Skip to main content
Log in

Association Between Urinary Albumin Excretion and Low-density Lipoprotein Heterogeneity Following Treatment of Type 2 Diabetes Patients with the Dipeptidyl Peptidase-4 Inhibitor, Vildagliptin: A Pilot Study

  • Short Communication
  • Published:
American Journal of Cardiovascular Drugs Aims and scope Submit manuscript

Abstract

Background

Few data exist as to whether dipeptidyl peptidase (DPP)-4 inhibitors affect cardio-renal interaction, which is a strong independent prognostic factor for cardiovascular disease (CVD), in diabetic patients. We evaluated the effects of a DPP-4 inhibitor on atherogenic low-density lipoprotein (LDL) heterogeneity and albuminuria in diabetics as an indicator of the severity of diabetic nephropathy.

Methods

Type 2 diabetes patients (n = 47) inadequately controlled with diabetes therapy were treated with vildagliptin 50 mg bid for 8 weeks. LDL heterogeneity was evaluated on the basis of the patients’ small dense (sd) LDL levels and sd-LDL proportion (sd-LDL/LDL cholesterol [LDL-C]). The level of albuminuria was evaluated on the basis of the urinary albumin-to-creatinine ratio (UACR).

Results

After 8 weeks of treatment, there was no significant change in serum LDL-C level, but the serum sd-LDL level had decreased significantly by 8.8 %, and the UACR had also decreased significantly by 44.6 %. Triglyceride (TG)-metabolism-related markers (TG, remnant-like particle cholesterol, apolipoprotein [apo] B, apoC-2, and apoC-3) had decreased significantly. The Δ (absolute change from baseline) sd-LDL values correlated positively with ΔTG-metabolism-related markers, but not with the Δ hemoglobin (Hb) A1c or Δ fasting blood sugar (ΔFBS). Furthermore, multivariate regression analysis revealed that Δsd-LDL proportion, but not ΔHbA1c or ΔFBS, was an independent predictor of ΔUACR (β = 0.292, p = 0.0016).

Conclusions

Although this was a single-arm study, treatment of type 2 diabetes with vildagliptin might prevent the progression of CVD complicating diabetes by improving LDL heterogeneity, and it might improve renal function by decreasing albuminuria. A randomized controlled trial is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ussher JR, Drucker DJ. Cardiovascular biology of the incretin system. Endocr Rev. 2012;33:187–215.

    Article  PubMed  CAS  Google Scholar 

  2. Patil HR, Al Badarin FJ, Al Shami HA, Bhatti SK, Lavie CJ, Bell DS, et al. Meta-analysis of effect of dipeptidyl peptidase-4 inhibitors on cardiovascular risk in type 2 diabetes mellitus. Am J Cardiol. 2012;110:826–33.

    Google Scholar 

  3. Hendarto H, Inoguchi T, Maeda Y, Ikeda N, Zheng J, Takei R, et al. GLP-1 analog liraglutide protects against oxidative stress and albuminuria in streptozotocin-induced diabetic rats via protein kinase A-mediated inhibition of renal NAD(P)H oxidases. Metabolism. 2012;61:1422–34.

    Article  PubMed  CAS  Google Scholar 

  4. Gutzwiller JP, Tschopp S, Bock A, Zehnder CE, Huber AR, Kreyenbuehl M, et al. Glucagon-like peptide 1 induces natriuresis in healthy subjects and in insulin-resistant obese men. J ClinEndocrinol Metab. 2004;89:3055–61.

    Article  CAS  Google Scholar 

  5. Kwiterovich PO Jr. Clinical relevance of the biochemical, metabolic, and genetic factors that influence low-density lipoprotein heterogeneity. Am J Cardiol. 2002;90:30i–47i.

    Article  PubMed  CAS  Google Scholar 

  6. St-Pierre AC, Cantin B, Dagenais GR, Mauriège P, Bernard PM, Després JP, et al. Low-density lipoprotein subfractions and the long-term risk of ischemic heart disease in men: 13-year follow-up data from the Québec Cardiovascular Study. Arterioscler Thromb Vasc Biol. 2005;25:553–9.

    Article  PubMed  CAS  Google Scholar 

  7. Sarnak MJ, Levey AS, Schoolwerth AC, Coresh J, Culleton B, Hamm LL, et al. American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation. 2003;108:2154–69.

    Article  PubMed  Google Scholar 

  8. Sciffrin EL, Lipman ML, Mann JFE. Chronic kidney disease: effects on the cardiovascular system. Circulation. 2007;116:85–97.

    Article  Google Scholar 

  9. Mattock MB, Barnes DJ, Viberti G, Keen H, Burt D, Hughes JM, et al. Microalbuminuria and coronary heart disease in NIDDM: an incidence study. Diabetes. 1998;47:1786–92.

    Article  PubMed  CAS  Google Scholar 

  10. Deckert T, Feldt-Rasmussen B, Borch-Johnsen K, Kofoed-Enevoldsen A. Albuminuria reflects widespread vascular damage: the steno hypothesis. Diabetologia. 1989;32:219–26.

    Article  PubMed  CAS  Google Scholar 

  11. Bock JS, Gottlieb SS. Cardiorenal syndrome: new perspectives. Circulation. 2010;121:2592–600.

    Article  PubMed  Google Scholar 

  12. Imai E, Horio M, Nitta K, Yamagata K, Iseki K, Hara S, et al. Estimation of glomerular filtration rate by the MDRD study equation modified for Japanese patients with chronic kidney disease. Clin Exp Nephrol. 2007;11:41–50.

    Article  PubMed  Google Scholar 

  13. Sniderman AD, Blank D, Zakarian R, Bergeron J, Frohlich J. Triglycerides and small dense LDL: the twin Achilles heels of the Friedewald formula. Clin Biochem. 2003;36:499–504.

    Article  PubMed  CAS  Google Scholar 

  14. Hoefner DM, Hodel SD, O’Brien JF, Branum EL, Sun D, Meissner I, et al. Development of a rapid, quantitative method for LDL subfractionation with use of the Quantimetrix Lipoprint LDL System. Clin Chem. 2001;47:266–74.

    PubMed  CAS  Google Scholar 

  15. Hirano T, Ito Y, Yoshino G. Measurement of small dense low-density lipoprotein particles. J Atheroscler Thromb. 2005;12:67–72.

    Article  PubMed  CAS  Google Scholar 

  16. Tani S, Saito Y, Anazawa T, Kawamata H, Furuya S, Takahashi H, et al. Low-density lipoprotein cholesterol/apolipoprotein B ratio may be a useful index differing in statin-treated patients with and without coronary artery disease: a case control study. Int Heart J. 2011;52:343–7.

    Article  PubMed  CAS  Google Scholar 

  17. Hayashi T, Hirano T, Yamamoto T, Ito Y, Adachi M. Intensive insulin therapy reduces small dense low-density lipoprotein particles in patients with type 2 diabetes mellitus: relationship to triglyceride-rich lipoprotein subspecies. Metabolism. 2006;55:879–84.

    Article  PubMed  CAS  Google Scholar 

  18. Inoue I, Shinoda Y, Nakano T, Sassa M, Goto S, Awata T, et al. Acarbose ameliorates atherogenecity of low-density lipoprotein in patients with impaired glucose tolerance. Metabolism. 2006;55:946–52.

    Article  PubMed  CAS  Google Scholar 

  19. Miller M, Stone NJ, Ballantyne C, Bittner V, Criqui MH, Ginsberg HN, et al. American Heart Association Clinical Lipidology, Thrombosis, and Prevention Committee of the Council on Nutrition, Physical Activity, and Metabolism; Council on Arteriosclerosis, Thrombosis and Vascular Biology; Council on Cardiovascular Nursing; Council on the Kidney in Cardiovascular Disease. Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. Circulation. 2011;123:2292–333.

    Article  PubMed  Google Scholar 

  20. Qin X, Shen H, Liu M, Yang Q, Zheng S, Sabo M, et al. GLP-1 reduces intestinal lymph flow, triglyceride absorption, and apolipoprotein production in rats. Am J Physiol Gastrointest Liver Physiol. 2005;288:G943–9.

    Article  PubMed  CAS  Google Scholar 

  21. Ansar S, Koska J, Reaven PD. Postprandial hyperlipidemia, endothelial dysfunction and cardiovascular risk: focus on incretins. Cardiovasc Diabetol. 2011;10:61. doi:10.1186/1475-2840-10-61.

    Article  PubMed  CAS  Google Scholar 

  22. Matikainen N, Mänttäri S, Schweizer A, Ulvestad A, Mills D, Dunning BE, et al. Vildagliptin therapy reduces postprandial intestinal triglyceride-rich lipoprotein particles in patients with type 2 diabetes. Diabetologia. 2006;49:2049–57.

    Article  PubMed  CAS  Google Scholar 

  23. Matikainen N, Taskinen MR. The effect of vildagliptin therapy on atherogenic postprandial remnant particles and LDL particle size in subjects with type 2 diabetes. Diabet Med. 2013;30:756–7.

    Article  PubMed  CAS  Google Scholar 

  24. Stehouwer CDA, Smulders YM. Microalbuminuria and risk for cardiovascular disease: analysis of potential mechanisms. J Am Soc Nephrol. 2006;17:2106–11.

    Article  PubMed  CAS  Google Scholar 

  25. Tojo A, Kinugasa S. Mechanisms of glomerular albumin filtration and tubular reabsorption. Int J Nephrol. 2012;2012:481520. doi:10.1155/2012/481520.Epub2012May20.

    PubMed  Google Scholar 

  26. Klausen K, Borch-Johnsen K, Feldt-Rasmussen B, Jensen G, Clausen P, Scharling H, et al. Very low levels of microalbuminuria are associated with increased risk of coronary heart disease and death independently of renal function, hypertension, and diabetes. Circulation. 2004;110:32–5.

    Article  PubMed  CAS  Google Scholar 

  27. Ishibashi Y, Matsui T, Takeuchi M, Yamagishi S. Glucagon-like peptide-1 (GLP-1) inhibits advanced glycation endproduct (AGE)-induced up-regulation of VCAM-1 mRNA levels in endothelial cells by suppressing AGE receptor (RAGE) expression. Biochem Biophys Res Commun. 2010;391:1405–8.

    Article  PubMed  CAS  Google Scholar 

  28. Dozier KC, Cureton EL, Kwan RO, Curran B, Sadjadi J, Victorino GP. Glucagon-like peptide-1 protects mesenteric endothelium from injury during inflammation. Peptides. 2009;30:1735–41.

    Article  PubMed  CAS  Google Scholar 

  29. Hattori S. Sitagliptin reduces albuminuria in patients with type 2 diabetes. Endocr J. 2011;58:69–73.

    Article  PubMed  CAS  Google Scholar 

  30. Sarafidis PA, Stafylas PC, Georgianos PI, Saratzis AN, Lasaridis AN. Effect of thiazolidinediones on albuminuria and proteinuria in diabetes: a meta-analysis. Am J Kidney Dis. 2010;55:835–47.

    Article  PubMed  CAS  Google Scholar 

  31. Mattock MB, Cronin N, Cavallo-Perin P, Idzior-Walus B, Penno G, Bandinelli S, et al. EURODIAB IDDM Complications Study. Plasma lipids and urinary albumin excretion rate in type 1 diabetes mellitus: the EURODIAB IDDM Complications Study. Diabet Med. 2001;18:59–67.

    Article  PubMed  CAS  Google Scholar 

  32. Hirano T, Naito H, Kurokawa M, Ebara T, Nagano S, Adachi M, et al. High prevalence of small LDL particles in non-insulin-dependent diabetic patients with nephropathy. Atherosclerosis. 1996;123:57–72.

    Article  PubMed  CAS  Google Scholar 

  33. Shimabukuro M, Higa N, Asahi T, Oshiro Y, Takasu N. Fluvastatin improves endothelial dysfunction in overweight postmenopausal women through small dense low-density lipoprotein reduction. Metabolism. 2004;53:733–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

All the authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigemasa Tani.

Additional information

Clinical Trial Registration Information: UMIN (http://www.umin.ac.jp/), Study ID: UMIN000010451.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tani, S., Nagao, K. & Hirayama, A. Association Between Urinary Albumin Excretion and Low-density Lipoprotein Heterogeneity Following Treatment of Type 2 Diabetes Patients with the Dipeptidyl Peptidase-4 Inhibitor, Vildagliptin: A Pilot Study. Am J Cardiovasc Drugs 13, 443–450 (2013). https://doi.org/10.1007/s40256-013-0043-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40256-013-0043-2

Keywords

Navigation