Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Altered sarcoplasmic reticulum calcium cycling—targets for heart failure therapy

Abstract

Cardiac myocyte function is dependent on the synchronized movements of Ca2+ into and out of the cell, as well as between the cytosol and sarcoplasmic reticulum. These movements determine cardiac rhythm and regulate excitation–contraction coupling. Ca2+ cycling is mediated by a number of critical Ca2+-handling proteins and transporters, such as L-type Ca2+ channels (LTCCs) and sodium/calcium exchangers in the sarcolemma, and sarcoplasmic/endoplasmic reticulum calcium ATPase 2a (SERCA2a), ryanodine receptors, and cardiac phospholamban in the sarcoplasmic reticulum. The entry of Ca2+ into the cytosol through LTCCs activates the release of Ca2+ from the sarcoplasmic reticulum through ryanodine receptor channels and initiates myocyte contraction, whereas SERCA2a and cardiac phospholamban have a key role in sarcoplasmic reticulum Ca2+ sequesteration and myocyte relaxation. Excitation–contraction coupling is regulated by phosphorylation of Ca2+-handling proteins. Abnormalities in sarcoplasmic reticulum Ca2+ cycling are hallmarks of heart failure and contribute to the pathophysiology and progression of this disease. Correcting impaired intracellular Ca2+ cycling is a promising new approach for the treatment of heart failure. Novel therapeutic strategies that enhance myocyte Ca2+ homeostasis could prevent and reverse adverse cardiac remodeling and improve clinical outcomes in patients with heart failure.

Key Points

  • Ca2+ cycling defects in cardiac myocytes are a hallmark of heart failure

  • Ca2+-handling abnormalities in failing cardiac myocytes include reduced Ca2+ uptake, decreased sarcoplasmic reticulum Ca2+ sequestration, and defective Ca2+ release from the sarcoplasmic reticulum, resulting in cytosolic Ca2+ overload

  • Changes in the expression and activity of Ca2+-handling proteins have been described in patients with chronic heart failure

  • Restoration of sarcoplasmic reticulum Ca2+ uptake through activation of sarcoplasmic/endoplasmic reticulum calcium ATPase 2a is a promising strategy for the treatment of patients with heart failure

  • Reducing Ca2+ leakage from the sarcoplasmic reticulum by targeting calcium/calmodulin-dependent protein kinase type II or stabilizing ryanodine receptors is also a promising strategy for treatment of patients with heart failure

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Excitation–contraction coupling.
Figure 2: Abnormal intracellular Ca2+ handling in failing cardiomyocytes results in reduced contractile force and prolonged relaxation.

Similar content being viewed by others

References

  1. de Giuli, F. et al. Incidence and outcome of persons with a clinical diagnosis of heart failure in a general practice population of 696,884 in the United Kingdom. Eur. J. Heart Fail. 7, 295–302 (2005).

    PubMed  Google Scholar 

  2. Sliwa, K., Damasceno, A. & Mayosi, B. M. Epidemiology and etiology of cardiomyopathy in Africa. Circulation 112, 3577–3583 (2005).

    PubMed  Google Scholar 

  3. Jiang, H. & Ge, J. Epidemiology and clinical management of cardiomyopathies and heart failure in China. Heart 95, 1727–1731 (2009).

    CAS  PubMed  Google Scholar 

  4. Clapham, D. E. Calcium signaling. Cell 80, 259–268 (1995).

    CAS  PubMed  Google Scholar 

  5. Berridge, M. J., Lipp, P. & Bootman, M. D. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11–21 (2000).

    CAS  PubMed  Google Scholar 

  6. Rockman, H. A., Koch, W. J. & Lefkowitz, R. J. Seven transmembrane-spanning receptors and heart function. Nature 415, 206–212 (2002).

    CAS  PubMed  Google Scholar 

  7. Antos, C. L. et al. Dilated cardiomyopathy and sudden death resulting from constitutive activation of protein kinase A. Circ. Res. 89, 997–1004 (2001).

    CAS  PubMed  Google Scholar 

  8. Feldman, R. D. & Gros, R. New insights into the regulation of cAMP synthesis beyond GPCR/G protein activation: implications in cardiovascular regulation. Life Sci. 81, 267–271 (2007).

    CAS  PubMed  Google Scholar 

  9. Wittkopper, K., Dobrev, D., Eschenhagen, T. & El-Armouche, A. Phosphatase-1 inhibitor-1 in physiological and pathological β-adrenoceptor signalling. Cardiovasc. Res. 91, 392–401 (2011).

    PubMed  Google Scholar 

  10. Reinkober, J. et al. Targeting GRK2 by gene therapy for heart failure: benefits above β-blockade. Gene Ther. 19, 686–693 (2012).

    CAS  PubMed  Google Scholar 

  11. Sculptoreanu, A., Rotman, E., Takahashi, M., Scheuer, T. & Catterall, W. A. Voltage-dependent potentiation of the activity of cardiac L-type calcium channel α1 subunits due to phosphorylation by cAMP-dependent protein kinase. Proc. Natl Acad. Sci. USA 90, 10135–10139 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kamp, T. J. & Hell, J. W. Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C. Circ. Res. 87, 1095–1102 (2000).

    CAS  PubMed  Google Scholar 

  13. Colyer, J. & Wang, J. H. Dependence of cardiac sarcoplasmic reticulum calcium pump activity on the phosphorylation status of phospholamban. J. Biol. Chem. 266, 17486–17493 (1991).

    CAS  PubMed  Google Scholar 

  14. Haghighi, K., Gregory, K. N. & Kranias, E. G. Sarcoplasmic reticulum Ca-ATPase-phospholamban interactions and dilated cardiomyopathy. Biochem. Biophys. Res. Commun. 322, 1214–1222 (2004).

    CAS  PubMed  Google Scholar 

  15. Chen, Z., Akin, B. L. & Jones, L. R. Mechanism of reversal of phospholamban inhibition of the cardiac Ca2+-ATPase by protein kinase A and by anti-phospholamban monoclonal antibody 2D12. J. Biol. Chem. 282, 20968–20976 (2007).

    CAS  PubMed  Google Scholar 

  16. Li, L., Desantiago, J., Chu, G., Kranias, E. G. & Bers, D. M. Phosphorylation of phospholamban and troponin I in β-adrenergic-induced acceleration of cardiac relaxation. Am. J. Physiol. Heart Circ. Physiol. 278, H769–H779 (2000).

    CAS  PubMed  Google Scholar 

  17. Kentish, J. C. et al. Phosphorylation of troponin I by protein kinase A accelerates relaxation and crossbridge cycle kinetics in mouse ventricular muscle. Circ. Res. 88, 1059–1065 (2001).

    CAS  PubMed  Google Scholar 

  18. Pena, J. R. & Wolska, B. M. Troponin I phosphorylation plays an important role in the relaxant effect of β-adrenergic stimulation in mouse hearts. Cardiovasc. Res. 61, 756–763 (2004).

    CAS  PubMed  Google Scholar 

  19. Lohse, M. J., Engelhardt, S. & Eschenhagen, T. What is the role of β-adrenergic signaling in heart failure? Circ. Res. 93, 896–906 (2003).

    CAS  PubMed  Google Scholar 

  20. Lyon, A. R. et al. Plasticity of surface structures and β2-adrenergic receptor localization in failing ventricular cardiomyocytes during recovery from heart failure. Circ. Heart Fail. 5, 357–365 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Tilley, D. G. & Rockman, H. A. Role of β-adrenergic receptor signaling and desensitization in heart failure: new concepts and prospects for treatment. Expert Rev. Cardiovasc. Ther. 4, 417–432 (2006).

    CAS  PubMed  Google Scholar 

  22. Ho, D., Yan, L., Iwatsubo, K., Vatner, D. E. & Vatner, S. F. Modulation of β-adrenergic receptor signaling in heart failure and longevity: targeting adenylyl cyclase type 5. Heart Fail. Rev. 15, 495–512 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Perreault, C. L., Bing, O. H., Brooks, W. W., Ransil, B. J. & Morgan, J. P. Differential effects of cardiac hypertrophy and failure on right versus left ventricular calcium activation. Circ. Res. 67, 707–712 (1990).

    CAS  PubMed  Google Scholar 

  24. Ungerer, M., Bohm, M., Elce, J. S., Erdmann, E. & Lohse, M. J. Altered expression of β-adrenergic receptor kinase and β1-adrenergic receptors in the failing human heart. Circulation 87, 454–463 (1993).

    CAS  PubMed  Google Scholar 

  25. Kiuchi, K. et al. Myocardial β-adrenergic receptor function during the development of pacing-induced heart failure. J. Clin. Invest. 91, 907–914 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Choi, D. J., Koch, W. J., Hunter, J. J. & Rockman, H. A. Mechanism of β-adrenergic receptor desensitization in cardiac hypertrophy is increased β-adrenergic receptor kinase. J. Biol. Chem. 272, 17223–17229 (1997).

    CAS  PubMed  Google Scholar 

  27. Woo, A. Y. & Xiao, R. P. β-adrenergic receptor subtype signaling in heart: from bench to bedside. Acta Pharmacol. Sin. 33, 335–341 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Grimm, M. & Brown, J. H. β-adrenergic receptor signaling in the heart: role of CaMKII. J. Mol. Cell Cardiol. 48, 322–330 (2009).

    PubMed  PubMed Central  Google Scholar 

  29. Wilkins, B. J. et al. Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy. Circ. Res. 94, 110–118 (2004).

    CAS  PubMed  Google Scholar 

  30. Zhang, C. L. et al. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110, 479–488 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Voelkers, M. et al. Orai1 and Stim1 regulate normal and hypertrophic growth in cardiomyocytes. J. Mol. Cell Cardiol. 48, 1329–1334 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hulot, J. S. et al. Critical role for stromal interaction molecule 1 in cardiac hypertrophy. Circulation 124, 796–805 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Buraei, Z. & Yang, J. The β subunit of voltage-gated Ca2+ channels. Physiol. Rev. 90, 1461–1506 (2010).

    CAS  PubMed  Google Scholar 

  34. Andrade, A. et al. The α2δ subunit augments functional expression and modifies the pharmacology of CaV1.3 L-type channels. Cell Calcium 46, 282–292 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Benitah, J. P., Alvarez, J. L. & Gomez, A. M. L-type Ca2+ current in ventricular cardiomyocytes. J. Mol. Cell Cardiol. 48, 26–36 (2010).

    CAS  PubMed  Google Scholar 

  36. Seisenberger, C. et al. Functional embryonic cardiomyocytes after disruption of the L-type α1C (Cav1.2) calcium channel gene in the mouse. J. Biol. Chem. 275, 39193–39199 (2000).

    CAS  PubMed  Google Scholar 

  37. Weissgerber, P. et al. Reduced cardiac L-type Ca2+ current in CaVβ2-/- embryos impairs cardiac development and contraction with secondary defects in vascular maturation. Circ. Res. 99, 749–757 (2006).

    CAS  PubMed  Google Scholar 

  38. Semsarian, C. et al. The L-type calcium channel inhibitor diltiazem prevents cardiomyopathy in a mouse model. J. Clin. Invest. 109, 1013–1020 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Liao, Y. et al. Benidipine, a long-acting calcium channel blocker, inhibits cardiac remodeling in pressure-overloaded mice. Cardiovasc. Res. 65, 879–888 (2005).

    CAS  PubMed  Google Scholar 

  40. Mukherjee, R. & Spinale, F. G. L-type calcium channel abundance and function with cardiac hypertrophy and failure: a review. J. Mol. Cell Cardiol. 30, 1899–1916 (1998).

    CAS  PubMed  Google Scholar 

  41. Goonasekera, S. A. et al. Decreased cardiac L-type Ca2+ channel activity induces hypertrophy and heart failure in mice. J. Clin. Invest. 122, 280–290 (2012).

    CAS  PubMed  Google Scholar 

  42. Schroder, F. et al. Increased availability and open probability of single L-type calcium channels from failing compared with nonfailing human ventricle. Circulation 98, 969–976 (1998).

    CAS  PubMed  Google Scholar 

  43. Chen, X. et al. L-type Ca2+ channel density and regulation are altered in failing human ventricular myocytes and recover after support with mechanical assist devices. Circ. Res. 91, 517–524 (2002).

    CAS  PubMed  Google Scholar 

  44. Mahe, I., Chassany, O., Grenard, A. S., Caulin, C. & Bergmann, J. F. Defining the role of calcium channel antagonists in heart failure due to systolic dysfunction. Am. J. Cardiovasc. Drugs 3, 33–41 (2003).

    CAS  PubMed  Google Scholar 

  45. Luo, X. et al. STIM1-dependent store-operated Ca2+ entry is required for pathological cardiac hypertrophy. J. Mol. Cell Cardiol. 52, 136–147 (2012).

    CAS  PubMed  Google Scholar 

  46. Parekh, A. B. & Putney, J. W. Jr. Store-operated calcium channels. Physiol. Rev. 85, 757–810 (2005).

    CAS  PubMed  Google Scholar 

  47. Vig, M. et al. CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312, 1220–1223 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Prakriya, M. et al. Orai1 is an essential pore subunit of the CRAC channel. Nature 443, 230–233 (2006).

    CAS  PubMed  Google Scholar 

  49. Liou, J. et al. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr. Biol. 15, 1235–1241 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Roos, J. et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J. Cell Biol. 169, 435–445 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, S. L. et al. Genome-wide RNAi screen of Ca2+ influx identifies genes that regulate Ca2+ release-activated Ca2+ channel activity. Proc. Natl Acad. Sci. USA 103, 9357–9362 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Stathopulos, P. B., Zheng, L., Li, G. Y., Plevin, M. J. & Ikura, M. Structural and mechanistic insights into STIM1-mediated initiation of store-operated calcium entry. Cell 135, 110–122 (2008).

    CAS  PubMed  Google Scholar 

  53. Luik, R. M., Wu, M. M., Buchanan, J. & Lewis, R. S. The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. J. Cell Biol. 174, 815–825 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Stathopulos, P. B., Li, G. Y., Plevin, M. J., Ames, J. B. & Ikura, M. Stored Ca2+ depletion-induced oligomerization of stromal interaction molecule 1 (STIM1) via the EF-SAM region: an initiation mechanism for capacitive Ca2+ entry. J. Biol. Chem. 281, 35855–35862 (2006).

    CAS  PubMed  Google Scholar 

  55. Wu, M. M., Buchanan, J., Luik, R. M. & Lewis, R. S. Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J. Cell Biol. 174, 803–813 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Park, C. Y. et al. STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136, 876–890 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Gwack, Y. et al. A genome-wide drosophila RNAi screen identifies DYRK-family kinases as regulators of NFAT. Nature 441, 646–650 (2006).

    CAS  PubMed  Google Scholar 

  58. Aubart, F. C. et al. RNA interference targeting STIM1 suppresses vascular smooth muscle cell proliferation and neointima formation in the rat. Mol. Ther. 17, 455–462 (2009).

    CAS  PubMed  Google Scholar 

  59. Kurebayashi, N. & Ogawa, Y. Depletion of Ca2+ in the sarcoplasmic reticulum stimulates Ca2+ entry into mouse skeletal muscle fibres. J. Physiol. 533, 185–199 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Pan, Z. et al. Dysfunction of store-operated calcium channel in muscle cells lacking mg29. Nat. Cell Biol. 4, 379–383 (2002).

    CAS  PubMed  Google Scholar 

  61. Launikonis, B. S., Barnes, M. & Stephenson, D. G. Identification of the coupling between skeletal muscle store-operated Ca2+ entry and the inositol trisphosphate receptor. Proc. Natl Acad. Sci. USA 100, 2941–2944 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Gibson, A., McFadzean, I., Wallace, P. & Wayman, C. P. Capacitative Ca2+ entry and the regulation of smooth muscle tone. Trends Pharmacol. Sci. 19, 266–269 (1998).

    CAS  PubMed  Google Scholar 

  63. Leung, F. P., Yung, L. M., Yao, X., Laher, I. & Huang, Y. Store-operated calcium entry in vascular smooth muscle. Br. J. Pharmacol. 153, 846–857 (2008).

    CAS  PubMed  Google Scholar 

  64. Zanou, N. et al. Role of TRPC1 channel in skeletal muscle function. Am. J. Physiol. Cell Physiol. 298, C149–C162 (2010).

    CAS  PubMed  Google Scholar 

  65. Ohba, T. et al. Essential role of STIM1 in the development of cardiomyocyte hypertrophy. Biochem. Biophys. Res. Commun. 389, 172–176 (2009).

    CAS  PubMed  Google Scholar 

  66. Mulieri, L. A., Hasenfuss, G., Leavitt, B., Allen, P. D. & Alpert, N. R. Altered myocardial force-frequency relation in human heart failure. Circulation 85, 1743–1750 (1992).

    CAS  PubMed  Google Scholar 

  67. Pieske, B. et al. Alterations in intracellular calcium handling associated with the inverse force-frequency relation in human dilated cardiomyopathy. Circulation 92, 1169–1178 (1995).

    CAS  PubMed  Google Scholar 

  68. Mercadier, J. J. et al. Altered sarcoplasmic reticulum Ca2+-ATPase gene expression in the human ventricle during end-stage heart failure. J. Clin. Invest. 85, 305–309 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Morgan, J. P. Abnormal intracellular modulation of calcium as a major cause of cardiac contractile dysfunction. N. Engl. J. Med. 325, 625–632 (1991).

    CAS  PubMed  Google Scholar 

  70. Lindner, M., Erdmann, E. & Beuckelmann, D. J. Calcium content of the sarcoplasmic reticulum in isolated ventricular myocytes from patients with terminal heart failure. J. Mol. Cell Cardiol. 30, 743–749 (1998).

    CAS  PubMed  Google Scholar 

  71. Campbell, A. M., Kessler, P. D. & Fambrough, D. M. The alternative carboxyl termini of avian cardiac and brain sarcoplasmic reticulum/endoplasmic reticulum Ca2+-ATPases are on opposite sides of the membrane. J. Biol. Chem. 267, 9321–9325 (1992).

    CAS  PubMed  Google Scholar 

  72. Verboomen, H., Wuytack, F., Van den Bosch, L., Mertens, L. & Casteels, R. The functional importance of the extreme C-terminal tail in the gene 2 organellar Ca2+-transport ATPase (SERCA2a/b). Biochem. J. 303, 979–984 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Verboomen, H., Wuytack, F., De Smedt, H., Himpens, B. & Casteels, R. Functional difference between SERCA2a and SERCA2b Ca2+ pumps and their modulation by phospholamban. Biochem. J. 286, 591–595 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Gélébart, P., Martin, V., Enouf, J. & Papp, B. Identification of a new SERCA2 splice variant regulated during monocytic differentiation. Biochem. Biophys. Res. Commun. 303, 676–684 (2003).

    PubMed  Google Scholar 

  75. Dally, S. et al. Ca2+-ATPases in non-failing and failing heart: evidence for a novel cardiac sarco/endoplasmic reticulum Ca2+-ATPase 2 isoform (SERCA2c). Biochem. J. 395, 249–258 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Arai, M., Matsui, H. & Periasamy, M. Sarcoplasmic reticulum gene expression in cardiac hypertrophy and heart failure. Circ. Res. 74, 555–564 (1994).

    CAS  PubMed  Google Scholar 

  77. Feldman, A. M., Weinberg, E. O., Ray, P. E. & Lorell, B. H. Selective changes in cardiac gene expression during compensated hypertrophy and the transition to cardiac decompensation in rats with chronic aortic banding. Circ. Res. 73, 184–192 (1993).

    CAS  PubMed  Google Scholar 

  78. Kiss, E., Ball, N. A., Kranias, E. G. & Walsh, R. A. Differential changes in cardiac phospholamban and sarcoplasmic reticular Ca2+-ATPase protein levels. Effects on Ca2+ transport and mechanics in compensated pressure-overload hypertrophy and congestive heart failure. Circ. Res. 77, 759–764 (1995).

    CAS  PubMed  Google Scholar 

  79. Zarain-Herzberg, A., Rupp, H., Elimban, V. & Dhalla, N. S. Modification of sarcoplasmic reticulum gene expression in pressure overload cardiac hypertrophy by etomoxir. FASEB J. 10, 1303–1309 (1996).

    CAS  PubMed  Google Scholar 

  80. Zarain-Herzberg, A., Afzal, N., Elimban, V. & Dhalla, N. S. Decreased expression of cardiac sarcoplasmic reticulum Ca2+-pump ATPase in congestive heart failure due to myocardial infarction. Mol. Cell Biochem. 163–164, 285–290 (1996).

    PubMed  Google Scholar 

  81. Guo, X., Chapman, D. & Dhalla, N. S. Partial prevention of changes in SR gene expression in congestive heart failure due to myocardial infarction by enalapril or losartan. Mol. Cell Biochem. 254, 163–172 (2003).

    CAS  PubMed  Google Scholar 

  82. Arai, M., Alpert, N. R., MacLennan, D. H., Barton, P. & Periasamy, M. Alterations in sarcoplasmic reticulum gene expression in human heart failure. A possible mechanism for alterations in systolic and diastolic properties of the failing myocardium. Circ. Res. 72, 463–469 (1993).

    CAS  PubMed  Google Scholar 

  83. Hasenfuss, G. et al. Relation between myocardial function and expression of sarcoplasmic reticulum Ca2+-ATPase in failing and nonfailing human myocardium. Circ. Res. 75, 434–442 (1994).

    CAS  PubMed  Google Scholar 

  84. Koss, K. L. & Kranias, E. G. Phospholamban: a prominent regulator of myocardial contractility. Circ. Res. 79, 1059–1063 (1996).

    CAS  PubMed  Google Scholar 

  85. Brittsan, A. G. & Kranias, E. G. Phospholamban and cardiac contractile function. J. Mol. Cell Cardiol. 32, 2131–2139 (2000).

    CAS  PubMed  Google Scholar 

  86. Movsesian, M. A., Karimi, M., Green, K. & Jones, L. R. Ca2+-transporting ATPase, phospholamban, and calsequestrin levels in nonfailing and failing human myocardium. Circulation 90, 653–657 (1994).

    CAS  PubMed  Google Scholar 

  87. Schwinger, R. H. et al. Unchanged protein levels of SERCA II and phospholamban but reduced Ca2+ uptake and Ca2+-ATPase activity of cardiac sarcoplasmic reticulum from dilated cardiomyopathy patients compared with patients with nonfailing hearts. Circulation 92, 3220–3228 (1995).

    CAS  PubMed  Google Scholar 

  88. Linck, B. et al. Messenger RNA expression and immunological quantification of phospholamban and SR-Ca2+-ATPase in failing and nonfailing human hearts. Cardiovasc. Res. 31, 625–632 (1996).

    CAS  PubMed  Google Scholar 

  89. Flesch, M. et al. Sarcoplasmic reticulum Ca2+ ATPase and phospholamban mRNA and protein levels in end-stage heart failure due to ischemic or dilated cardiomyopathy. J. Mol. Med. (Berl.) 74, 321–332 (1996).

    CAS  Google Scholar 

  90. Meyer, M. et al. Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy. Circulation 92, 778–784 (1995).

    CAS  PubMed  Google Scholar 

  91. Kranias, E. G. & Hajjar, R. J. Modulation of cardiac contractility by the phopholamban/SERCA2a regulatome. Circ. Res. 110, 1646–1660 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Sande, J. B. et al. Reduced level of serine 16 phosphorylated phospholamban in the failing rat myocardium: a major contributor to reduced SERCA2 activity. Cardiovasc. Res. 53, 382–391 (2002).

    CAS  PubMed  Google Scholar 

  93. Netticadan, T., Temsah, R. M., Kawabata, K. & Dhalla, N. S. Sarcoplasmic reticulum Ca2+/Calmodulin-dependent protein kinase is altered in heart failure. Circ. Res. 86, 596–605 (2000).

    CAS  PubMed  Google Scholar 

  94. Mishra, S., Sabbah, H. N., Jain, J. C. & Gupta, R. C. Reduced Ca2+-calmodulin-dependent protein kinase activity and expression in LV myocardium of dogs with heart failure. Am. J. Physiol. Heart Circ. Physiol. 284, H876–H883 (2003).

    CAS  PubMed  Google Scholar 

  95. Huang, B., Wang, S., Qin, D., Boutjdir, M. & El-Sherif, N. Diminished basal phosphorylation level of phospholamban in the postinfarction remodeled rat ventricle: role of β-adrenergic pathway, Gi protein, phosphodiesterase, and phosphatases. Circ. Res. 85, 848–855 (1999).

    CAS  PubMed  Google Scholar 

  96. Schwinger, R. H. et al. Reduced Ca2+-sensitivity of SERCA2a in failing human myocardium due to reduced serin-16 phospholamban phosphorylation. J. Mol. Cell Cardiol. 31, 479–491 (1999).

    PubMed  Google Scholar 

  97. Nicolaou, P., Hajjar, R. J. & Kranias, E. G. Role of protein phosphatase-1 inhibitor-1 in cardiac physiology and pathophysiology. J. Mol. Cell Cardiol. 47, 365–371 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Yamada, M. et al. Inhibition of protein phosphatase 1 by inhibitor-2 gene delivery ameliorates heart failure progression in genetic cardiomyopathy. FASEB J. 20, 1197–1199 (2006).

    CAS  PubMed  Google Scholar 

  99. Medeiros, A. et al. Mutations in the human phospholamban gene in patients with heart failure. Am. Heart J. 162, 1088.e1–1095.e1 (2011).

    Google Scholar 

  100. Schmitt, J. P. et al. Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban. Science 299, 1410–1413 (2003).

    CAS  PubMed  Google Scholar 

  101. Haghighi, K. et al. A mutation in the human phospholamban gene, deleting arginine 14, results in lethal, hereditary cardiomyopathy. Proc. Natl Acad. Sci. USA 103, 1388–1393 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Haghighi, K. et al. Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. J. Clin. Invest. 111, 869–876 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Bers, D. M. & Weber, C. R. Na/Ca exchange function in intact ventricular myocytes. Ann. N. Y. Acad. Sci. 976, 500–512 (2002).

    CAS  PubMed  Google Scholar 

  104. Studer, R. et al. Gene expression of the cardiac Na+-Ca2+ exchanger in end-stage human heart failure. Circ. Res. 75, 443–453 (1994).

    CAS  PubMed  Google Scholar 

  105. Hasenfuss, G. et al. Relationship between Na+-Ca2+-exchanger protein levels and diastolic function of failing human myocardium. Circulation 99, 641–648 (1999).

    CAS  PubMed  Google Scholar 

  106. Schwinger, R. H. et al. Reduced sodium pump α1, α3, and β1-isoform protein levels and Na+, K+-ATPase activity but unchanged Na+-Ca2+ exchanger protein levels in human heart failure. Circulation 99, 2105–2112 (1999).

    CAS  PubMed  Google Scholar 

  107. Piper, C. et al. Is myocardial Na+/Ca2+ exchanger transcription a marker for different stages of myocardial dysfunction? Quantitative polymerase chain reaction of the messenger RNA in endomyocardial biopsies of patients with heart failure. J. Am. Coll. Cardiol. 36, 233–241 (2000).

    CAS  PubMed  Google Scholar 

  108. Flesch, M. et al. Evidence for functional relevance of an enhanced expression of the Na+–Ca2+ exchanger in failing human myocardium. Circulation 94, 992–1002 (1996).

    CAS  PubMed  Google Scholar 

  109. Reinecke, H., Studer, R., Vetter, R., Holtz, I. & Drexler, H. Cardiac Na+/Ca2+ exchange activity in patients with end-stage heart failure. Cardiovasc. Res. 31, 48–54 (1996).

    CAS  PubMed  Google Scholar 

  110. Piacentino, V. 3rd et al. Cellular basis of abnormal calcium transients of failing human ventricular myocytes. Circ. Res. 92, 651–658 (2003).

    CAS  PubMed  Google Scholar 

  111. Weber, C. R., Piacentino, V. 3rd, Houser, S. R. & Bers, D. M. Dynamic regulation of sodium/calcium exchange function in human heart failure. Circulation 108, 2224–2229 (2003).

    CAS  PubMed  Google Scholar 

  112. Bers, D. M., Eisner, D. A. & Valdivia, H. H. Sarcoplasmic reticulum Ca2+ and heart failure: roles of diastolic leak and Ca2+ transport. Circ. Res. 93, 487–490 (2003).

    CAS  PubMed  Google Scholar 

  113. Györke, S., Stevens, S. C. & Terentyev, D. Cardiac calsequestrin: quest inside the SR. J. Physiol. 587 (Pt 13), 3091–3094 (2009).

    PubMed  PubMed Central  Google Scholar 

  114. Györke, S. & Terentyev, D. Modulation of ryanodine receptor by luminal calcium and accessory proteins in health and cardiac disease. Cardiovasc. Res. 77, 245–255 (2008).

    PubMed  Google Scholar 

  115. Knollmann, B. C. New roles of calsequestrin and triadin in cardiac muscle. J. Physiol. 587, 3081–3087 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Kontula, K. et al. Catecholaminergic polymorphic ventricular tachycardia: recent mechanistic insights. Cardiovasc. Res. 67, 379–387 (2005).

    CAS  PubMed  Google Scholar 

  117. Postma, A. V. et al. Absence of calsequestrin 2 causes severe forms of catecholaminergic polymorphic ventricular tachycardia. Circ. Res. 91, e21–e26 (2002).

    CAS  PubMed  Google Scholar 

  118. Lahat, H. et al. A missense mutation in a highly conserved region of CASQ2 is associated with autosomal recessive catecholamine-induced polymorphic ventricular tachycardia in Bedouin families from Israel. Am. J. Hum. Genet. 69, 1378–1384 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Song, L. et al. Calsequestrin 2 (CASQ2) mutations increase expression of calreticulin and ryanodine receptors, causing catecholaminergic polymorphic ventricular tachycardia. J. Clin. Invest. 117, 1814–1823 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Kiarash, A. et al. Defective glycosylation of calsequestrin in heart failure. Cardiovasc. Res. 63, 264–272 (2004).

    CAS  PubMed  Google Scholar 

  121. Houle, T. D., Ram, M. L., McMurray, W. J. & Cala, S. E. Different endoplasmic reticulum trafficking and processing pathways for calsequestrin (CSQ) and epitope-tagged CSQ. Exp. Cell Res. 312, 4150–4161 (2006).

    CAS  PubMed  Google Scholar 

  122. McFarland, T. P., Milstein, M. L. & Cala, S. E. Rough endoplasmic reticulum to junctional sarcoplasmic reticulum trafficking of calsequestrin in adult cardiomyocytes. J. Mol. Cell Cardiol. 49, 556–564 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhang, L., Kelley, J., Schmeisser, G., Kobayashi, Y. M. & Jones, L. R. Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane. J. Biol. Chem. 272, 23389–23397 (1997).

    CAS  PubMed  Google Scholar 

  124. Gergs, U. et al. On the role of junctin in cardiac Ca2+ handling, contractility, and heart failure. Am. J. Physiol. Heart Circ. Physiol. 293, H728–H734 (2007).

    CAS  PubMed  Google Scholar 

  125. Terentyev, D. et al. Triadin overexpression stimulates excitation–contraction coupling and increases predisposition to cellular arrhythmia in cardiac myocytes. Circ. Res. 96, 651–658 (2005).

    CAS  PubMed  Google Scholar 

  126. Engelhardt, S. et al. Early impairment of calcium handling and altered expression of junctin in hearts of mice overexpressing the β1-adrenergic receptor. FASEB J. 15, 2718–2720 (2001).

    CAS  PubMed  Google Scholar 

  127. Pritchard, T. J. & Kranias, E. G. Junctin and the histidine-rich Ca2+ binding protein: potential roles in heart failure and arrhythmogenesis. J. Physiol. 587, 3125–3133 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Fan, G. C., Gregory, K. N., Zhao, W., Park, W. J. & Kranias, E. G. Regulation of myocardial function by histidine-rich, calcium-binding protein. Am. J. Physiol. Heart Circ. Physiol. 287, H1705–H1711 (2004).

    CAS  PubMed  Google Scholar 

  129. Arvanitis, D. A. et al. The Ser96Ala variant in histidine-rich calcium-binding protein is associated with life-threatening ventricular arrhythmias in idiopathic dilated cardiomyopathy. Eur. Heart J. 29, 2514–2525 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Kiewitz, R., Lyons, G. E., Schafer, B. W. & Heizmann, C. W. Transcriptional regulation of S100A1 and expression during mouse heart development. Biochim. Biophys. Acta 1498, 207–219 (2000).

    CAS  PubMed  Google Scholar 

  131. Volkers, M. et al. S100A1 decreases calcium spark frequency and alters their spatial characteristics in permeabilized adult ventricular cardiomyocytes. Cell Calcium 41, 135–143 (2007).

    PubMed  Google Scholar 

  132. Remppis, A. et al. Altered expression of the Ca2+-binding protein S100A1 in human cardiomyopathy. Biochim. Biophys. Acta 1313, 253–257 (1996).

    PubMed  Google Scholar 

  133. Most, P. et al. Transgenic overexpression of the Ca2+-binding protein S100A1 in the heart leads to increased in vivo myocardial contractile performance. J. Biol. Chem. 278, 33809–33817 (2003).

    CAS  PubMed  Google Scholar 

  134. Kettlewell, S., Most, P., Currie, S., Koch, W. J. & Smith, G. L. S100A1 increases the gain of excitation–contraction coupling in isolated rabbit ventricular cardiomyocytes. J. Mol. Cell Cardiol. 39, 900–910 (2005).

    CAS  PubMed  Google Scholar 

  135. Du, X. J. et al. Impaired cardiac contractility response to hemodynamic stress in S100A1-deficient mice. Mol. Cell. Biol. 22, 2821–2829 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Boerries, M. et al. Ca2+-dependent interaction of S100A1 with F1-ATPase leads to an increased ATP content in cardiomyocytes. Mol. Cell Biol. 27, 4365–4373 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Wehrens, X. H. & Marks, A. R. Altered function and regulation of cardiac ryanodine receptors in cardiac disease. Trends Biochem. Sci. 28, 671–678 (2003).

    CAS  PubMed  Google Scholar 

  138. Kushnir, A. & Marks, A. R. The ryanodine receptor in cardiac physiology and disease. Adv. Pharmacol. 59, 1–30 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Avila, G., O'Connell, K. M., Groom, L. A. & Dirksen, R. T. Ca2+ release through ryanodine receptors regulates skeletal muscle L-type Ca2+ channel expression. J. Biol. Chem. 276, 17732–17738 (2001).

    CAS  PubMed  Google Scholar 

  140. Lanner, J. T., Georgiou, D. K., Joshi, A. D. & Hamilton, S. L. Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harb. Perspect. Biol. 2, a003996 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Song, D. W., Lee, J. G., Youn, H. S., Eom, S. H. & Kim do, H. Ryanodine receptor assembly: a novel systems biology approach to 3D mapping. Prog. Biophys. Mol. Biol. 105, 145–161 (2011).

    CAS  PubMed  Google Scholar 

  142. Balshaw, D. M., Xu, L., Yamaguchi, N., Pasek, D. A. & Meissner, G. Calmodulin binding and inhibition of cardiac muscle calcium release channel (ryanodine receptor). J. Biol. Chem. 276, 20144–20153 (2001).

    CAS  PubMed  Google Scholar 

  143. Zhang, T. et al. The δC isoform of CAMKII is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure. Circ. Res. 92, 912–919 (2003).

    CAS  PubMed  Google Scholar 

  144. Sharma, M. R., Jeyakumar, L. H., Fleischer, S. & Wagenknecht, T. Three-dimensional visualization of FKBP12.6 binding to an open conformation of cardiac ryanodine receptor. Biophys. J. 90, 164–172 (2006).

    CAS  PubMed  Google Scholar 

  145. Xiao, B. et al. Ser-2030, but not Ser-2808, is the major phosphorylation site in cardiac ryanodine receptors responding to protein kinase A activation upon β-adrenergic stimulation in normal and failing hearts. Biochem. J. 396, 7–16 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Marx, S. O. et al. Phosphorylation-dependent regulation of ryanodine receptors: a novel role for leucine/isoleucine zippers. J. Cell Biol. 153, 699–708 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Lee, E. H. et al. N-terminal region of FKBP12 is essential for binding to the skeletal ryanodine receptor. J. Biol. Chem. 279, 26481–26488 (2004).

    CAS  PubMed  Google Scholar 

  148. Shan, J. et al. Role of chronic ryanodine receptor phosphorylation in heart failure and β-adrenergic receptor blockade in mice. J. Clin. Invest. 120, 4375–4387 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Shannon, T. R. & Lew, W. Y. Diastolic release of calcium from the sarcoplasmic reticulum: a potential target for treating triggered arrhythmias and heart failure. J. Am. Coll. Cardiol. 53, 2006–2008 (2009).

    PubMed  Google Scholar 

  150. Go, L. O. et al. Differential regulation of two types of intracellular calcium release channels during end-stage heart failure. J. Clin. Invest. 95, 888–894 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Sainte Beuve, C. et al. Cardiac calcium release channel (ryanodine receptor) in control and cardiomyopathic human hearts: mRNA and protein contents are differentially regulated. J. Mol. Cell Cardiol. 29, 1237–1246 (1997).

    CAS  PubMed  Google Scholar 

  152. Hain, J., Onoue, H., Mayrleitner, M., Fleischer, S. & Schindler, H. Phosphorylation modulates the function of the calcium release channel of sarcoplasmic reticulum from cardiac muscle. J. Biol. Chem. 270, 2074–2081 (1995).

    CAS  PubMed  Google Scholar 

  153. Marx, S. O. et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101, 365–376 (2000).

    CAS  PubMed  Google Scholar 

  154. Valdivia, H. H., Kaplan, J. H., Ellis-Davies, G. C. & Lederer, W. J. Rapid adaptation of cardiac ryanodine receptors: modulation by Mg2+ and phosphorylation. Science 267, 1997–2000 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Xiao, B. et al. Characterization of a novel PKA phosphorylation site, serine-2030, reveals no PKA hyperphosphorylation of the cardiac ryanodine receptor in canine heart failure. Circ. Res. 96, 847–855 (2005).

    CAS  PubMed  Google Scholar 

  156. Reiken, S. et al. PKA phosphorylation activates the calcium release channel (ryanodine receptor) in skeletal muscle: defective regulation in heart failure. J. Cell Biol. 160, 919–928 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Yano, M. et al. Altered stoichiometry of FKBP12.6 versus ryanodine receptor as a cause of abnormal Ca2+ leak through ryanodine receptor in heart failure. Circulation 102, 2131–2136 (2000).

    CAS  PubMed  Google Scholar 

  158. Ono, K. et al. Altered interaction of FKBP12.6 with ryanodine receptor as a cause of abnormal Ca2+ release in heart failure. Cardiovasc. Res. 48, 323–331 (2000).

    CAS  PubMed  Google Scholar 

  159. Priori, S. G. et al. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation 103, 196–200 (2001).

    CAS  PubMed  Google Scholar 

  160. Cerrone, M. et al. Bidirectional ventricular tachycardia and fibrillation elicited in a knock-in mouse model carrier of a mutation in the cardiac ryanodine receptor. Circ. Res. 96, e77–e82 (2005).

    CAS  PubMed  Google Scholar 

  161. Nicol, R. L., Frey, N. & Olson, E. N. From the sarcomere to the nucleus: role of genetics and signaling in structural heart disease. Annu. Rev. Genomics Hum. Genet. 1, 179–223 (2000).

    CAS  PubMed  Google Scholar 

  162. Li, H., Rao, A. & Hogan, P. G. Interaction of calcineurin with substrates and targeting proteins. Trends Cell Biol. 21, 91–103 (2010).

    PubMed  PubMed Central  Google Scholar 

  163. Molkentin, J. D. Calcineurin and beyond: cardiac hypertrophic signaling. Circ. Res. 87, 731–738 (2000).

    CAS  PubMed  Google Scholar 

  164. Molkentin, J. D. Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovasc. Res. 63, 467–475 (2004).

    CAS  PubMed  Google Scholar 

  165. Molkentin, J. D. et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93, 215–228 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Molkentin, J. D. & Olson, E. N. GATA4: a novel transcriptional regulator of cardiac hypertrophy? Circulation 96, 3833–3835 (1997).

    CAS  PubMed  Google Scholar 

  167. Lim, H. W. et al. Reversal of cardiac hypertrophy in transgenic disease models by calcineurin inhibition. J. Mol. Cell Cardiol. 32, 697–709 (2000).

    CAS  PubMed  Google Scholar 

  168. Frey, N. & Olson, E. N. Cardiac hypertrophy: the good, the bad, and the ugly. Annu. Rev. Physiol. 65, 45–79 (2003).

    CAS  PubMed  Google Scholar 

  169. Meguro, T. et al. Cyclosporine attenuates pressure-overload hypertrophy in mice while enhancing susceptibility to decompensation and heart failure. Circ. Res. 84, 735–740 (1999).

    CAS  PubMed  Google Scholar 

  170. Sussman, M. A. et al. Prevention of cardiac hypertrophy in mice by calcineurin inhibition. Science 281, 1690–1693 (1998).

    CAS  PubMed  Google Scholar 

  171. Ding, B. et al. Pressure overload induces severe hypertrophy in mice treated with cyclosporine, an inhibitor of calcineurin. Circ. Res. 84, 729–734 (1999).

    CAS  PubMed  Google Scholar 

  172. Luo, Z., Shyu, K. G., Gualberto, A. & Walsh, K. Calcineurin inhibitors and cardiac hypertrophy. Nat. Med. 4, 1092–1093 (1998).

    CAS  PubMed  Google Scholar 

  173. Anderson, M. E., Brown, J. H. & Bers, D. M. CaMKII in myocardial hypertrophy and heart failure. J. Mol. Cell Cardiol. 51, 468–473 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Hoch, B., Meyer, R., Hetzer, R., Krause, E. G. & Karczewski, P. Identification and expression of δ-isoforms of the multifunctional Ca2+/calmodulin-dependent protein kinase in failing and nonfailing human myocardium. Circ. Res. 84, 713–721 (1999).

    CAS  PubMed  Google Scholar 

  175. Kirchhefer, U., Schmitz, W., Scholz, H. & Neumann, J. Activity of cAMP-dependent protein kinase and Ca2+/calmodulin-dependent protein kinase in failing and nonfailing human hearts. Cardiovasc. Res. 42, 254–261 (1999).

    CAS  PubMed  Google Scholar 

  176. Maier, L. S. et al. Transgenic CaMKIIδC overexpression uniquely alters cardiac myocyte Ca2+ handling: reduced SR Ca2+ load and activated SR Ca2+ release. Circ. Res. 92, 904–911 (2003).

    CAS  PubMed  Google Scholar 

  177. Zhang, R. et al. Calmodulin kinase II inhibition protects against structural heart disease. Nat. Med. 11, 409–417 (2005).

    CAS  PubMed  Google Scholar 

  178. Wu, Y. et al. Suppression of dynamic Ca2+ transient responses to pacing in ventricular myocytes from mice with genetic calmodulin kinase II inhibition. J. Mol. Cell Cardiol. 40, 213–223 (2006).

    CAS  PubMed  Google Scholar 

  179. Li, J. et al. Calmodulin kinase II inhibition shortens action potential duration by upregulation of K+ currents. Circ. Res. 99, 1092–1099 (2006).

    CAS  PubMed  Google Scholar 

  180. Grueter, C. E., Colbran, R. J. & Anderson, M. E. CaMKII, an emerging molecular driver for calcium homeostasis, arrhythmias, and cardiac dysfunction. J. Mol. Med. (Berl.) 85, 5–14 (2007).

    CAS  Google Scholar 

  181. Bartel, S. et al. Phosphorylation of phospholamban at threonine-17 in the absence and presence of β-adrenergic stimulation in neonatal rat cardiomyocytes. J. Mol. Cell Cardiol. 32, 2173–2185 (2000).

    CAS  PubMed  Google Scholar 

  182. Hagemann, D. & Xiao, R. P. Dual site phospholamban phosphorylation and its physiological relevance in the heart. Trends Cardiovasc. Med. 12, 51–56 (2002).

    CAS  PubMed  Google Scholar 

  183. Mattiazzi, A., Mundiña-Weilenmann, C., Guoxiang, C., Vittone, L. & Kranias, E. Role of phospholamban phosphorylation on Thr17 in cardiac physiological and pathological conditions. Cardiovasc. Res. 68, 366–375 (2005).

    CAS  PubMed  Google Scholar 

  184. Brixius, K., Wollmer, A., Bölck, B., Mehlhorn, U. & Schwinger, R. H. Ser16- but not Thr17-phosphorylation of phospholamban influences frequency-dependent force generation in human myocardium. Pflugers Arch. 447, 150–157 (2003).

    CAS  PubMed  Google Scholar 

  185. Hagemann, D. et al. Frequency-encoding Thr17 phospholamban phosphorylation is independent of Ser16 phosphorylation in cardiac myocytes. J. Biol. Chem. 275, 22532–22536 (2000).

    CAS  PubMed  Google Scholar 

  186. Ji, Y. et al. Targeted inhibition of Ca2+/calmodulin-dependent protein kinase II in cardiac longitudinal sarcoplasmic reticulum results in decreased phospholamban phosphorylation at threonine 17. J. Biol. Chem. 278, 25063–25071 (2003).

    CAS  PubMed  Google Scholar 

  187. Wehrens, X. H. et al. Protection from cardiac arrhythmia through ryanodine receptor-stabilizing protein calstabin2. Science 304, 292–296 (2004).

    CAS  PubMed  Google Scholar 

  188. Li, L., Satoh, H., Ginsburg, K. S. & Bers, D. M. The effect of Ca2+-calmodulin-dependent protein kinase II on cardiac excitation-contraction coupling in ferret ventricular myocytes. J. Physiol. 501, 17–31 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Maier, L. S. et al. Transgenic CaMKIIdeltaC overexpression uniquely alters cardiac myocyte Ca2+ handling: reduced SR Ca2+ load and activated SR Ca2+ release. Circ. Res. 92, 904–911 (2003).

    CAS  PubMed  Google Scholar 

  190. Dzhura, I., Wu, Y., Colbran, R. J., Balser, J. R. & Anderson, M. E. Calmodulin kinase determines calcium-dependent facilitation of L-type calcium channels. Nat. Cell Biol. 2, 173–177 (2000).

    CAS  PubMed  Google Scholar 

  191. Grueter, C. E. et al. L-type Ca2+ channel facilitation mediated by phosphorylation of the β subunit by CaMKII. Mol. Cell 23, 641–650 (2006).

    CAS  PubMed  Google Scholar 

  192. Wu, Y. et al. Calmodulin kinase II and arrhythmias in a mouse model of cardiac hypertrophy. Circulation 106, 1288–1293 (2002).

    CAS  PubMed  Google Scholar 

  193. Muller, O. J. et al. Transgenic rat hearts overexpressing SERCA2a show improved contractility under baseline conditions and pressure overload. Cardiovasc. Res. 59, 380–389 (2003).

    CAS  PubMed  Google Scholar 

  194. del Monte, F. et al. Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a. Circulation 100, 2308–2311 (1999).

    CAS  PubMed Central  Google Scholar 

  195. Prunier, F. et al. Prevention of ventricular arrhythmias with sarcoplasmic reticulum Ca2+ ATPase pump overexpression in a porcine model of ischemia reperfusion. Circulation 118, 614–624 (2008).

    CAS  PubMed  Google Scholar 

  196. Kawase, Y. et al. Reversal of cardiac dysfunction after long-term expression of SERCA2a by gene transfer in a pre-clinical model of heart failure. J. Am. Coll. Cardiol. 51, 1112–1119 (2008).

    CAS  PubMed  Google Scholar 

  197. del Monte, F. et al. Improvement in survival and cardiac metabolism after gene transfer of sarcoplasmic reticulum Ca2+-ATPase in a rat model of heart failure. Circulation 104, 1424–1429 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Sakata, S. et al. Restoration of mechanical and energetic function in failing aortic-banded rat hearts by gene transfer of calcium cycling proteins. J. Mol. Cell Cardiol. 42, 852–861 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Miyamoto, M. I. et al. Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proc. Natl. Acad. Sci. USA 97, 793–798 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. del Monte, F. et al. Transcriptional changes following restoration of SERCA2a levels in failing rat hearts. FASEB J. 18, 1474–1476 (2004).

    PubMed  Google Scholar 

  201. Nayak, S. & Herzog, R. W. Progress and prospects: immune responses to viral vectors. Gene Ther. 17, 295–304 (2010).

    CAS  PubMed  Google Scholar 

  202. Asokan, A., Schaffer, D. V. & Samulski, R. J. The AAV vector toolkit: poised at the clinical crossroads. Mol. Ther. 20, 699–708 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Mariani, J. A. et al. Augmentation of left ventricular mechanics by recirculation-mediated AAV2/1-SERCA2a gene delivery in experimental heart failure. Eur. J. Heart Fail. 13, 247–253 (2011).

    CAS  PubMed  Google Scholar 

  204. del Monte, F. et al. Abrogation of ventricular arrhythmias in a model of ischemia and reperfusion by targeting myocardial calcium cycling. Proc. Natl Acad. Sci. USA 101, 5622–5627 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Cutler, M. J., Wan, X., Laurita, K. R., Hajjar, R. J. & Rosenbaum, D. S. Targeted SERCA2a gene expression identifies molecular mechanism and therapeutic target for arrhythmogenic cardiac alternans. Circ. Arrhythm. Electrophysiol. 2, 686–694 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Lyon, A. R. et al. SERCA2a gene transfer decreases sarcoplasmic reticulum calcium leak and reduces ventricular arrhythmias in a model of chronic heart failure. Circ. Arrhythm. Electrophysiol. 4, 362–372 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Chen, Y. et al. Constitutive cardiac overexpression of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase delays myocardial failure after myocardial infarction in rats at a cost of increased acute arrhythmias. Circulation 109, 1898–1903 (2004).

    CAS  PubMed  Google Scholar 

  208. Davia, K. et al. SERCA2a overexpression decreases the incidence of aftercontractions in adult rabbit ventricular myocytes. J. Mol. Cell. Cardiol. 33, 1005–1015 (2001).

    CAS  PubMed  Google Scholar 

  209. Jaski, B. E. et al. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID trial), a first-in-human phase 1/2 clinical trial. J. Card. Fail. 15, 171–181 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Jessup, M. et al. Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation 124, 304–313 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Eizema, K. et al. Adenovirus-based phospholamban antisense expression as a novel approach to improve cardiac contractile dysfunction: comparison of a constitutive viral versus an endothelin-1-responsive cardiac promoter. Circulation 101, 2193–2199 (2000).

    CAS  PubMed  Google Scholar 

  212. Hoshijima, M. et al. Chronic suppression of heart-failure progression by a pseudophosphorylated mutant of phospholamban via in vivo cardiac rAAV gene delivery. Nat. Med. 8, 864–871 (2002).

    CAS  PubMed  Google Scholar 

  213. Dieterle, T. et al. Gene transfer of a phospholamban-targeted antibody improves calcium handling and cardiac function in heart failure. Cardiovasc. Res. 67, 678–688 (2005).

    CAS  PubMed  Google Scholar 

  214. Watanabe, A. et al. Phospholamban ablation by RNA interference increases Ca2+ uptake into rat cardiac myocyte sarcoplasmic reticulum. J. Mol. Cell Cardiol. 37, 691–698 (2004).

    CAS  PubMed  Google Scholar 

  215. Suckau, L. et al. Long-term cardiac-targeted RNA interference for the treatment of heart failure restores cardiac function and reduces pathological hypertrophy. Circulation 119, 1241–1252 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Neumann, J. et al. Evidence for physiological functions of protein phosphatases in the heart: evaluation with okadaic acid. Am. J. Physiol. 265, H257–H266 (1993).

    CAS  PubMed  Google Scholar 

  217. Hubbard, M. J. & Cohen, P. On target with a new mechanism for the regulation of protein phosphorylation. Trends Biochem. Sci. 18, 172–177 (1993).

    CAS  PubMed  Google Scholar 

  218. Steenaart, N. A., Ganim, J. R., Di Salvo, J. & Kranias, E. G. The phospholamban phosphatase associated with cardiac sarcoplasmic reticulum is a type 1 enzyme. Arch. Biochem. Biophys. 293, 17–24 (1992).

    CAS  PubMed  Google Scholar 

  219. Neumann, J. et al. Increased expression of cardiac phosphatases in patients with end-stage heart failure. J. Mol. Cell Cardiol. 29, 265–272 (1997).

    CAS  PubMed  Google Scholar 

  220. Gupta, R. C. et al. Cardiac SR-coupled PP1 activity and expression are increased and inhibitor 1 protein expression is decreased in failing hearts. Am. J. Physiol. Heart Circ. Physiol. 285, H2373–H2381 (2003).

    CAS  PubMed  Google Scholar 

  221. Nicolaou, P., Hajjar, R. J. & Kranias, E. G. Role of protein phosphatase-1 inhibitor-1 in cardiac physiology and pathophysiology. J. Mol. Cell Cardiol. 47, 365–371 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Carr, A. N. et al. Type 1 phosphatase, a negative regulator of cardiac function. Mol. Cell Biol. 22, 4124–4135 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. El-Armouche, A. et al. Evidence for protein phosphatase inhibitor-1 playing an amplifier role in β-adrenergic signaling. FASEB J. 17, 437–439 (2003).

    CAS  PubMed  Google Scholar 

  224. El-Armouche, A., Pamminger, T., Ditz, D., Zolk, O. & Eschenhagen, T. Decreased protein and phosphorylation level of the protein phosphatase inhibitor-1 in failing human hearts. Cardiovasc. Res. 61, 87–93 (2004).

    CAS  PubMed  Google Scholar 

  225. Pathak, A. et al. Enhancement of cardiac function and suppression of heart failure progression by inhibition of protein phosphatase 1. Circ. Res. 96, 756–766 (2005).

    CAS  PubMed  Google Scholar 

  226. Nicolaou, P. et al. Inducible expression of active protein phosphatase-1 inhibitor-1 enhances basal cardiac function and protects against ischemia/reperfusion injury. Circ. Res. 104, 1012–1020 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Wittköpper, K. et al. Constitutively active phosphatase inhibitor-1 improves cardiac contractility in young mice but is deleterious after catecholaminergic stress and with aging. J. Clin. Invest. 120, 617–626 (2010).

    PubMed  PubMed Central  Google Scholar 

  228. Kawashima, H. et al. Protein phosphatase inhibitor-1 augments a protein kinase A-dependent increase in the Ca2+ loading of the sarcoplasmic reticulum without changing its Ca2+ release. Circ. J. 73, 1133–1140 (2009).

    CAS  PubMed  Google Scholar 

  229. Geiss-Friedlander, R. & Melchior, F. Concepts in sumoylation: a decade on. Nat. Rev. Mol. Cell Biol. 8, 947–956 (2007).

    CAS  PubMed  Google Scholar 

  230. Woo, C. H. & Abe, J. SUMO—a post-translational modification with therapeutic potential? Curr. Opin. Pharmacol. 10, 146–155 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Jakobs, P. M. et al. Novel lamin A/C mutations in two families with dilated cardiomyopathy and conduction system disease. J. Card. Fail. 7, 249–256 (2001).

    CAS  PubMed  Google Scholar 

  232. Zhang, Y. Q. & Sarge, K. D. Sumoylation regulates lamin A function and is lost in lamin A mutants associated with familial cardiomyopathies. J. Cell Biol. 182, 35–39 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Kho, C. et al. SUMO1-dependent modulation of SERCA2a in heart failure. Nature 477, 601–605 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Wehrens, X. H. et al. Ryanodine receptor/calcium release channel PKA phosphorylation: a critical mediator of heart failure progression. Proc. Natl Acad. Sci. USA 103, 511–518 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Belevych, A. E. et al. The relationship between arrhythmogenesis and impaired contractility in heart failure: role of altered ryanodine receptor function. Cardiovasc. Res. 90, 493–502 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Loughrey, C. M. et al. Over-expression of FK506-binding protein FKBP12.6 alters excitation–contraction coupling in adult rabbit cardiomyocytes. J. Physiol. 556, 919–934 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Huang, F., Shan, J., Reiken, S., Wehrens, X. H. & Marks, A. R. Analysis of calstabin2 (FKBP12.6)-ryanodine receptor interactions: rescue of heart failure by calstabin2 in mice. Proc. Natl Acad. Sci. USA 103, 3456–3461 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Xu, L., Tripathy, A., Pasek, D. A. & Meissner, G. Potential for pharmacology of ryanodine receptor/calcium release channels. Ann. N. Y. Acad. Sci. 853, 130–148 (1998).

    CAS  PubMed  Google Scholar 

  239. McCauley, M. D. & Wehrens, X. H. Targeting ryanodine receptors for anti-arrhythmic therapy. Acta Pharmacol. Sin. 32, 749–757 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Kaneko, N. New 1,4-benzothiazepine derivative, K201, demonstrates cardioprotective effects against sudden cardiac cell death and intracellular calcium blocking action. Drug Dev. Res. 33, 429–438 (1994).

    CAS  Google Scholar 

  241. Hunt, D. J. et al. K201 (JTV519) suppresses spontaneous Ca2+ release and 3H ryanodine binding to RyR2 irrespective of FKBP12.6 association. Biochem. J. 404, 431–438 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Inagaki, K., Kihara, Y., Izumi, T. & Sasayama, S. The cardioprotective effects of a new 1,4-benzothiazepine derivative, JTV519, on ischemia/reperfusion-induced Ca2+ overload in isolated rat hearts. Cardiovasc. Drugs Ther. 14, 489–495 (2000).

    CAS  PubMed  Google Scholar 

  243. Kumagai, K., Nakashima, H., Gondo, N. & Saku, K. Antiarrhythmic effects of JTV-519, a novel cardioprotective drug, on atrial fibrillation/flutter in a canine sterile pericarditis model. J. Cardiovasc. Electrophysiol. 14, 880–884 (2003).

    PubMed  Google Scholar 

  244. Kohno, M. et al. A new cardioprotective agent, JTV519, improves defective channel gating of ryanodine receptor in heart failure. Am. J. Physiol. Heart Circ. Physiol. 284, H1035–H1042 (2003).

    CAS  PubMed  Google Scholar 

  245. Ito, K. et al. JTV-519, a novel cardioprotective agent, improves the contractile recovery after ischaemia-reperfusion in coronary perfused guinea-pig ventricular muscles. Br. J. Pharmacol. 130, 767–776 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Inagaki, K. et al. Anti-ischemic effect of a novel cardioprotective agent, JTV519, is mediated through specific activation of δ-isoform of protein kinase C in rat ventricular myocardium. Circulation 101, 797–804 (2000).

    CAS  PubMed  Google Scholar 

  247. Toischer, K. et al. K201 improves aspects of the contractile performance of human failing myocardium via reduction in Ca2+ leak from the sarcoplasmic reticulum. Basic Res. Cardiol. 105, 279–287 (2010).

    CAS  PubMed  Google Scholar 

  248. Liu, N. et al. Arrhythmogenesis in catecholaminergic polymorphic ventricular tachycardia: insights from a RyR2 R4496C knock-in mouse model. Circ. Res. 99, 292–298 (2006).

    CAS  PubMed  Google Scholar 

  249. Bellinger, A. M. et al. Hypernitrosylated ryanodine receptor calcium release channels are leaky in dystrophic muscle. Nat. Med. 15, 325–330 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Fauconnier, J. et al. Leaky RyR2 trigger ventricular arrhythmias in Duchenne muscular dystrophy. Proc. Natl Acad. Sci. USA 107, 1559–1564 (2010).

    CAS  Google Scholar 

  251. International Standard Randomised Controlled Trial Number Register. Controlled-trials.com [online] (2012).

  252. Currie, S., Elliott, E. B., Smith, G. L. & Loughrey, C. M. Two candidates at the heart of dysfunction: the ryanodine receptor and calcium/calmodulin protein kinase II as potential targets for therapeutic intervention—an in vivo perspective. Pharmacol. Ther. 131, 204–220 (2011).

    CAS  PubMed  Google Scholar 

  253. Sossalla, S. et al. Inhibition of elevated Ca2+/calmodulin-dependent protein kinase II improves contractility in human failing myocardium. Circ. Res. 107, 1150–1161 (2010).

    CAS  PubMed  Google Scholar 

  254. Li, G., Hidaka, H. & Wollheim, C. B. Inhibition of voltage-gated Ca2+ channels and insulin secretion in HIT cells by the Ca2+/calmodulin-dependent protein kinase II inhibitor KN-62: comparison with antagonists of calmodulin and L-type Ca2+ channels. Mol. Pharmacol. 42, 489–488 (1992).

    CAS  PubMed  Google Scholar 

  255. Hvalby, O. et al. Specificity of protein kinase inhibitor peptides and induction of long-term potentiation. Proc. Natl Acad. Sci. USA 91, 4761–4765 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Remppis, A. et al. Altered expression of the Ca2+-binding protein S100A1 in human cardiomyopathy. Biochim. Biophys. Acta 1313, 253–257 (1996).

    PubMed  Google Scholar 

  257. Most, P. et al. Cardiac adenoviral S100A1 gene delivery rescues failing myocardium. J. Clin. Invest. 114, 1550–1563 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Most, P. et al. Cardiac S100A1 protein levels determine contractile performance and propensity toward heart failure after myocardial infarction. Circulation 114, 1258–1268 (2006).

    CAS  PubMed  Google Scholar 

  259. Pleger, S. T. et al. Stable myocardial-specific AAV6–S100A1 gene therapy results in chronic functional heart failure rescue. Circulation 115, 2506–2515 (2007).

    CAS  PubMed  Google Scholar 

  260. Brinks, H. et al. S100A1 genetically targeted therapy reverses dysfunction of human failing cardiomyocytes. J. Am. Coll. Cardiol. 58, 966–973 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Pleger, S. T. et al. Cardiac AAV9-S100A1 gene therapy rescues post-ischemic heart failure in a preclinical large animal model. Sci. Transl. Med. 3, 92ra64 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  262. Yano, M. et al. FKBP12.6-mediated stabilization of calcium-release channel (ryanodine receptor) as a novel therapeutic strategy against heart failure. Circulation 107, 477–484 (2003).

    CAS  PubMed  Google Scholar 

  263. Wehrens, X. H. et al. Enhancing calstabin binding to ryanodine receptors improves cardiac and skeletal muscle function. Proc. Natl Acad. Sci. USA 102, 9607–9612 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by National Institutes of Health Grants HL100396 and NIH/NHLBI Contract HHSN268201000045C.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data and wrote the article. R. J. Hajjar reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Roger J. Hajjar.

Ethics declarations

Competing interests

R. J. Hajjar is a stock-holder or director of Celladon and holds or has applied for a patent (Patent US8133878, Methods of Treating Restenosis) with the company. The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kho, C., Lee, A. & Hajjar, R. Altered sarcoplasmic reticulum calcium cycling—targets for heart failure therapy. Nat Rev Cardiol 9, 717–733 (2012). https://doi.org/10.1038/nrcardio.2012.145

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2012.145

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing