney Foundation Hypertension and Diabetes Executive Committees Working Group. Am. J. Kidney Dis. 36, 646–661 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. American Diabetes Association. Standards of medical care for patients with diabetes mellitus. Diabetes Care 25, 213–229 (2002).

  22. American Diabetes Association. Executive summary: standards of medical care in diabetes — 2012. Diabetes Care 35, S4–S10 (2012).

  23. Cifkova, R. et al. Practice guidelines for primary care physicians: 2003 ESH/ESC hypertension guidelines. J. Hypertens. 21, 1779–1786 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Chobanian, A. V. et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA 289, 2560–2572 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Williams, B. et al. Guidelines for management of hypertension: report of the fourth working party of the British Hypertension Society, 2004-BHS IV. J. Hum. Hypertens. 18, 139–185 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. National Collaborating Centre for Chronic Conditions (UK). Type 2 Diabetes: National Clinical Guideline for Management in Primary and Secondary Care (Update) (Royal College of Physicians, 2008).

  27. Taler, S. J. et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for management of blood pressure in CKD. Am. J. Kidney Dis. 62, 201–213 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  28. [No authors listed.] Executive summary: standards of medical care in diabetes — 2013. Diabetes Care 36, S4–S10 (2013).

  29. James, P. A. et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA 311, 507–520 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Cushman, W. C. et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N. Engl. J. Med. 362, 1575–1585 (2010).

    Article  PubMed  CAS  Google Scholar 

  31. The SPRINT Research Group. A randomized trial of intensive versus standard blood-pressure control. N. Engl. J. Med. 373, 2103–2116 (2015).

  32. Zinman, B. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 373, 2117–2128 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Sarafidis, P. A. & Tsapas, A. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 374, 1092 (2016).

    Article  PubMed  Google Scholar 

  34. Patel, A. et al. Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): a randomised controlled trial. Lancet 370, 829–840 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Cooper-DeHoff, R. M. et al. Tight blood pressure control and cardiovascular outcomes among hypertensive patients with diabetes and coronary artery disease. JAMA 304, 61–68 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sarafidis, P. A. & Ruilope, L. M. Aggressive blood pressure reduction and renin-angiotensin system blockade in chronic kidney disease: time for re-evaluation? Kidney Int. 85, 536–546 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Margolis, K. L. et al. Outcomes of combined cardiovascular risk factor management strategies in type 2 diabetes: the ACCORD randomized trial. Diabetes Care 37, 1721–1728 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bangalore, S., Kumar, S., Lobach, I. & Messerli, F. H. Blood pressure targets in subjects with type 2 diabetes mellitus/impaired fasting glucose: observations from traditional and bayesian random-effects meta-analyses of randomized trials. Circulation 123, 2799–2810 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Schrier, R. W., Estacio, R. O., Mehler, P. S. & Hiatt, W. R. Appropriate blood pressure control in hypertensive and normotensive type 2 diabetes mellitus: a summary of the ABCD trial. Nat. Clin. Pract. Nephrol. 3, 428–438 (2007).

    Article  PubMed  Google Scholar 

  40. Estacio, R. O., Coll, J. R., Tran, Z. V. & Schrier, R. W. Effect of intensive blood pressure control with valsartan on urinary albumin excretion in normotensive patients with type 2 diabetes. Am. J. Hypertens. 19, 1241–1248 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Chew, E. Y. et al. Effects of medical therapies on retinopathy progression in type 2 diabetes. N. Engl. J. Med. 363, 233–244 (2010).

    Article  PubMed  CAS  Google Scholar 

  42. Barzilay, J. I. et al. Cardiovascular outcomes using doxazosin versus chlorthalidone for the treatment of hypertension in older adults with and without glucose disorders: a report from the ALLHAT study. J. Clin. Hypertens. (Greenwich) 6, 116–125 (2004).

    Article  CAS  Google Scholar 

  43. Chan, J. C. et al. Long-term effects of angiotensin-converting enzyme inhibition and metabolic control in hypertensive type 2 diabetic patients. Kidney Int. 57, 590–600 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Bilous, R. et al. Effect of candesartan on microalbuminuria and albumin excretion rate in diabetes: three randomized trials. Ann. Intern. Med. 151, 11–20 (2009).

    Article  PubMed  Google Scholar 

  45. Bosch, J. et al. Effect of ramipril on the incidence of diabetes. N. Engl. J. Med. 355, 1551–1562 (2006).

    Article  PubMed  Google Scholar 

  46. Fogari, R. et al. Effects of amlodipine fosinopril combination on microalbuminuria in hypertensive type 2 diabetic patients. Am. J. Hypertens. 15, 1042–1049 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Bakris, G. L. et al. Effects of different ACE inhibitor combinations on albuminuria: results of the GUARD study. Kidney Int. 73, 1303–1309 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. McMurray, J. J. et al. Effect of valsartan on the incidence of diabetes and cardiovascular events. N. Engl. J. Med. 362, 1477–1490 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Daly, C. A. et al. The effect of perindopril on cardiovascular morbidity and mortality in patients with diabetes in the EUROPA study: results from the PERSUADE substudy. Eur. Heart J. 26, 1369–1378 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Howard, B. V. et al. Effect of lower targets for blood pressure and LDL cholesterol on atherosclerosis in diabetes: the SANDS randomized trial. JAMA 299, 1678–1689 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Reboldi, G. et al. Effects of intensive blood pressure reduction on myocardial infarction and stroke in diabetes: a meta-analysis in 73,913 patients. J. Hypertens. 29, 1253–1269 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Barnett, A. H. et al. Angiotensin-receptor blockade versus converting-enzyme inhibition in type 2 diabetes and nephropathy. N. Engl. J. Med. 351, 1952–1961 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Marre, M. et al. Effects of low dose ramipril on cardiovascular and renal outcomes in patients with type 2 diabetes and raised excretion of urinary albumin: randomised, double blind, placebo controlled trial (the DIABHYCAR study). BMJ 328, 495 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tatti, P. et al. Outcome results of the Fosinopril Versus Amlodipine Cardiovascular Events Randomized Trial (FACET) in patients with hypertension and NIDDM. Diabetes Care 21, 597–603 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Brenner, B. M. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 345, 861–869 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. UK Prospective Diabetes Study Group. Efficacy of atenolol and captopril in reducing risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 39. BMJ 317, 713–720 (1998).

    Article  PubMed Central  Google Scholar 

  57. Deedwania, P. C. et al. Efficacy, safety and tolerability of metoprolol CR/XL in patients with diabetes and chronic heart failure: experiences from MERIT-HF. Am. Heart J. 149, 159–167 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Heart Outcomes Prevention Evaluation (HOPE) Study Investigators. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Lancet 355, 253–259 (2000).

  59. Ostergren, J. et al. The Anglo-Scandinavian Cardiac Outcomes Trial: blood pressure-lowering limb: effects in patients with type II diabetes. J. Hypertens. 26, 2103–2111 (2008).

    Article  PubMed  CAS  Google Scholar 

  60. Niskanen, L. et al. Reduced cardiovascular morbidity and mortality in hypertensive diabetic patients on first-line therapy with an ACE inhibitor compared with a diuretic/beta-blocker-based treatment regimen: a subanalysis of the Captopril Prevention Project. Diabetes Care 24, 2091–2096 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Yui, Y. et al. Nifedipine retard was as effective as angiotensin converting enzyme inhibitors in preventing cardiac events in high-risk hypertensive patients with diabetes and coronary artery disease: the Japan Multicenter Investigation for Cardiovascular Diseases-B (JMIC-B) subgroup analysis. Hypertens. Res. 27, 449–456 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Hansson, L. et al. Randomised trial of effects of calcium antagonists compared with diuretics and β-blockers on cardiovascular morbidity and mortality in hypertension: the Nordic Diltiazem (NORDIL) study. Lancet 356, 359–365 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Curb, J. D. et al. Effect of diuretic-based antihypertensive treatment on cardiovascular disease risk in older diabetic patients with isolated systolic hypertension. Systolic Hypertension in the Elderly Program Cooperative Research Group. JAMA 276, 1886–1892 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Berthet, K. et al. Reductions in the risks of recurrent stroke in patients with and without diabetes: the PROGRESS Trial. Blood Press. 13, 7–13 (2004).

    Article  PubMed  Google Scholar 

  65. Black, H. R. et al. Principal results of the controlled onset verapamil investigation of cardiovascular end points (convince) trial. JAMA 289, 2073–2082 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Gasowski, J. et al. Systolic hypertension in Europe (Syst-Eur) trial phase 2: objectives, protocol, and initial progress. J. Hum. Hypertens. 13, 135–145 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Estacio, R. O., Jeffers, B. W., Gifford, N. & Schrier, R. W. Effect of blood pressure control on diabetic microvascular complications in patients with hypertension and type 2 diabetes. Diabetes Care 23 (Suppl. 2), B54–B64 (2000).

    PubMed  Google Scholar 

  68. O'Hare, P. et al. Low-dose ramipril reduces microalbuminuria in type 1 diabetic patients without hypertension: results of a randomized controlled trial. Diabetes Care 23, 1823–1829 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Dahlof, B. et al. Cardiovascular morbidity and mortality in the losartan intervention for endpoint reduction in hypertension study (life): a randomised trial against atenolol. Lancet 359, 995–1003 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Schrier, R. W., Estacio, R. O., Esler, A. & Mehler, P. Effects of aggressive blood pressure control in normotensive type 2 diabetic patients on albuminuria, retinopathy and strokes. Kidney Int. 61, 1086–1097 (2002).

    Article  PubMed  Google Scholar 

  71. Anker, S. D. et al. Prognostic importance of weight loss in chronic heart failure and the effect of treatment with angiotensin-converting-enzyme inhibitors: an observational study. Lancet 361, 1077–1083 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Bath, P. et al. International Society of Hypertension (ISH): statement on the management of blood pressure in acute stroke. J. Hypertens. 21, 665–672 (2003).

    Article  PubMed  Google Scholar 

  73. Bakris, G. L. et al. Metabolic effects of carvedilol versus metoprolol in patients with type 2 diabetes mellitus and hypertension: a randomized controlled trial. JAMA 292, 2227–2236 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Schrader, J. et al. Morbidity and mortality after stroke in patients with diabetes — subgroup analysis from the moses-study. J. Clin. Basic Cardiol. 9 (Suppl. 1), 2–5 (2006).

    Google Scholar 

  75. Meredith, P. A. et al. Importance of sustained and “tight” blood pressure control in patients with high cardiovascular risk. Blood Press. 25, 74–82 (2016).

    Article  PubMed  Google Scholar 

  76. Chalmers, J., Kengne, A. P., Joshi, R., Perkovic, V. & Patel, A. New insights from ADVANCE. J. Hypertens. Suppl. 25, S23–S30 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Dagenais, G. R. et al. Effects of ramipril and rosiglitazone on cardiovascular and renal outcomes in people with impaired glucose tolerance or impaired fasting glucose: results of the diabetes reduction assessment with ramipril and rosiglitazone medication (DREAM) trial. Diabetes Care 31, 1007–1014 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. McBrien, K. et al. Intensive and standard blood pressure targets in patients with type 2 diabetes mellitus: systematic review and meta-analysis. Arch. Intern. Med. 172, 1296–1303 (2012).

    Article  PubMed  Google Scholar 

  79. Arguedas, J. A., Leiva, V. & Wright, J. M. Blood pressure targets for hypertension in people with diabetes mellitus. Cochrane Database Syst. Rev. 10, CD008277 (2013).

    Google Scholar 

  80. Cushman, W. C. et al. SPRINT trial results: latest news in hypertension management. Hypertension 67, 263–265 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Mancia, G. et al. Effects of blood-pressure measurement by the doctor on patient's blood pressure and heart rate. Lancet 2, 695–698 (1983).

    Article  CAS  PubMed  Google Scholar 

  82. Mancia, G. et al. Ambulatory blood pressure values in the Ongoing Telmisartan Alone and in Combination with Ramipril Global Endpoint Trial (ONTARGET). Hypertension 60, 1400–1406 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Pandit, J. A. & Batlle, D. Snapshot hemodynamics and clinical outcomes in hypertension: precision in the measurements is key. Hypertension 67, 270–271 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Esler, M. SPRINT, or false start, toward a lower universal treated blood pressure target in hypertension. Hypertension 67, 266–267 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Perkovic, V. & Rodgers, A. Redefining blood-pressure targets — SPRINT starts the marathon. N. Engl. J. Med. 373, 2175–2178 (2015).

    Article  PubMed  Google Scholar 

  86. Tonelli, M. et al. Risk of coronary events in people with chronic kidney disease compared with those with diabetes: a population-level cohort study. Lancet 380, 807–814 (2012).

    Article  PubMed  Google Scholar 

  87. Wanner, C. et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N. Engl. J. Med. 375, 323–334 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Imprialos, K. P., Sarafidis, P. A. & Karagiannis, A. I. Sodium-glucose cotransporter -2 inhibitors and blood pressure decrease: a valuable effect of a novel antidiabetic class? J. Hypertens. 33, 2185–2197 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Vasilakou, D. et al. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann. Intern. Med. 159, 262–274 (2013).

    Article  PubMed  Google Scholar 

  90. Gilbert, R. E. Sodium-glucose linked transporter-2 inhibitors: potential for renoprotection beyond blood glucose lowering? Kidney Int. 86, 693–700 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Abdul-Ghani, M., Del Prato, S., Chilton, R. & DeFronzo, R. A. SGLT2 inhibitors and cardiovascular risk: lessons learned from the EMPA-REG OUTCOME study. Diabetes Care 39, 717–725 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ferrannini, E., Mark, M. & Mayoux, E. CV protection in the EMPA-REG OUTCOME trial: a “thrifty substrate” hypothesis. Diabetes Care 39, 1108–1114 (2016).

    Article  PubMed  Google Scholar 

  93. Marx, N. & McGuire, D. K. Sodium-glucose cotransporter-2 inhibition for the reduction of cardiovascular events in high-risk patients with diabetes mellitus. Eur. Heart J. 37, 3192–3200 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. Tikkanen, I. et al. Empagliflozin reduces blood pressure in patients with type 2 diabetes and hypertension. Diabetes Care 38, 420–428 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Touyz, R. M. & Dominiczak, A. F. Successes of SPRINT, but still some hurdles to cross. Hypertension 67, 268–269 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the preparation of the article.

Corresponding author

Correspondence to Pantelis A. Sarafidis.

Ethics declarations

Competing interests

P.A.S. has received honoraria as an advisor for Boehringer Ingelheim and AstraZeneca and research grants from AstraZeneca. A.A.L., G.R.-H. and L.M.R. declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarafidis, P., Lazaridis, A., Ruiz-Hurtado, G. et al. Blood pressure reduction in diabetes: lessons from ACCORD, SPRINT and EMPA-REG OUTCOME. Nat Rev Endocrinol 13, 365–374 (2017). https://doi.org/10.1038/nrendo.2016.209

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2016.209

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing