Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Reviews

Food reward functions as affected by obesity and bariatric surgery

Abstract

Roux-en-Y gastric bypass surgery (RYGB) remains to be the most effective long-term treatment for obesity and its associated comorbidities, but the specific mechanisms involved remain elusive. Because RYGB patients appear to no longer be preoccupied with thoughts about food and are satisfied with much smaller meals and calorically dilute foods, brain reward mechanisms could be involved. Just as obesity can produce maladaptive alterations in reward functions, reversal of obesity by RYGB could normalize these changes or even further reset the food reward system through changes in gut hormone secretion, aversive conditioning and/or secondary effects of weight loss. Future studies with longitudinal assessments of reward behaviors and their underlying neural circuits before and after surgery will be necessary to uncover the specific mechanisms involved. Such new insights could be the base for future ‘knifeless’ pharmacological and behavioral approaches to obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. de Castro JM . The control of food intake of free-living humans: putting the pieces back together. Physiol Behav 2010; 100: 446–453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kenler HA, Brolin RE, Cody RP . Changes in eating behavior after horizontal gastroplasty and Roux-en-Y gastric bypass. Am J Clin Nutr 1990; 52: 87–92.

    Article  CAS  PubMed  Google Scholar 

  3. Olbers T, Bjorkman S, Lindroos A, Maleckas A, Lonn L, Sjostrom L et al. Body composition, dietary intake, and energy expenditure after laparoscopic Roux-en-Y gastric bypass and laparoscopic vertical banded gastroplasty: a randomized clinical trial. Ann Surg 2006; 244: 715–722.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ernst B, Thurnheer M, Wilms B, Schultes B . Differential changes in dietary habits after gastric bypass versus gastric banding operations. Obes Surg 2009; 19: 274–280.

    Article  PubMed  Google Scholar 

  5. Thomas JR, Marcus E . High and low fat food selection with reported frequency intolerance following Roux-en-Y gastric bypass. Obes Surg 2008; 18: 282–287.

    Article  PubMed  Google Scholar 

  6. Stice E, Spoor S, Ng J, Zald DH . Relation of obesity to consummatory and anticipatory food reward. Physiol Behav 2009; 97: 551–560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Geiger BM, Haburcak M, Avena NM, Moyer MC, Hoebel BG, Pothos EN . Deficits of mesolimbic dopamine neurotransmission in rat dietary obesity. Neuroscience 2009; 159: 1193–1199.

    Article  CAS  PubMed  Google Scholar 

  8. Davis C, Carter JC . Compulsive overeating as an addiction disorder. A review of theory and evidence. Appetite 2009; 53: 1–8.

    Article  PubMed  Google Scholar 

  9. Avena NM, Rada P, Hoebel BG . Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci Biobehav Rev 2008; 32: 20–39.

    Article  CAS  PubMed  Google Scholar 

  10. Volkow ND, Wang GJ, Fowler JS, Telang F . Overlapping neuronal circuits in addiction and obesity: evidence of systems pathology. Philos Trans R Soc Lond B Biol Sci 2008; 363: 3191–3200.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kelley AE, Berridge KC . The neuroscience of natural rewards: relevance to addictive drugs. J Neurosci 2002; 22: 3306–3311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B et al. The human obesity gene map: the 2005 update. Obesity (Silver Spring) 2006; 14: 529–644.

    Article  Google Scholar 

  13. Davis CA, Levitan RD, Reid C, Carter JC, Kaplan AS, Patte KA et al. Dopamine for ‘wanting’ and opioids for ‘liking’: a comparison of obese adults with and without binge eating. Obesity (Silver Spring) 2009; 17: 1220–1225.

    CAS  Google Scholar 

  14. Davis C, Levitan RD, Kaplan AS, Carter J, Reid C, Curtis C et al. Reward sensitivity and the D2 dopamine receptor gene: a case-control study of binge eating disorder. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32: 620–628.

    Article  CAS  PubMed  Google Scholar 

  15. Stice E, Spoor S, Bohon C, Small DM . Relation between obesity and blunted striatal response to food is moderated by TaqIA A1 allele. Science 2008; 322: 449–452.

    Article  CAS  PubMed  Google Scholar 

  16. Felsted JA, Ren X, Chouinard-Decorte F, Small DM . Genetically determined differences in brain response to a primary food reward. J Neurosci 2010; 30: 2428–2432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Davis JF, Tracy AL, Schurdak JD, Tschop MH, Lipton JW, Clegg DJ et al. Exposure to elevated levels of dietary fat attenuates psychostimulant reward and mesolimbic dopamine turnover in the rat. Behav Neurosci 2008; 122: 1257–1263.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fulton S, Pissios P, Manchon RP, Stiles L, Frank L, Pothos EN et al. Leptin regulation of the mesoaccumbens dopamine pathway. Neuron 2006; 51: 811–822.

    Article  CAS  PubMed  Google Scholar 

  19. Farooqi IS, Bullmore E, Keogh J, Gillard J, O’Rahilly S, Fletcher PC . Leptin regulates striatal regions and human eating behavior. Science 2007; 317: 1355.

    Article  CAS  PubMed  Google Scholar 

  20. Blum K, Braverman ER, Holder JM, Lubar JF, Monastra VJ, Miller D et al. Reward deficiency syndrome: a biogenetic model for the diagnosis and treatment of impulsive, addictive, and compulsive behaviors. J Psychoactive Drugs 2000; 32 (Suppl): i–iv, 1–112.

    PubMed  Google Scholar 

  21. Ahima RS, Qi Y, Singhal NS, Jackson MB, Scherer PE . Brain adipocytokine action and metabolic regulation. Diabetes 2006; 55 (Suppl 2): S145–S154.

    Article  CAS  PubMed  Google Scholar 

  22. Posey KA, Clegg DJ, Printz RL, Byun J, Morton GJ, Vivekanandan-Giri A et al. Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. Am J Physiol Endocrinol Metab 2009; 296: E1003–E1012.

    Article  CAS  PubMed  Google Scholar 

  23. Farr SA, Yamada KA, Butterfield DA, Abdul HM, Xu L, Miller NE et al. Obesity and hypertriglyceridemia produce cognitive impairment. Endocrinology 2008; 149: 2628–2636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kleinridders A, Schenten D, Konner AC, Belgardt BF, Mauer J, Okamura T et al. MyD88 signaling in the CNS is required for development of fatty acid-induced leptin resistance and diet-induced obesity. Cell Metab 2009; 10: 249–259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. De Souza CT, Araujo EP, Bordin S, Ashimine R, Zollner RL, Boschero AC et al. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology 2005; 146: 4192–4199.

    Article  CAS  PubMed  Google Scholar 

  26. de la Monte SM . Insulin resistance and Alzheimer's disease. BMB Rep 2009; 42: 475–481.

    Article  CAS  PubMed  Google Scholar 

  27. Dugan LL, Ali SS, Shekhtman G, Roberts AJ, Lucero J, Quick KL et al. IL-6 mediated degeneration of forebrain GABAergic interneurons and cognitive impairment in aged mice through activation of neuronal NADPH oxidase. PLoS One 2009; 4: e5518.

    Article  PubMed  PubMed Central  Google Scholar 

  28. de la Monte SM, Wands JR . Alzheimer's disease is type 3 diabetes-evidence reviewed. J Diabetes Sci Technol 2008; 2: 1101–1113.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Skaper SD . The brain as a target for inflammatory processes and neuroprotective strategies. Ann N Y Acad Sci 2007; 1122: 23–34.

    Article  CAS  PubMed  Google Scholar 

  30. Sriram K, Benkovic SA, Miller DB, O’Callaghan JP . Obesity exacerbates chemically induced neurodegeneration. Neuroscience 2002; 115: 1335–1346.

    Article  CAS  PubMed  Google Scholar 

  31. Hu G, Jousilahti P, Nissinen A, Antikainen R, Kivipelto M, Tuomilehto J . Body mass index and the risk of Parkinson disease. Neurology 2006; 67: 1955–1959.

    Article  CAS  PubMed  Google Scholar 

  32. Burge JC, Schaumburg JZ, Choban PS, DiSilvestro RA, Flancbaum L . Changes in patients’ taste acuity after Roux-en-Y gastric bypass for clinically severe obesity. J Am Diet Assoc 1995; 95: 666–670.

    Article  CAS  PubMed  Google Scholar 

  33. Scruggs DM, Buffington C, Cowan Jr GS . Taste acuity of the morbidly obese before and after gastric bypass surgery. Obes Surg 1994; 4: 24–28.

    Article  CAS  PubMed  Google Scholar 

  34. Naslund E, Melin I, Gryback P, Hagg A, Hellstrom PM, Jacobsson H et al. Reduced food intake after jejunoileal bypass: a possible association with prolonged gastric emptying and altered gut hormone patterns. Am J Clin Nutr 1997; 66: 26–32.

    Article  CAS  PubMed  Google Scholar 

  35. Zheng H, Shin AC, Lenard NR, Townsend RL, Patterson LM, Sigalet DL et al. Meal patterns, satiety, and food choice in a rat model of Roux-en-Y gastric bypass surgery. Am J Physiol Regul Integr Comp Physiol 2009; 297: R1273–R1282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shin AC, Zheng H, Townsend RL, Sigalet DL, Berthoud HR . Meal-induced hormone responses in a rat model of Roux-en-Y gastric bypass surgery. Endocrinology 2010; 151: 1588–1597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hajnal A, Kovacs P, Ahmed TA, Meirelles K, Lynch CJ, Cooney RN . Gastric bypass surgery alters behavioral and neural taste functions for sweet taste in obese rats. Am J Physiol Gastrointest Liver Physiol 2010; 299: G967–G979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xu Y, Ohinata K, Meguid MM, Marx W, Tada T, Chen C et al. Gastric bypass model in the obese rat to study metabolic mechanisms of weight loss. J Surg Res 2002; 107: 56–63.

    Article  CAS  PubMed  Google Scholar 

  39. Rosenbaum M, Sy M, Pavlovich K, Leibel RL, Hirsch J . Leptin reverses weight loss-induced changes in regional neural activity responses to visual food stimuli. J Clin Invest 2008; 118: 2583–2591.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hommel JD, Trinko R, Sears RM, Georgescu D, Liu ZW, Gao XB et al. Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 2006; 51: 801–810.

    Article  CAS  PubMed  Google Scholar 

  41. Figlewicz DP . Adiposity signals and food reward: expanding the CNS roles of insulin and leptin. Am J Physiol Regul Integr Comp Physiol 2003; 284: R882–R892.

    Article  CAS  PubMed  Google Scholar 

  42. Shigemura N, Ohta R, Kusakabe Y, Miura H, Hino A, Koyano K et al. Leptin modulates behavioral responses to sweet substances by influencing peripheral taste structures. Endocrinology 2004; 145: 839–847.

    Article  CAS  PubMed  Google Scholar 

  43. Julliard AK, Chaput MA, Apelbaum A, Aime P, Mahfouz M, Duchamp-Viret P . Changes in rat olfactory detection performance induced by orexin and leptin mimicking fasting and satiation. Behav Brain Res 2007; 183: 123–129.

    Article  CAS  PubMed  Google Scholar 

  44. Getchell TV, Kwong K, Saunders CP, Stromberg AJ, Getchell ML . Leptin regulates olfactory-mediated behavior in ob/ob mice. Physiol Behav 2006; 87: 848–856.

    Article  CAS  PubMed  Google Scholar 

  45. Diano S, Farr SA, Benoit SC, McNay EC, da Silva I, Horvath B et al. Ghrelin controls hippocampal spine synapse density and memory performance. Nat Neurosci 2006; 9: 381–388.

    Article  CAS  PubMed  Google Scholar 

  46. Abizaid A, Liu ZW, Andrews ZB, Shanabrough M, Borok E, Elsworth JD et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Invest 2006; 116: 3229–3239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jerlhag E, Egecioglu E, Dickson SL, Douhan A, Svensson L, Engel JA . Ghrelin administration into tegmental areas stimulates locomotor activity and increases extracellular concentration of dopamine in the nucleus accumbens. Addict Biol 2007; 12: 6–16.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H-R Berthoud.

Ethics declarations

Competing interests

H-R Berthoud received consulting fees from Mars Petfoods Inc. and AstraZeneca. AC Shin declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, A., Berthoud, HR. Food reward functions as affected by obesity and bariatric surgery. Int J Obes 35 (Suppl 3), S40–S44 (2011). https://doi.org/10.1038/ijo.2011.147

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2011.147

Keywords

This article is cited by

Search

Quick links