Skip to main content
Log in

Incretin-Related Drug Therapy in Heart Failure

  • Pharmacologic Therapy (WHW Tang, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

The new pharmacological classes of GLP-1 agonists and DPP-4 inhibitors are now widely used in diabetes and have been postulated as beneficial in heart failure. These proposed benefits arise from the inter-related pathophysiologies of diabetes and heart failure (diabetes increases the risk of heart failure, and heart failure can induce insulin resistance) and also in light of the dysfunctional myocardial energetics seen in heart failure. The normal heart utilizes predominantly fatty acids for energy production, but there is some evidence to suggest that increased myocardial glucose uptake may be beneficial for the failing heart. Thus, GLP-1 agonists, which stimulate glucose-dependent insulin release and enhance myocardial glucose uptake, have become a focus of investigation in both animal models and humans with heart failure. Limited pilot data for GLP-1 agonists shows potential improvements in systolic function, hemodynamics, and quality of life, forming the basis for current phase II trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics - 2013 update: a report from the American Heart Association. Circulation. 2013;127(1):e6.

    Article  PubMed  Google Scholar 

  2. Ashrafian H, Frenneaux MP, Opie LH. Metabolic mechanisms in heart failure. Circulation. 2007;116(4):434–48.

    Article  CAS  PubMed  Google Scholar 

  3. Bing RJ. The metabolism of the human heart in vivo. J Mt Sinai Hosp N Y. 1953;20(2):100–17.

    CAS  PubMed  Google Scholar 

  4. Ferrari R. Prognostic benefits of heart rate reduction in cardiovascular disease. Eur Heart J Suppl. 2003;5:G10–4.

    Article  Google Scholar 

  5. Ingwall JS, Weiss RG. Is the failing heart energy starved? on using chemical energy to support cardiac function. Circ Res. 2004;95(2):135–45.

    Article  CAS  PubMed  Google Scholar 

  6. Neubauer S. The failing heart—an engine out of fuel. N Engl J Med. 2007;356(11):1140–51.

    Article  PubMed  Google Scholar 

  7. Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005;85(3):1093–129.

    Article  CAS  PubMed  Google Scholar 

  8. Stanley WC, Chandler MP. Energy metabolism in the normal and failing heart: potential for therapeutic interventions. Heart Fail Rev. 2002;7(2):115–30.

    Article  CAS  PubMed  Google Scholar 

  9. Taylor M, Wallhaus TR, Degrado TR, Russell DC, Stanko P, Nickles RJ, et al. An evaluation of myocardial fatty acid and glucose uptake using PET with [18 F]fluoro-6-thia-heptadecanoic acid and [18 F]FDG in patients with congestive heart failure. J Nucl Med. 2001;42(1):55–62.

    CAS  PubMed  Google Scholar 

  10. Paolisso G, Gambardella A, Galzerano D, D'Amore A, Rubino P, Verza M, et al. Total-body and myocardial substrate oxidation in congestive heart failure. Metab Clin Exp. 1994;43(2):174–9.

    Article  CAS  PubMed  Google Scholar 

  11. Nichols GA, Gullion CM, Koro CE, Ephross SA, Brown JB. The incidence of congestive heart failure in type 2 diabetes: an update. Diabetes Care. 2004;27(8):1879–84.

    Article  PubMed  Google Scholar 

  12. Swan JW, Anker SD, Walton C, Godsland IF, Clark AL, Leyva F, et al. Insulin resistance in chronic heart failure: relation to severity and etiology of heart failure. J Am Coll Cardiol. 1997;30(2):527–32.

    Article  CAS  PubMed  Google Scholar 

  13. Mamas MA, Deaton C, Rutter MK, Yuille M, Williams SG, Ray SG, et al. Impaired glucose tolerance and insulin resistance in heart failure: underrecognized and undertreated? J Card Fail. 2010;16(9):761–8.

    Article  CAS  PubMed  Google Scholar 

  14. Korvald C, Elvenes OP, Myrmel T. Myocardial substrate metabolism influences left ventricular energetics in vivo. Am J Physiol Heart Circ Physiol. 2000;278(4):H1345–51.

    CAS  PubMed  Google Scholar 

  15. Cottin Y, Lhuillier I, Gilson L, Zeller M, Bonnet C, Toulouse C, et al. Glucose insulin potassium infusion improves systolic function in patients with chronic ischemic cardiomyopathy. Eur J Heart Fail. 2002;4(2):181–4.

    Article  CAS  PubMed  Google Scholar 

  16. Nicolas-Robin A, Amour J, Ibanez-Esteve C, Coriat P, Riou B, Langeron O. Effect of glucose-insulin-potassium in severe acute heart failure after brain death. Crit Care Med. 2008;36(10):2740–5.

    Article  CAS  PubMed  Google Scholar 

  17. Mamas A, Mamas LNFF-O. A meta-analysis of glucose-insulin-potassium therapy for treatment of acute myocardial infarction. Exp Clin Cardiol. 2010;15(2):e20.

    PubMed Central  PubMed  Google Scholar 

  18. Anker SD, Chua TP, Ponikowski P, Harrington D, Swan JW, Kox WJ, et al. Hormonal changes and catabolic/anabolic imbalance in chronic heart failure and their importance for cardiac cachexia. Circulation. 1997;96(2):526–34.

    Article  CAS  PubMed  Google Scholar 

  19. Ahrén B. Incretin dysfunction in type 2 diabetes: clinical impact and future perspectives. Diabetes Metab. 2013;39(3):195–201.

    Article  PubMed  Google Scholar 

  20. Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132(6):2131–57.

    Article  CAS  PubMed  Google Scholar 

  21. Brunton S. GLP-1 receptor agonists vs. DPP-4 inhibitors for type 2 diabetes: is one approach more successful or preferable than the other? Int J Clin Pract. 2014;68(5):557–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Singh S, Chang H-Y, Richards TM, Weiner JP, Clark JM, Segal JB. Glucagonlike peptide 1-based therapies and risk of hospitalization for acute pancreatitis in type 2 diabetes mellitus: a population-based matched case–control study. JAMA Int Med. 2013;173(7):534–9.

    Article  CAS  Google Scholar 

  23. Zhao T, Parikh P, Bhashyam S, Bolukoglu H, Poornima I, Shen Y-T, et al. Direct effects of glucagon-like peptide-1 on myocardial contractility and glucose uptake in normal and postischemic isolated rat hearts. J Pharmacol Exp Ther. 2006;317(3):1106–13.

    Article  CAS  PubMed  Google Scholar 

  24. Bhashyam S, Fields AV, Patterson B, Testani JM, Chen L, Shen YT, et al. Glucagon-like peptide-1 increases myocardial glucose uptake via p38 MAP kinase-mediated, nitric oxide-dependent mechanisms in conscious dogs with dilated cardiomyopathy. Circ: Heart Fail. 2010;3(4):512–21.

    Google Scholar 

  25. Bose AK, Mocanu MM, Carr RD, Brand CL, Yellon DM. Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes. 2005;54(1):146–51.

    Article  CAS  PubMed  Google Scholar 

  26. Kavianipour M, Ehlers MR, Malmberg K, Ronquist G, Ryden L, Wikström G, et al. Glucagon-like peptide-1 (7–36) amide prevents the accumulation of pyruvate and lactate in the ischemic and non-ischemic porcine myocardium. Peptides. 2003;24(4):569–78.

    Article  CAS  PubMed  Google Scholar 

  27. Noyan-Ashraf MH, Momen MA, Ban K, Sadi A-M, Zhou Y-Q, Riazi AM, et al. GLP-1R agonist liraglutide activates cytoprotective pathways and improves outcomes after experimental myocardial infarction in mice. Diabetes. 2009;58(4):975–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Timmers L, Henriques JPS, de Kleijn DPV, DeVries JH, Kemperman H, Steendijk P, et al. Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. J Am Coll Cardiol. 2009;53(6):501–10.

    Article  CAS  PubMed  Google Scholar 

  29. Nikolaidis LA, Doverspike A, Hentosz T, Zourelias L, Shen Y-T, Elahi D, et al. Glucagon-like peptide-1 limits myocardial stunning following brief coronary occlusion and reperfusion in conscious canines. J Pharmacol Exp Ther. 2005;312(1):303–8.

    Article  CAS  PubMed  Google Scholar 

  30. Chinda K, Palee S, Surinkaew S, Phornphutkul M, Chattipakorn S, Chattipakorn N. Cardioprotective effect of dipeptidyl peptidase-4 inhibitor during ischemia-reperfusion injury. Int J Cardiol. 2013;167(2):451–7.

    Article  PubMed  Google Scholar 

  31. Yin M, Silljé HHW, Meissner M, van Gilst WH, de Boer RA. Early and late effects of the DPP-4 inhibitor vildagliptin in a rat model of post-myocardial infarction heart failure. Cardiovasc Diabetol. 2011;10:85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Nikolaidis LA, Mankad S, Sokos GG, Miske G, Shah A, Elahi D, et al. Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation. 2004;109(8):962–5.

    Article  CAS  PubMed  Google Scholar 

  33. Read PA, Hoole SP, White PA, Khan FZ, O'Sullivan M, West NEJ, et al. A pilot study to assess whether glucagon-like peptide-1 protects the heart from ischemic dysfunction and attenuates stunning after coronary balloon occlusion in humans. Circ: Cardiovasc Interv. 2011;4(3):266–72.

    CAS  Google Scholar 

  34. Read PA, Khan FZ, Dutka DP. Cardioprotection against ischaemia induced by dobutamine stress using glucagon-like peptide-1 in patients with coronary artery disease. Heart. 2012;98(5):408–13. A randomized crossover study of 14 patients with coronary artery disease and normal LV function awaiting revascularization. Participants underwent two dobutamine stress echocardiograms, one with an infusion of GLP-1 (7–36) amide and one with normal saline starting 30 min before the stress test and continuing for 30 min into recovery. At rest the infusion of GLP-1 did not affect LVEF - 62.3 ± 5.6 % (GLP-1) vs 62.6 ± 5.9 % (control); p = 0.74 – but at peak stress myocardial performance was augmented during GLP-1 infusion – LVEF 77.0 ± 4.4 % vs 70.8 ± 5.0 %; p < 0.0001. This demonstrates an important observation that GLP-1 may improve myocardial resilience during periods of ischemic stress.

    Article  CAS  PubMed  Google Scholar 

  35. Read PA, Khan FZ, Heck PM, Hoole SP, Dutka DP. DPP-4 inhibition by sitagliptin improves the myocardial response to dobutamine stress and mitigates stunning in a pilot study of patients with coronary artery disease. Circ: Cardiovasc Imaging. 2010;3(2):195–201.

    Google Scholar 

  36. Nikolaidis LA, Elahi D, Hentosz T, Doverspike A, Huerbin R, Zourelias L, et al. Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation. 2004;110(8):955–61.

    Article  CAS  PubMed  Google Scholar 

  37. Poornima I, Brown SB, Bhashyam S, Parikh P, Bolukoglu H, Shannon RP. Chronic Glucagon-like peptide-1 infusion sustains left ventricular systolic function and prolongs survival in the spontaneously hypertensive, heart failure-prone rat. Circ: Heart Fail. 2008;1(3):153–60.

    CAS  Google Scholar 

  38. Vyas AK, Yang K-C, Woo D, Tzekov A, Kovacs A, Jay PY, et al. Exenatide improves glucose homeostasis and prolongs survival in a murine model of dilated cardiomyopathy. PLoS ONE. 2011;6(2):e17178.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Liu Q, Anderson C, Broyde A, Polizzi C, Fernandez R, Baron A, et al. Glucagon-like peptide-1 and the exenatide analogue AC3174 improve cardiac function, cardiac remodeling, and survival in rats with chronic heart failure. Cardiovasc Diabetol. 2010;9(1):76.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Thrainsdottir I, Malmberg K, Olsson A, Gutniak M, Ryden L. Initial experience with GLP-1 treatment on metabolic control and myocardial function in patients with type 2 diabetes mellitus and heart failure. Diabetes Vasc Dis Res. 2004;1(1):40.

    Article  Google Scholar 

  41. Sokos GG, Nikolaidis LA, Mankad S, Elahi D, Shannon RP. Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J Card Fail. 2006;12(9):694–9.

    Article  CAS  PubMed  Google Scholar 

  42. Halbirk M, Nørrelund H, Møller N, Holst JJ, Schmitz O, Nielsen R, et al. Cardiovascular and metabolic effects of 48-h glucagon-like peptide-1 infusion in compensated chronic patients with heart failure. Am J Physiol Heart Circ Physiol. 2010;298(3):H1096–102. A well-conducted human pilot study using a randomized double-blind crossover design to study 48 hours of GLP-1 infusion in 20 NYHA II-III subjects without diabetes. The findings were notable for no significant change in cardiac index, LVEF, diastolic function, exercise capacity, regional myocardial contractile function, or BNP with GLP-1 treatment. This study also raised concerns regarding safety in the HF population, because GLP-1 infusion increased circulating insulin levels and reduced plasma glucose levels and resulted in hypoglycemia in eight patients.

    Article  CAS  PubMed  Google Scholar 

  43. Nikolaidis LA, Elahi D, Shen Y-T, Shannon RP. Active metabolite of GLP-1 mediates myocardial glucose uptake and improves left ventricular performance in conscious dogs with dilated cardiomyopathy. Am J Physiol Heart Circ Physiol. 2005;289(6):H2401–8.

    Article  CAS  PubMed  Google Scholar 

  44. Ban K, Noyan-Ashraf MH, Hoefer J, Bolz S-S, Drucker DJ, Husain M. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation. 2008;117(18):2340–50.

    Article  CAS  PubMed  Google Scholar 

  45. Nathanson D, Ullman B, Löfström U, Hedman A, Frick M, Sjöholm A, et al. Effects of intravenous exenatide in type 2 diabetic patients with congestive heart failure: a double-blind, randomised controlled clinical trial of efficacy and safety. Diabetologia. 2012;55(4):926–35. Another more recent randomized, double-blinded crossover trial of 20 patients gives reason for caution regarding use of intravenous exenatide in patients with diabetes and HF. Although there was a significant reduction in pulmonary capillary wedge pressure during exenatide infusion, the observed improvement in cardiac index was secondary to a marked elevation in heart rate – by 21 ± 5 (29 %) bpm after 6 hours of exenatide infusion – rather than augmentation of stroke volume.

    Article  CAS  PubMed  Google Scholar 

  46. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352(9131):837–53.

    Article  Google Scholar 

  47. Ray KK, Seshasai SRK, Wijesuriya S, Sivakumaran R, Nethercott S, Preiss D, et al. Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials. Lancet. 2009;373(9677):1765–72.

    Article  CAS  PubMed  Google Scholar 

  48. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356(24):2457–71.

    Article  CAS  PubMed  Google Scholar 

  49. Kaul S, Bolger AF, Herrington D, Giugliano RP, Eckel RH. Thiazolidinedione drugs and cardiovascular risks: a science advisory from the American Heart Association and American College of Cardiology Foundation. J Am Coll Cardiol. 2010;55(17):1885–94.

    Article  PubMed  Google Scholar 

  50. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HAW. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577–89.

    Article  CAS  PubMed  Google Scholar 

  51. Klonoff DC, Buse JB, Nielsen LL, Guan X, Bowlus CL, Holcombe JH, et al. Exenatide effects on diabetes, obesity, cardiovascular risk factors and hepatic biomarkers in patients with type 2 diabetes treated for at least 3 years. Curr Med Res Opin. 2008;24(1):275–86.

    CAS  PubMed  Google Scholar 

  52. Horton ES, Silberman C, Davis KL, Berria R. Weight loss, glycemic control, and changes in cardiovascular biomarkers in patients with type 2 diabetes receiving incretin therapies or insulin in a large cohort database. Diabetes Care. 2010;33(8):1759–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Bunck MC, Diamant M, Eliasson B, Cornér A, Shaginian RM, Heine RJ, et al. Exenatide affects circulating cardiovascular risk biomarkers independently of changes in body composition. Diabetes Care. 2010;33(8):1734–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Robinson LE, Holt TA, Rees K, Randeva HS, O'Hare JP. Effects of exenatide and liraglutide on heart rate, blood pressure and body weight: systematic review and meta-analysis. BMJ Open. 2013;3(1):e001986–6.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Best JH, Hoogwerf BJ, Herman WH, Pelletier EM, Smith DB, Wenten M, et al. Risk of cardiovascular disease events in patients with type 2 diabetes prescribed the glucagon-like peptide 1 (GLP-1) receptor agonist exenatide twice daily or other glucose-lowering therapies: a retrospective analysis of the lifelink database. Diabetes Care. 2010;34(1):90–5.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Tibble CA, Cavaiola TS, Henry RR. Longer acting GLP-1 receptor agonists and the potential for improved cardiovascular outcomes: a review of current literature. Expert Rev Endocrinol Metab. 2013;8(3):247–59.

    Article  CAS  Google Scholar 

  57. Patil HR, Badarin Al FJ, Shami Al HA, Bhatti SK, Lavie CJ, Bell DSH, et al. Meta-analysis of effect of dipeptidyl peptidase-4 inhibitors on cardiovascular risk in type 2 diabetes mellitus. Am J Cardiol. 2012;110(6):826–33.

    Article  CAS  PubMed  Google Scholar 

  58. Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369(14):1317–26.

    Article  CAS  PubMed  Google Scholar 

  59. Khan MA, Deaton C, Rutter MK, Neyses L, Mamas MA. Incretins as a novel therapeutic strategy in patients with diabetes and heart failure. Heart Fail Rev. 2013;18(2):141–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Amanda R. Vest declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Funding and Disclosures

The author did not receive funding for this work, and has no financial relationships or other industry disclosures to make. This article does not contain any studies with human or animal subjects performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda R. Vest.

Additional information

This article is part of the Topical Collection on Pharmacologic Therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vest, A.R. Incretin-Related Drug Therapy in Heart Failure. Curr Heart Fail Rep 12, 24–32 (2015). https://doi.org/10.1007/s11897-014-0232-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-014-0232-6

Keywords

Navigation