Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The pathophysiology of heart failure with preserved ejection fraction

Key Points

  • Heart failure with preserved ejection fraction (HFpEF) is an increasingly common form of cardiac disease associated with ageing, obesity, and hypertension, for which no treatment has proven effective

  • HFpEF is characterized by increased left ventricular (LV) filling pressure secondary to diastolic dysfunction; this pressure elevation can be observed at rest or during exercise and causes secondary pulmonary hypertension

  • Despite normal ejection fraction, HFpEF is characterized by mild systolic dysfunction and dramatic limitations in systolic reserve capacity during stress, with blunted increases in ejection fraction

  • Chronotropic incompetence, left atrial dysfunction, atrial fibrillation, arterial stiffening, autonomic imbalance, and endothelial dysfunction contribute to diastolic and systolic dysfunction to limit cardiac output reserve and increase LV filling pressures

  • Peripheral impairments, including abnormalities in endothelial function, body composition, and skeletal muscle function, also have an important role in HFpEF

  • These impairments in cardiac, vascular, and peripheral reserve can be caused by common risk factors for HFpEF, such as ageing, adiposity, hypertension, and metabolic stress

Abstract

Approximately half of all patients with heart failure have preserved ejection fraction (HFpEF) and, as life expectancies continue to increase in western societies, the prevalence of HFpEF will continue to grow. In contrast to heart failure with reduced ejection fraction (HFrEF), no treatment has been proven in pivotal clinical trials to be effective for HFpEF, largely because of the pathophysiological heterogeneity that exists within the broad spectrum of HFpEF. This syndrome was historically considered to be caused exclusively by left ventricular diastolic dysfunction, but research has identified several other contributory factors, including limitations in left ventricular systolic reserve, systemic and pulmonary vascular function, nitric oxide bioavailability, chronotropic reserve, right heart function, autonomic tone, left atrial function, and peripheral impairments. Multiple individual mechanisms frequently coexist within the same patient to cause symptomatic heart failure, but between patients with HFpEF the extent to which each component is operative can differ widely, confounding treatment approaches. This Review focuses on our current understanding of the pathophysiological mechanisms underlying HFpEF, and how they might be mechanistically related to typical risk factors for HFpEF, including ageing, obesity, and hypertension.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LV diastolic function in health and in HFpEF.
Figure 2: Depiction of short-axis views of the left ventricle at end diastole and end systole.
Figure 3: The pathophysiology of heart failure with preserved ejection fraction.
Figure 4: The interaction between risk factors, cardiac ageing, and loss of cardiovascular reserve, which results in the development of symptomatic HFpEF.

Similar content being viewed by others

References

  1. WHO. Cardiovascular diseases. Fact sheet number 317 [online], (2013).

  2. Braunwald, E. Shattuck lecture—cardiovascular medicine at the turn of the millennium: triumphs, concerns, and opportunities. N. Engl. J. Med. 337, 1360–1369 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Heidenreich, P. A. et al. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ. Heart Fail. 6, 606–619 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Owan, T. E. et al. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N. Engl. J. Med. 355, 251–259 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Borlaug, B. A. & Paulus, W. J. Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment. Eur. Heart J. 32, 670–679 (2011).

    Article  PubMed  Google Scholar 

  6. Lee, D. S. et al. Relation of disease pathogenesis and risk factors to heart failure with preserved or reduced ejection fraction: insights from the Framingham Heart Study of the National Heart, Lung, and Blood Institute. Circulation 119, 3070–3077 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bhatia, R. S. et al. Outcome of heart failure with preserved ejection fraction in a population-based study. N. Engl. J. Med. 355, 260–269 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Bursi, F. et al. Systolic and diastolic heart failure in the community. JAMA 296, 2209–2216 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Kitzman, D. W., Higginbotham, M. B., Cobb, F. R., Sheikh, K. H. & Sullivan, M. J. Exercise intolerance in patients with heart failure and preserved left ventricular systolic function: failure of the Frank–Starling mechanism. J. Am. Coll. Cardiol. 17, 1065–1072 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Hundley, W. G. et al. Cardiac cycle-dependent changes in aortic area and distensibility are reduced in older patients with isolated diastolic heart failure and correlate with exercise intolerance. J. Am. Coll. Cardiol. 38, 796–802 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Yip, G. et al. Left ventricular long axis function in diastolic heart failure is reduced in both diastole and systole: time for a redefinition? Heart 87, 121–125 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yu, C. M. et al. Progression of systolic abnormalities in patients with “isolated” diastolic heart failure and diastolic dysfunction. Circulation 105, 1195–1201 (2002).

    Article  PubMed  Google Scholar 

  13. Kawaguchi, M., Hay, I., Fetics, B. & Kass, D. A. Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations. Circulation 107, 714–720 (2003).

    Article  PubMed  Google Scholar 

  14. Zile, M. R., Baicu, C. F. & Gaasch, W. H. Diastolic heart failure—abnormalities in active relaxation and passive stiffness of the left ventricle. N. Engl. J. Med. 350, 1953–1959 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Borlaug, B. A. et al. Impaired chronotropic and vasodilator reserves limit exercise capacity in patients with heart failure and a preserved ejection fraction. Circulation 114, 2138–2147 (2006).

    Article  PubMed  Google Scholar 

  16. Brubaker, P. H. et al. Chronotropic incompetence and its contribution to exercise intolerance in older heart failure patients. J. Cardiopulm. Rehabil. 26, 86–89 (2006).

    Article  PubMed  Google Scholar 

  17. Tan, Y. T. et al. The pathophysiology of heart failure with normal ejection fraction: exercise echocardiography reveals complex abnormalities of both systolic and diastolic ventricular function involving torsion, untwist, and longitudinal motion. J. Am. Coll. Cardiol. 54, 36–46 (2009).

    Article  PubMed  Google Scholar 

  18. Melenovsky, V. et al. Cardiovascular features of heart failure with preserved ejection fraction versus nonfailing hypertensive left ventricular hypertrophy in the urban Baltimore community: the role of atrial remodeling/dysfunction. J. Am. Coll. Cardiol. 49, 198–207 (2007).

    Article  PubMed  Google Scholar 

  19. Lam, C. S. et al. Cardiac structure and ventricular–vascular function in persons with heart failure and preserved ejection fraction from Olmsted County, Minnesota. Circulation 115, 1982–1990 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fung, J. W., Sanderson, J. E., Yip, G. W., Zhang, Q. & Yu, C. M. Impact of atrial fibrillation in heart failure with normal ejection fraction: a clinical and echocardiographic study. J. Card. Fail. 13, 649–655 (2007).

    Article  PubMed  Google Scholar 

  21. Ennezat, P. V. et al. Left ventricular abnormal response during dynamic exercise in patients with heart failure and preserved left ventricular ejection fraction at rest. J. Card. Fail. 14, 475–480 (2008).

    Article  PubMed  Google Scholar 

  22. Westermann, D. et al. Role of left ventricular stiffness in heart failure with normal ejection fraction. Circulation 117, 2051–2060 (2008).

    Article  PubMed  Google Scholar 

  23. Borlaug, B. A., Lam, C. S., Roger, V. L., Rodeheffer, R. J. & Redfield, M. M. Contractility and ventricular systolic stiffening in hypertensive heart disease insights into the pathogenesis of heart failure with preserved ejection fraction. J. Am. Coll. Cardiol. 54, 410–418 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Phan, T. T. et al. Heart failure with preserved ejection fraction is characterized by dynamic impairment of active relaxation and contraction of the left ventricle on exercise and associated with myocardial energy deficiency. J. Am. Coll. Cardiol. 54, 402–409 (2009).

    Article  PubMed  Google Scholar 

  25. Wachter, R. et al. Blunted frequency-dependent upregulation of cardiac output is related to impaired relaxation in diastolic heart failure. Eur. Heart J. 30, 3027–3036 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lam, C. S. et al. Pulmonary hypertension in heart failure with preserved ejection fraction: a community-based study. J. Am. Coll. Cardiol. 53, 1119–1126 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Borlaug, B. A. et al. Global cardiovascular reserve dysfunction in heart failure with preserved ejection fraction. J. Am. Coll. Cardiol. 56, 845–854 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Maeder, M. T., Thompson, B. R., Brunner-La Rocca, H. P. & Kaye, D. M. Hemodynamic basis of exercise limitation in patients with heart failure and normal ejection fraction. J. Am. Coll. Cardiol. 56, 855–863 (2010).

    Article  PubMed  Google Scholar 

  29. Borlaug, B. A., Nishimura, R. A., Sorajja, P., Lam, C. S. & Redfield, M. M. Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circ. Heart Fail. 3, 588–595 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tan, Y. T. et al. Reduced left atrial function on exercise in patients with heart failure and normal ejection fraction. Heart 96, 1017–1023 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Prasad, A. et al. Characterization of static and dynamic left ventricular diastolic function in patients with heart failure with a preserved ejection fraction. Circ. Heart Fail. 3, 617–626 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lee, A. P. et al. Importance of dynamic dyssynchrony in the occurrence of hypertensive heart failure with normal ejection fraction. Eur. Heart J. 31, 2642–2649 (2010).

    Article  PubMed  Google Scholar 

  33. Borlaug, B. A. et al. Diastolic relaxation and compliance reserve during dynamic exercise in heart failure with preserved ejection fraction. Heart 97, 964–969 (2011).

    Article  PubMed  Google Scholar 

  34. Shibata, S. et al. Congestive heart failure with preserved ejection fraction is associated with severely impaired dynamic Starling mechanism. J. Appl. Physiol. 110, 964–971 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Haykowsky, M. J. et al. Determinants of exercise intolerance in elderly heart failure patients with preserved ejection fraction. J. Am. Coll. Cardiol. 58, 265–274 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bhella, P. S. et al. Abnormal haemodynamic response to exercise in heart failure with preserved ejection fraction. Eur. J. Heart Fail. 13, 1296–1304 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yip, G. W. et al. Resting global and regional left ventricular contractility in patients with heart failure and normal ejection fraction: insights from speckle-tracking echocardiography. Heart 97, 287–294 (2011).

    Article  PubMed  Google Scholar 

  38. Tartière-Kesri, L., Tartière, J. M., Logeart, D., Beauvais, F. & Cohen Solal, A. Increased proximal arterial stiffness and cardiac response with moderate exercise in patients with heart failure and preserved ejection fraction. J. Am. Coll. Cardiol. 59, 455–461 (2012).

    Article  PubMed  Google Scholar 

  39. Haykowsky, M. J. et al. Impaired aerobic capacity and physical functional performance in older heart failure patients with preserved ejection fraction: role of lean body mass. J. Gerontol. A Biol. Sci. Med. Sci. 68, 968–975 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Abudiab, M. M. et al. Cardiac output response to exercise in relation to metabolic demand in heart failure with preserved ejection fraction. Eur. J. Heart Fail. 15, 776–785 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tan, Y. T., Wenzelburger, F. W., Sanderson, J. E. & Leyva, F. Exercise-induced torsional dyssynchrony relates to impaired functional capacity in patients with heart failure and normal ejection fraction. Heart 99, 259–266 (2013).

    Article  PubMed  Google Scholar 

  42. Maurer, M. S., Teruya, S., Chakraborty, B., Helmke, S. & Mancini, D. Treating anemia in older adults with heart failure with a preserved ejection fraction with epoetin alfa: single-blind randomized clinical trial of safety and efficacy. Circ. Heart Fail. 6, 254–263 (2013).

    Article  PubMed  Google Scholar 

  43. Shah, A. M. et al. Cardiac structure and function in heart failure with preserved ejection fraction: baseline findings from the echocardiographic study of the treatment of preserved cardiac function heart failure with an aldosterone antagonist trial. Circ. Heart Fail. 7, 104–115 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Kraigher-Krainer, E. et al. Impaired systolic function by strain imaging in heart failure with preserved ejection fraction. J. Am. Coll. Cardiol. 63, 447–456 (2014).

    Article  PubMed  Google Scholar 

  45. Santos, A. B. et al. Left ventricular dyssynchrony in patients with heart failure and preserved ejection fraction. Eur. Heart J. 35, 42–47 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Borlaug, B. A. Mechanisms of exercise intolerance in heart failure with preserved ejection fraction. Circ. J. 78, 20–32 (2013).

    PubMed  Google Scholar 

  47. Stratton, J. R., Levy, W. C., Cerqueira, M. D., Schwartz, R. S. & Abrass, I. B. Cardiovascular responses to exercise. Effects of aging and exercise training in healthy men. Circulation 89, 1648–1655 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Fleg, J. L. et al. Impact of age on the cardiovascular response to dynamic upright exercise in healthy men and women. J. Appl. Physiol. 78, 890–900 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. DeSouza, C. A. et al. Regular aerobic exercise prevents and restores age-related declines in endothelium-dependent vasodilation in healthy men. Circulation 102, 1351–1357 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Arbab-Zadeh, A. et al. Effect of aging and physical activity on left ventricular compliance. Circulation 110, 1799–1805 (2004).

    Article  PubMed  Google Scholar 

  51. Popovic´, Z. B. et al. Relationship among diastolic intraventricular pressure gradients, relaxation, and preload: impact of age and fitness. Am. J. Physiol. Heart Circ. Physiol. 290, H1454–H1459 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Prasad, A. et al. The effects of aging and physical activity on Doppler measures of diastolic function. Am. J. Cardiol. 99, 1629–1636 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Carrick-Ranson, G. et al. Effect of healthy aging on left ventricular relaxation and diastolic suction. Am. J. Physiol. Heart Circ. Physiol. 303, H315–H322 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fujimoto, N. et al. Effect of ageing on left ventricular compliance and distensibility in healthy sedentary humans. J. Physiol. 590, 1871–1880 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Borlaug, B. A. et al. Longitudinal changes in left ventricular stiffness: a community-based study. Circ. Heart Fail. 6, 944–952 (2013).

    Article  PubMed  Google Scholar 

  56. Wohlfahrt, P. et al. Impact of general and central adiposity of ventricular-arterial aging in women and men. JACC Heart Fail. (in press).

  57. Gerhard, M., Roddy, M. A., Creager, S. J. & Creager, M. A. Aging progressively impairs endothelium-dependent vasodilation in forearm resistance vessels of humans. Hypertension 27, 849–853 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Topol, E. J., Traill, T. A. & Fortuin, N. J. Hypertensive hypertrophic cardiomyopathy of the elderly. N. Engl. J. Med. 312, 277–283 (1985).

    Article  CAS  PubMed  Google Scholar 

  59. Zile, M. R. et al. Heart failure with a normal ejection fraction: is measurement of diastolic function necessary to make the diagnosis of diastolic heart failure? Circulation 104, 779–782 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Zile, M. R. et al. Prevalence and significance of alterations in cardiac structure and function in patients with heart failure and a preserved ejection fraction. Circulation 124, 2491–2501 (2011).

    Article  PubMed  Google Scholar 

  61. van Heerebeek, L. et al. Myocardial structure and function differ in systolic and diastolic heart failure. Circulation 113, 1966–1973 (2006).

    Article  PubMed  Google Scholar 

  62. Borbély, A. et al. Cardiomyocyte stiffness in diastolic heart failure. Circulation 111, 774–781 (2005).

    Article  PubMed  Google Scholar 

  63. Borlaug, B. A. & Kass, D. A. Invasive hemodynamic assessment in heart failure. Cardiol. Clin. 29, 269–280 (2011).

    Article  PubMed  Google Scholar 

  64. Borlaug, B. A. & Kass, D. A. Mechanisms of diastolic dysfunction in heart failure. Trends Cardiovasc. Med. 16, 273–279 (2006).

    Article  PubMed  Google Scholar 

  65. Hay, I., Rich, J., Ferber, P., Burkhoff, D. & Maurer, M. S. Role of impaired myocardial relaxation in the production of elevated left ventricular filling pressure. Am. J. Physiol. Heart Circ. Physiol. 288, H1203–H1208 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Nonogi, H., Hess, O. M., Ritter, M. & Krayenbuehl, H. P. Diastolic properties of the normal left ventricle during supine exercise. Br. Heart J. 60, 30–38 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Udelson, J. E., Bacharach, S. L., Cannon, R. O. 3rd & Bonow, R. O. Minimum left ventricular pressure during beta-adrenergic stimulation in human subjects. Evidence for elastic recoil and diastolic “suction” in the normal heart. Circulation 82, 1174–1182 (1990).

    Article  CAS  PubMed  Google Scholar 

  68. Cheng, C. P., Igarashi, Y. & Little, W. C. Mechanism of augmented rate of left ventricular filling during exercise. Circ. Res. 70, 9–19 (1992).

    Article  CAS  PubMed  Google Scholar 

  69. Cheng, C. P., Noda, T., Nozawa, T. & Little, W. C. Effect of heart failure on the mechanism of exercise-induced augmentation of mitral valve flow. Circ. Res. 72, 795–806 (1993).

    Article  CAS  PubMed  Google Scholar 

  70. Tan, Y. T. et al. Abnormal left ventricular function occurs on exercise in well-treated hypertensive subjects with normal resting echocardiography. Heart 96, 948–955 (2010).

    Article  PubMed  Google Scholar 

  71. Ohara, T. et al. Loss of adrenergic augmentation of diastolic intra-LV pressure difference in patients with diastolic dysfunction: evaluation by color M-mode echocardiography. JACC Cardiovasc. Imaging 5, 861–870 (2012).

    Article  PubMed  Google Scholar 

  72. Opdahl, A. et al. Determinants of left ventricular early-diastolic lengthening velocity: independent contributions from left ventricular relaxation, restoring forces, and lengthening load. Circulation 119, 2578–2586 (2009).

    Article  PubMed  Google Scholar 

  73. Opdahl, A., Remme, E. W., Helle-Valle, T., Edvardsen, T. & Smiseth, O. A. Myocardial relaxation, restoring forces, and early-diastolic load are independent determinants of left ventricular untwisting rate. Circulation 126, 1441–1451 (2012).

    Article  PubMed  Google Scholar 

  74. van Heerebeek, L. et al. Low myocardial protein kinase G activity in heart failure with preserved ejection fraction. Circulation 126, 830–839 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Paulus, W. J. & Tschöpe, C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll. Cardiol. 62, 263–271 (2013).

    Article  PubMed  Google Scholar 

  76. LeWinter, M. M. & Granzier, H. Cardiac titin: a multifunctional giant. Circulation 121, 2137–2145 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hidalgo, C. & Granzier, H. Tuning the molecular giant titin through phosphorylation: role in health and disease. Trends Cardiovasc. Med. 23, 165–171 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Persson, H. et al. Diastolic dysfunction in heart failure with preserved systolic function: need for objective evidence: results from the CHARM Echocardiographic Substudy-CHARMES. J. Am. Coll. Cardiol. 49, 687–694 (2007).

    Article  PubMed  Google Scholar 

  79. Anjan, V. Y. et al. Prevalence, clinical phenotype, and outcomes associated with normal B-type natriuretic peptide levels in heart failure with preserved ejection fraction. Am. J. Cardiol. 110, 870–876 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang, T. J. et al. Impact of obesity on plasma natriuretic peptide levels. Circulation 109, 594–600 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Bertoni, A. G. et al. Impact of the look AHEAD intervention on NT-pro brain natriuretic peptide in overweight and obese adults with diabetes. Obesity (Silver Spring) 20, 1511–1518 (2012).

    Article  CAS  Google Scholar 

  82. Maurer, M. S. et al. Ventricular structure and function in hypertensive participants with heart failure and a normal ejection fraction: the Cardiovascular Health Study. J. Am. Coll. Cardiol. 49, 972–981 (2007).

    Article  PubMed  Google Scholar 

  83. Abraham, W. T. et al. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet 377, 658–666 (2011).

    Article  PubMed  Google Scholar 

  84. Petrie, M. C., Caruana, L., Berry, C. & McMurray, J. J. “Diastolic heart failure” or heart failure caused by subtle left ventricular systolic dysfunction? Heart 87, 29–31 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dunlay, S. M., Roger, V. L., Weston, S. A., Jiang, R. & Redfield, M. M. Longitudinal changes in ejection fraction in heart failure patients with preserved and reduced ejection fraction. Circ. Heart Fail. 5, 720–726 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Hwang, S. J., Melenovsky, V. & Borlaug, B. A. Implications of coronary artery disease in heart failure with preserved ejection fraction. J. Am. Coll. Cardiol. http://dx.doi.org/10.1016/j.jacc.2014.03.034.

  87. Tan, Y. T. et al. Abnormal left ventricular function occurs on exercise in well-treated hypertensive subjects with normal resting echocardiography. Heart 96, 948–955 (2010).

    Article  PubMed  Google Scholar 

  88. Yu, C. M. et al. Diastolic and systolic asynchrony in patients with diastolic heart failure: a common but ignored condition. J. Am. Coll. Cardiol. 49, 97–105 (2007).

    Article  PubMed  Google Scholar 

  89. Phan, T. T. et al. Increased atrial contribution to left ventricular filling compensates for impaired early filling during exercise in heart failure with preserved ejection fraction. J. Card. Fail. 15, 890–897 (2009).

    Article  PubMed  Google Scholar 

  90. Zakeri, R. et al. Impact of atrial fibrillation on exercise capacity in heart failure with preserved ejection fraction: a RELAX trial ancillary study. Circ. Heart Fail. 7, 123–130 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Melenovsky, V., Hwang, S.-J., Lin, G., Redfield, M. M. & Borlaug, B. A. Right heart dysfunction in heart failure with preserved ejection fraction. Eur. Heart J. http://dx.doi.org/10.1093/eurheartj/ehu193.

  92. Zakeri, R., Chamberlain, A. M., Roger, V. L. & Redfield, M. M. Temporal relationship and prognostic significance of atrial fibrillation in heart failure patients with preserved ejection fraction: a community-based study. Circulation 128, 1085–1093 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Tsang, T. S., Barnes, M. E., Gersh, B. J., Bailey, K. R. & Seward, J. B. Left atrial volume as a morphophysiologic expression of left ventricular diastolic dysfunction and relation to cardiovascular risk burden. Am. J. Cardiol. 90, 1284–1289 (2002).

    Article  PubMed  Google Scholar 

  94. Guazzi, M. & Borlaug, B. A. Pulmonary hypertension due to left heart disease. Circulation 126, 975–990 (2012).

    Article  PubMed  Google Scholar 

  95. Tedford, R. J. et al. Pulmonary capillary wedge pressure augments right ventricular pulsatile loading. Circulation 125, 289–297 (2012).

    Article  PubMed  Google Scholar 

  96. Schwartzenberg, S. et al. Effects of vasodilation in heart failure with preserved or reduced ejection fraction implications of distinct pathophysiologies on response to therapy. J. Am. Coll. Cardiol. 59, 442–451 (2012).

    Article  PubMed  Google Scholar 

  97. Hawkins, N. M. et al. Heart failure and chronic obstructive pulmonary disease: diagnostic pitfalls and epidemiology. Eur. J. Heart Fail. 11, 130–139 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Schwarz, K., Singh, S., Dawson, D. & Frenneaux, M. P. Right ventricular function in left ventricular disease: pathophysiology and implications. Heart Lung Circ. 22, 507–511 (2013).

    Article  PubMed  Google Scholar 

  99. Burke, M. A. et al. Prognostic importance of pathophysiologic markers in patients with heart failure and preserved ejection fraction. Circ. Heart Fail. 7, 288–299 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Liu, M. et al. Albumin levels predict survival in patients with heart failure and preserved ejection fraction. Eur. J. Heart Fail. 14, 39–44 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Melenovsky, V. et al. Relationships between right ventricular function, body composition, and prognosis in advanced heart failure. J. Am. Coll. Cardiol. 62, 1660–1670 (2013).

    Article  PubMed  Google Scholar 

  102. Redfield, M. M. et al. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA 309, 1268–1277 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Janicki, J. S. Influence of the pericardium and ventricular interdependence on left ventricular diastolic and systolic function in patients with heart failure. Circulation 81 (2 Suppl.), III15–III20 (1990).

    CAS  PubMed  Google Scholar 

  104. Dauterman, K. et al. Contribution of external forces to left ventricular diastolic pressure. Implications for the clinical use of the Starling law. Ann. Intern. Med. 122, 737–742 (1995).

    Article  CAS  PubMed  Google Scholar 

  105. Stray-Gundersen, J. et al. The effect of pericardiectomy on maximal oxygen consumption and maximal cardiac output in untrained dogs. Circ. Res. 58, 523–530 (1986).

    Article  CAS  PubMed  Google Scholar 

  106. Akiyama, E. et al. Incremental prognostic significance of peripheral endothelial dysfunction in patients with heart failure with normal left ventricular ejection fraction. J. Am. Coll. Cardiol. 60, 1778–1786 (2012).

    Article  PubMed  Google Scholar 

  107. Haykowsky, M. J. et al. Relationship of flow-mediated arterial dilation and exercise capacity in older patients with heart failure and preserved ejection fraction. J. Gerontol. A Biol. Sci. Med. Sci. 68, 161–167 (2013).

    Article  PubMed  Google Scholar 

  108. Leite-Moreira, A. F. et al. Diastolic tolerance to systolic pressures closely reflects systolic performance in patients with coronary heart disease. Basic Res. Cardiol. 107, 251 (2012).

    Article  PubMed  Google Scholar 

  109. Chirinos, J. A. et al. Early and late systolic wall stress differentially relate to myocardial contraction and relaxation in middle-aged adults: the Asklepios study. Hypertension 61, 296–303 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. Borlaug, B. A. et al. Impact of arterial load and loading sequence on left ventricular tissue velocities in humans. J. Am. Coll. Cardiol. 50, 1570–1577 (2007).

    Article  PubMed  Google Scholar 

  111. Phan, T. T. et al. Impaired heart rate recovery and chronotropic incompetence in patients with heart failure with preserved ejection fraction. Circ. Heart Fail. 3, 29–34 (2009).

    Article  PubMed  Google Scholar 

  112. Kosmala, W. et al. Effect of If-channel Inhibition on hemodynamics and exercise tolerance in heart failure with preserved ejection fraction: a randomized trial. J. Am. Coll. Cardiol. 62, 1330–1338 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Cole, C. R., Blackstone, E. H., Pashkow, F. J., Snader, C. E. & Lauer, M. S. Heart-rate recovery immediately after exercise as a predictor of mortality. N. Engl. J. Med. 341, 1351–1357 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Schlaich, M. P. et al. Relation between cardiac sympathetic activity and hypertensive left ventricular hypertrophy. Circulation 108, 560–565 (2003).

    Article  PubMed  Google Scholar 

  115. Funakoshi, K., Hosokawa, K., Kishi, T., Ide, T. & Sunagawa, K. Striking volume intolerance is induced by mimicking arterial baroreflex failure in normal left ventricular function. J. Card. Fail. 20, 53–59 (2014).

    Article  PubMed  Google Scholar 

  116. Floras, J. S. Sympathetic nervous system activation in human heart failure: clinical implications of an updated model. J. Am. Coll. Cardiol. 54, 375–385 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Kitzman, D. W. et al. Pathophysiological characterization of isolated diastolic heart failure in comparison to systolic heart failure. JAMA 288, 2144–2150 (2002).

    Article  PubMed  Google Scholar 

  118. Haykowsky, M. J. et al. Effect of endurance training on the determinants of peak exercise oxygen consumption in elderly patients with stable compensated heart failure and preserved ejection fraction. J. Am. Coll. Cardiol. 60, 120–128 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Vogiatzis, I. & Zakynthinos, S. The physiological basis of rehabilitation in chronic heart and lung disease. J. Appl. Physiol. (1985) 115, 16–21 (2013).

    Article  Google Scholar 

  120. Shah, S. J. Matchmaking for the optimization of heart failure with preserved ejection fraction clinical trials: no laughing matter. J. Am. Coll. Cardiol. 62, 1339–1342 (2013).

    Article  PubMed  Google Scholar 

  121. Haykowsky, M. J. et al. Skeletal muscle composition and its relation to exercise intolerance in older patients with heart failure and preserved ejection fraction. Am. J. Cardiol. 113, 1211–1216 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Kitzman, D. W. et al. Skeletal muscle abnormalities and exercise intolerance in older patients with heart failure and preserved ejection fraction. Am. J. Physiol. Heart Circ. Physiol. 306, H1364–H1370 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Poole, D. C., Hirai, D. M., Copp, S. W. & Musch, T. I. Muscle oxygen transport and utilization in heart failure: implications for exercise (in)tolerance. Am. J. Physiol. Heart Circ. Physiol. 302, H1050–H1063 (2012).

    Article  CAS  PubMed  Google Scholar 

  124. Borlaug, B. A. Heart failure with preserved and reduced ejection fraction: different risk profiles for different diseases. Eur. Heart J. 34, 1393–1395 (2013).

    Article  PubMed  Google Scholar 

  125. Dai, D. F., Rabinovitch, P. S. & Ungvari, Z. Mitochondria and cardiovascular aging. Circ. Res. 110, 1109–1124 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Bergmann, O. et al. Evidence for cardiomyocyte renewal in humans. Science 324, 98–102 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Biernacka, A. & Frangogiannis, N. G. Aging and cardiac fibrosis. Aging Dis. 2, 158–173 (2011).

    PubMed  PubMed Central  Google Scholar 

  128. Pillai, V. B., Sundaresan, N. R. & Gupta, M. P. Regulation of Akt signaling by sirtuins: its implication in cardiac hypertrophy and aging. Circ. Res. 114, 368–378 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Boon, R. A. et al. MicroRNA-34a regulates cardiac ageing and function. Nature 495, 107–110 (2013).

  130. Madeo, F., Tavernarakis, N. & Kroemer, G. Can autophagy promote longevity? Nat. Cell Biol. 12, 842–846 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Loffredo, F. S. et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell 153, 828–839 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Rider, O. J. et al. Beneficial cardiovascular effects of bariatric surgical and dietary weight loss in obesity. J. Am. Coll. Cardiol. 54, 718–726 (2009).

    Article  PubMed  Google Scholar 

  133. Lavie, C. J., McAuley, P. A., Church, T. S., Milani, R. V. & Blair, S. N. Obesity and cardiovascular diseases—implications regarding fitness, fatness and severity in the obesity paradox. J. Am. Coll. Cardiol. 63, 1345–1354 (2014).

    Article  PubMed  Google Scholar 

  134. Rider, O. J. et al. Effects of catecholamine stress on diastolic function and myocardial energetics in obesity. Circulation 125, 1511–1519 (2012).

    Article  CAS  PubMed  Google Scholar 

  135. Kozakova, M. et al. Reduced left ventricular functional reserve in hypertensive patients with preserved function at rest. Hypertension 45, 619–624 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Norman, H. S. et al. Decreased cardiac functional reserve in heart failure with preserved systolic function. J. Card. Fail. 17, 301–308 (2011).

    Article  PubMed  Google Scholar 

  137. Nelson, M. D. et al. Diastolic dysfunction in women with signs and symptoms of ischemia in the absence of obstructive coronary artery disease: a hypothesis-generating study. Circ. Cardiovasc. Imaging 7, 510–516 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry A. Borlaug.

Ethics declarations

Competing interests

The author has acted as a consultant for: Amgen, Cardiokinetix, DC Devices (unpaid), GlaxoSmithKline, and Merck. He has received research support from AtCor Medical.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borlaug, B. The pathophysiology of heart failure with preserved ejection fraction. Nat Rev Cardiol 11, 507–515 (2014). https://doi.org/10.1038/nrcardio.2014.83

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2014.83

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing